uu.seUppsala University Publications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aad, G.
    et al.
    Buszello, Claus P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Costa, Marcio Jorge Teles da
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for anomalous production of prompt like-sign lepton pairs at root s=7 TeV with the ATLAS detector2012In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 12, p. 007-Article in journal (Refereed)
    Abstract [en]

    An inclusive search for anomalous production of two prompt, isolated leptons with the same electric charge is presented. The search is performed in a data sample corresponding to 4.7 fb(-1) of integrated luminosity collected in 2011 at root s = 7TeV with the ATLAS detector at the LHC. Pairs of leptons (e(+/-)e(+/-), e(+/-)mu(+/-), and mu(+/-)mu(+/-)) with large transverse momentum are selected, and the dilepton invariant mass distribution is examined for any deviation from the Standard Model expectation. No excess is found, and upper limits on the production cross section of like-sign lepton pairs from physics processes beyond the Standard Model are placed as a function of the dilepton invariant mass within a fiducial region close to the experimental selection criteria. The 95% confidence level upper limits on the cross section of anomalous e(+/-)e(+/-), e(+/-)mu(+/-), or mu(+/-)mu(+/-) production range between 1.7 fb and 64 fb depending on the dilepton mass and flavour combination.

  • 2.
    Costa, Marcio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    First-principles Studies of Local Structure Effects in Magnetic Materials2012Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis focus on the magnetic behavior, from single atoms to bulk materials. The materials considered in this thesis have been studied by computational methods based on ab initio theory, density functional theory (DFT), including treatment of the spin-orbit coupling, non-collinear magnetism, and methods capable of treating discorded systems. Furthermore strongly correlated materials have been investigated using the dynamical mean field theory (DMFT). The uniaxial magnetic anisotropy energy (MAE) of the Fe2P was investigated using the full-potential linear muffin tin orbital (FP-LMTO) method. Based on a band structure analysis, the microscopical origin of the large magnetic anisotropy found for this system is explained. It is also shown that by straining the crystal structure, the MAE can be enhanced further. This opens up for the possibility of obtaining a room temperature permanent magnet based on the Fe2P. The spectral properties of Fe impurities in a Cs host have been investigated, for both surface and bulk systems, by means of combination of density-functional theory in the local density approximation and the dynamical mean-field theory (LDA+DMFT), using two different impurity solvers, the Hubbard I approximation (HIA) and the Exact Diagonalization (ED) method were used. It is shown that noticeable differences can be seen in the unoccupied part of the spectrum for different positions of Fe atoms inside the host. The calculations show good agreement with the experimental photoemission spectra. The stability of the 12-fold metal-phosphorous coordination, existing in the meteorite mineral melliniite has been investigated trough total energy calculations using the coherent potential approximation (CPA) combined with an analysis of the chemical bonds, performed by balanced crystal overlap population (BCOOP). It was shown that its uniquely high metal–phosphorous coordination is due to a balance between covalent Fe–P binding, configurational entropy and a weaker nickel–phosphorus binding. Supported clusters have drawn a lot of attention as possible building blocks for future data storage applications. This topic was investigated using a real space noncollinear formalism where the exchange interactions between Co atoms were shown to be tuned by varying the substrate surface composition. Furthermore the spin dynamics of small Co clusters an a Cu(111) surface have been investigated and a new kind of dynamics, where magnetization switching can be accelerated by decreasing the switching field, has been found. A method for calculating the electronic structure for both ordered and disordered alloys, the augmented space recursion (ASR) method, have been extended to treat non-collinear magnetic order. The method has been used to investigate the energy stability of non-collinear arrangements of MnPt and Mn3Rh alloys.

  • 3.
    Costa, Marcio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Grånäs, Oscar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Bergman, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Venezuela, P.
    Instituto de Física, Universidade Federal Fluminense, Rio de Janeiro, Brasilien.
    Nordblad, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Klintenberg, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Large magnetic anisotropy of Fe2P investigated via ab initio density functional theory calculations2012In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, no 8, p. 085125-Article in journal (Refereed)
    Abstract [en]

    We present an investigation of the large magnetic anisotropy of Fe2P, based on ab initio density functional theory calculations, with a full-potential linear muffin-tin orbital basis. We obtain a uniaxial magnetic anisotropy energy (MAE) of 664 mu eV/f.u., which is in decent agreement with experimental observations. Based on a band structure analysis the microscopic origin of the large magnetic anisotropy is explained. We also show that by straining the crystal structure, the MAE can be enhanced further.

  • 4.
    Costa, Marcio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Thunstroem, P.
    Di Marco, Igor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Bergman, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Klautau, A. B.
    Lichtenstein, A. I.
    Katsnelson, M. I.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Correlated electronic structure of Fe in bulk Cs and on a Cs surface2013In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 87, no 11, p. 115142-Article in journal (Refereed)
    Abstract [en]

    We have investigated the spectral properties of Fe impurities in a Cs host, for both surface and bulk systems, by means of a combination of density functional theory in the local density approximation and dynamical mean-field theory (LDA + DMFT). The effective impurity model arising in LDA + DMFT was solved via two different techniques, i.e., the Hubbard I approximation and the exact diagonalization. It is shown that noticeable differences can be seen in the unoccupied part of the spectrum for different positions of Fe atoms in the host, despite the fact that hybridization between Fe d-states and Cs is low. Our calculations show good agreement with the experimental photoemission spectra reported by Carbone et al. [Carbone, Veronese, Moras, Gardonio, Grazioli, Zhou, Rader, Varykhalov, Krull, Balashov, Mugarza, Gambardella, Lebegue, Eriksson, Katsnelson, and Lichtenstein, Phys. Rev. Lett. 104, 117601 (2010)].

  • 5.
    Etz, Corina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Costa, Marcio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Bergman, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Accelerating the switching of magnetic nanoclusters by anisotropy-driven magnetization dynamics2012In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, no 22, p. 224401-Article in journal (Refereed)
    Abstract [en]

    In this work, the magnetization dynamics of clusters supported on nonmagnetic substrates is shown to exhibit a complex response when subjected to external magnetic fields. The field-driven magnetization reversal of small Co clusters deposited on a Cu(111) surface has been studied by means of first-principles calculations and atomistic spin dynamics simulations. For applied fields ranging from 1 to 10 Tesla, we observe a coherent magnetization reversal with switching times in the range of several tenths of picoseconds to several nanoseconds, depending on the field strength. We find a nonmonotonous dependence of the switching times with respect to the strength of the applied field, which we prove has its origin in the complex magnetic anisotropy landscape of these low-dimensional systems. This effect is shown to be stable for temperatures around 10 K, and is possible to realize over a range of exchange interactions and anisotropy landscapes. Possible experimental routes to achieve this unique switching behavior are discussed.

  • 6.
    Kadas, Krisztina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Teles da Costa, Marcio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Vitos, Levente
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Andersson, Yvonne
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Bergman, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    On the icosahedral metal-phosphorus coordination in melliniite: a gift from the sky for materials chemistry2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 29, p. 14741-14745Article in journal (Refereed)
    Abstract [en]

    Recently a new mineral, melliniite, was reported from a meteorite sample. This mineral has an ideal chemical composition of (Ni,Fe)(4)P and a crystal structure where the phosphorus atoms are coordinated by twelve nearest neighboring metal atoms. No other phosphide has been reported to have such high metal coordination. Therefore melliniite provides new and important information about the chemical interaction in transition metal chalcogenides and possibly pnictides. We demonstrate here, using first principles theory, that the stability and icosahedral metal-phosphorous coordination of melliniite are due to a balance between covalent Fe-P binding, configurational entropy and a weaker nickel-phosphorus binding, that has only a weak directional dependence.

  • 7.
    Szilva, Attila
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Costa, Marcio Jorge Teles da
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Bergman, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Szunyogh, L.
    Nordström, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Interatomic Exchange Interactions for Finite-Temperature Magnetism and Nonequilibrium Spin Dynamics2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 111, no 12, p. 127204-Article in journal (Refereed)
    Abstract [en]

    We derive ab inito exchange parameters for general noncollinear magnetic configurations, in terms of a multiple scattering formalism. We show that the general exchange formula has an anisotropiclike term even in the absence of spin-orbit coupling, and that this term is large, for instance, for collinear configuration in bcc Fe, whereas for fcc Ni it is quite small. We demonstrate that keeping this term leads to what one should consider a biquadratic effective spin Hamiltonian even in the case of collinear arrangement. In noncollinear systems this term results in new tensor elements that are important for exchange interactions at finite temperatures, but they have less importance at low temperature. To illustrate our results in practice, we calculate for bcc Fe magnon spectra obtained from configuration-dependent exchange parameters, where the configurations are determined by finite-temperature effects. Our theory results in the same quantitative results as the finite-temperature neutron scattering experiments.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf