uu.seUppsala University Publications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eriksson, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Studies of New Signal Transduction Modulators in Acute Myeloid Leukemia2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Acute myeloid leukemia (AML) is a life-threatening malignant disorder with dismal prognosis. AML is characterized by frequent genetic changes involving tyrosine kinases, normally acting as important mediators in many basic cellular processes. Due to the overexpression and frequent mutations of the FMS-like receptor tyrosine kinase 3 (FLT3) in AML, this tyrosine kinase receptor has become one of the most sought after targets in AML drug development.

    In this thesis, we have used a combination of high-throughput screens, direct target interaction assays and sequential cellular screens, including primary patient samples, as an approach to discover new targeted therapies. Gefitinib, a previously known inhibitor of epidermal growth factor receptor and the two novel tyrosine kinase inhibitors AKN-032 and AKN-028, have been identified as compounds with cytotoxic activity in AML.

    AKN-028 is a potent inhibitor of FLT3 with an IC50 value of 6 nM in an enzyme assay, but also displaying in vitro activity in a variety of primary AML samples, irrespective of FLT3 mutation status or quantitative FLT3 expression. AKN-028 shows a sequence dependent in vitro synergy when combined with standard cytotoxic agents cytarabine or daunorubicin, with better efficacy when cells are exposed to standard chemotherapy simultaneously or for 24 hours prior to adding AKN-028. Antagonism is observed when cells are pre-treated with AKN-028, possibly explained by the cell cycle arrest induced by the compound. In vivo cytotoxic activity and good oral bioavailability have made AKN-028 a candidate drug for clinical studies and the compound is presently investigated in an international two-part multicenter phase I/II study.

    Results from microarray studies performed to further elucidate the mechanism of action of AKN-028, revealed significantly altered gene expression induced by AKN-028 in both AML cell lines and in primary AML cells, with an enrichment of the Myc pathway among the downregulated genes.

    Furthermore, tyrosine kinase activity profiling shows a dose-dependent kinase inhibition by AKN-028 in all AML samples tested. Interestingly, cells with a high overall kinase activity were more sensitive to AKN-028. Provided conformation in a larger set of samples, kinase activity profiling may give useful information in individualizing treatment of patients with AML.

    List of papers
    1. Significant cytotoxic activity in vitro of the EGFR tyrosine kinase inhibitor gefitinib in acute myeloblastic leukaemia
    Open this publication in new window or tab >>Significant cytotoxic activity in vitro of the EGFR tyrosine kinase inhibitor gefitinib in acute myeloblastic leukaemia
    Show others...
    2008 (English)In: European Journal of Haematology, ISSN 0902-4441, E-ISSN 1600-0609, Vol. 81, no 5, p. 344-353Article in journal (Refereed) Published
    Abstract [en]

    Objectives: 

    Gefitinib inhibits epidermal growth factor receptor (EGFR) signalling, but may also act by non-EGFR dependent mechanisms. We have investigated the activity of gefitinib in haematological tumour cells, in particular acute myeloblastic leukaemia (AML).

    Methods: 

    Cytotoxic activity of gefitinib, alone or in combination with standard anti-leukaemic drugs, was assessed by the short-term fluorometric microculture cytotoxicity assay in tumour cells from 117 patients representing five haematological and five non-haematological malignancies. In AML, the EGFR status was analysed by immunochemistry. Gefitinib-induced apoptosis was investigated in a subset of AML samples, as well as in the leukaemia cell line MV-4-11, using a multiparametric high content screening assay. To confirm activation of caspase-3 in cells treated with gefitinib, a blocking test was carried out in which MV4-11 cells were pretreated with the specific caspase inhibitor DEVD-FMK.

    Results: 

    Gefitinib showed highest cytotoxic activity in AML (= 19) with many samples being sensitive at concentrations achievable in clinical practice (<10 μM), and no difference between previously untreated and relapsed patients. No correlation between the activity of gefitinib and standard antileukaemic drugs (cytarabine, doxorubicin, etoposide) was observed. Combining gefitinib with these drugs resulted in mainly additive or synergistic (etoposide) effects, with no evidence of sequence dependency. The AML cells did not express the EGFR. Gefitinib induced apoptosis, which was at least partly mediated by activation of the caspase-3 pathway.

    Conclusion: 

    In vitro, gefitinib has significant cytotoxic activity in AML by inducing apoptosis through non-EGFR dependent pathways.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-102372 (URN)10.1111/j.1600-0609.2008.01120.x (DOI)000260185700002 ()18637032 (PubMedID)
    Available from: 2009-05-06 Created: 2009-05-06 Last updated: 2017-12-13Bibliographically approved
    2. Identification of AKN-032, a novel 2-aminopyrazine tyrosine kinase inhibitor, with significant preclinical activity in acute myeloid leukemia
    Open this publication in new window or tab >>Identification of AKN-032, a novel 2-aminopyrazine tyrosine kinase inhibitor, with significant preclinical activity in acute myeloid leukemia
    Show others...
    2010 (English)In: Biochemical Pharmacology, ISSN 0006-2952, E-ISSN 1356-1839, Vol. 80, no 10, p. 1507-1516Article in journal (Refereed) Published
    Abstract [en]

    Aberrant signal transduction by mutant or overexpressed protein kinases has emerged as a promising target for treatment of acute myeloid leukemia (AML). We here present a novel low molecular weight kinase inhibitor, AKN-032, targeting the FMS-like tyrosine kinase 3 (FLT3) and discovered in a new type of screening funnel combining the target therapy approach with sequential cellular screens. AKN-032 was identified among 150 selected hits from three different high throughput kinase screens. Further characterization showed inhibitory activity on FLT3 enzyme with an IC50 of 70 nM. Western blot analysis revealed reduced autophosphorylation of the FLT3-receptor in AML cell line MV4-11 cells after exposure to AKN-032. Flow cytometry disclosed cytotoxic activity against MV4-11, but not against non-malignant 3T3-L1 fibroblast cells. Using a fluorometric microculture cytotoxicity assay, AKN-032 was tested against 15 cell lines and displayed a potent cytotoxic activity in AML cell lines MV4-11 (IC50 = 0.4 mu M) and Kasumi-1 (IC50 = 2.3 mu M). AKN-032 was also highly cytotoxic in tumor cells from AML patients in vitro. Furthermore, AKN-032 demonstrated significant antileukemic effect in a relatively resistant in vivo hollow fiber mouse model. No major toxicity was observed in the animals. In conclusion. AKN-032 is a promising new kinase inhibitor with significant in vivo and in vitro activity in AML Results from the hollow fiber mouse assay suggest a favorable toxicity profile. Future studies will focus on pharmacokinetic properties, toxicity as well as further clarifying the mechanisms of action of AKN-032 in AML.

    Keywords
    Acute myeloid leukemia, New drug development, Tyrosine kinase inhibitor, FLT3
    National Category
    Medical and Health Sciences Pharmaceutical Sciences
    Identifiers
    urn:nbn:se:uu:diva-134176 (URN)10.1016/j.bcp.2010.08.002 (DOI)000282850900006 ()
    Available from: 2010-11-22 Created: 2010-11-22 Last updated: 2018-01-12Bibliographically approved
    3. The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia
    Open this publication in new window or tab >>The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia
    Show others...
    2012 (English)In: Blood Cancer Journal, ISSN 2044-5385, E-ISSN 2044-5385, Vol. 2, p. e81-Article in journal (Refereed) Published
    Abstract [en]

    Aberrantly expressed tyrosine kinases have emerged as promising targets for drug development in acute myeloid leukemia (AML). We report that AKN-028, a novel tyrosine kinase inhibitor (TKI), is a potent FMS-like receptor tyrosine kinase 3 (FLT3) inhibitor (IC50=6 nM), causing dose-dependent inhibition of FLT3 autophosphorylation. Inhibition of KIT autophosphorylation was shown in a human megakaryoblastic leukemia cell line overexpressing KIT. In a panel of 17 cell lines, AKN-028 showed cytotoxic activity in all five AML cell lines included. AKN-028 triggered apoptosis in MV4-11 by activation of caspase 3. In primary AML samples (n=15), AKN-028 induced a clear dose-dependent cytotoxic response (mean IC50 1 μM). However, no correlation between antileukemic activity and FLT3 mutation status, or to the quantitative expression of FLT3, was observed. Combination studies showed synergistic activity when cytarabine or daunorubicin was added simultaneously or 24 h before AKN-028. In mice, AKN-028 demonstrated high oral bioavailability and antileukemic effect in primary AML and MV4-11 cells, with no major toxicity observed in the experiment. In conclusion, AKN-028 is a novel TKI with significant preclinical antileukemic activity in AML. Possible sequence-dependent synergy with standard AML drugs and good oral bioavailability has made it a candidate drug for clinical trials (ongoing).

    National Category
    Medical and Health Sciences Hematology Pharmacology and Toxicology
    Identifiers
    urn:nbn:se:uu:diva-182062 (URN)10.1038/bcj.2012.28 (DOI)000308664500001 ()22864397 (PubMedID)
    Available from: 2012-10-03 Created: 2012-10-03 Last updated: 2018-01-12Bibliographically approved
    4. AKN-028 induces cell cycle arrest, downregulation of Myc associated genes and a dose dependent reduction of kinase activity in acute myeloid leukemia
    Open this publication in new window or tab >>AKN-028 induces cell cycle arrest, downregulation of Myc associated genes and a dose dependent reduction of kinase activity in acute myeloid leukemia
    Show others...
    2014 (English)In: Biochemical Pharmacology, ISSN 0006-2952, E-ISSN 1356-1839, Vol. 87, no 2, p. 284-291Article in journal (Refereed) Published
    Abstract [en]

    AKN-028 is a novel tyrosine kinase inhibitor with preclinical activity in acute myeloid leukemia (AML), presently undergoing investigation in a phase I/II study. It is a potent inhibitor of the FMS-like kinase 3 (FLT3) but shows in vitro activity in a wide range of AML samples. In the present study, we have characterized the effects of AKN-028 on AML cells in more detail. AKN-028 induced a dose-dependent G(0)/arrest in AML cell line MV4-11. Treatment with AKN-028 caused significantly altered gene expression in all AML cell types tested (430 downregulated, 280 upregulated transcripts). Subsequent gene set enrichment analysis revealed enrichment of genes associated with the proto-oncogene and cell cycle regulator c-Myc among the downregulated genes in both AKN-028 and midostaurin treated cells. Kinase activity profiling in AML cell lines and primary AML samples showed that tyrosine kinase activity, but not serine/threonine kinase activity, was inhibited by AKN-028 in a dose dependent manner in all samples tested, reaching approximately the same level of kinase activity. Cells sensitive to AKN-028 showed a higher overall tyrosine kinase activity than more resistant ones, whereas serine/threonine kinase activity was similar for all primary AML samples. In summary, AKN-028 induces cell cycle arrest in AML cells, downregulates Myc-associated genes and affect several signaling pathways. AML cells with high global tyrosine kinase activity seem to be more sensitive to the cytotoxic effect of AKN-028 in vitro.

    Place, publisher, year, edition, pages
    Elsevier, 2014
    Keywords
    Acute myeloid leukemia, AKN-028, Tyrosine kinase inhibitor, Signal transduction
    National Category
    Hematology Pharmacology and Toxicology Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-182065 (URN)10.1016/j.bcp.2013.10.022 (DOI)000330332800006 ()
    Available from: 2012-10-10 Created: 2012-10-03 Last updated: 2018-01-12Bibliographically approved
  • 2.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Chantzi, Efthymia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Fryknäs, Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Nygren, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Gustafsson, Mats G
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Towards repositioning of quinacrine for treatment of acute myeloid leukemia - Promising synergies and in vivo effects.2017In: Leukemia research: a Forum for Studies on Leukemia and Normal Hemopoiesis, ISSN 0145-2126, E-ISSN 1873-5835, Vol. 63, p. 41-46Article in journal (Refereed)
    Abstract [en]

    We previously reported that the anti-malarial drug quinacrine has potential to be repositioned for treatment of acute myeloid leukemia (AML). As a next step towards clinical use, we assessed the efficacy of quinacrine in an AML-PS mouse model and investigated possible synergistic effects when combining quinacrine with nine other antileukemic compounds in two AML cell lines. Furthermore, we explored the in vivo activity of quinacrine in combination with the widely used AML agent cytarabine. The in vivo use of quinacrine (100mg/kg three times per week for two consecutive weeks) significantly suppressed circulating blast cells at days 30/31 and increased the median survival time (MST). The in vitro drug combination analysis yielded promising synergistic interactions when combining quinacrine with cytarabine, azacitidine and geldanamycin. Finally, combining quinacrine with cytarabine in vivo showed a significant decrease in circulating leukemic blast cells and increased MST compared to the effect of either drug used alone, thus supporting the findings from the in vitro combination experiments. Taken together, the repositioning potential of quinacrine for treatment of AML is reinforced by demonstrating significant in vivo activity and promising synergies when quinacrine is combined with different agents, including cytarabine, the hypomethylating agent azacitidine and HSP-90 inhibitor geldanamycin.

  • 3.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Gustafsson, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Fryknäs, Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Nygren, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Repositioning Of Quinacrine For Treatment Of Acute Myeloid Leukemia - Synergies And In Vivo Effects2016In: Haematologica, ISSN 0390-6078, E-ISSN 1592-8721, Vol. 101, p. 367-368Article in journal (Other academic)
  • 4.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Hermanson, Monica
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Genetics.
    Wickström, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Lindhagen, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Ekholm, C
    Jenmalm Jensen, A
    Löthgren, A
    Lehmann, F
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Parrow, V
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    The novel tyrosine kinase inhibitor AKN-028 has significant antileukemic activity in cell lines and primary cultures of acute myeloid leukemia2012In: Blood Cancer Journal, ISSN 2044-5385, E-ISSN 2044-5385, Vol. 2, p. e81-Article in journal (Refereed)
    Abstract [en]

    Aberrantly expressed tyrosine kinases have emerged as promising targets for drug development in acute myeloid leukemia (AML). We report that AKN-028, a novel tyrosine kinase inhibitor (TKI), is a potent FMS-like receptor tyrosine kinase 3 (FLT3) inhibitor (IC50=6 nM), causing dose-dependent inhibition of FLT3 autophosphorylation. Inhibition of KIT autophosphorylation was shown in a human megakaryoblastic leukemia cell line overexpressing KIT. In a panel of 17 cell lines, AKN-028 showed cytotoxic activity in all five AML cell lines included. AKN-028 triggered apoptosis in MV4-11 by activation of caspase 3. In primary AML samples (n=15), AKN-028 induced a clear dose-dependent cytotoxic response (mean IC50 1 μM). However, no correlation between antileukemic activity and FLT3 mutation status, or to the quantitative expression of FLT3, was observed. Combination studies showed synergistic activity when cytarabine or daunorubicin was added simultaneously or 24 h before AKN-028. In mice, AKN-028 demonstrated high oral bioavailability and antileukemic effect in primary AML and MV4-11 cells, with no major toxicity observed in the experiment. In conclusion, AKN-028 is a novel TKI with significant preclinical antileukemic activity in AML. Possible sequence-dependent synergy with standard AML drugs and good oral bioavailability has made it a candidate drug for clinical trials (ongoing).

  • 5.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Kalushkova, Antonia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Jarvius, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Hilhorst, Riet
    Rickardson, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Göransson Kultima, Hanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    de Wijn, Rik
    Fryknäs, Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Öberg, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Parrow, Vendela
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    AKN-028 induces cell cycle arrest, downregulation of Myc associated genes and a dose dependent reduction of kinase activity in acute myeloid leukemia2014In: Biochemical Pharmacology, ISSN 0006-2952, E-ISSN 1356-1839, Vol. 87, no 2, p. 284-291Article in journal (Refereed)
    Abstract [en]

    AKN-028 is a novel tyrosine kinase inhibitor with preclinical activity in acute myeloid leukemia (AML), presently undergoing investigation in a phase I/II study. It is a potent inhibitor of the FMS-like kinase 3 (FLT3) but shows in vitro activity in a wide range of AML samples. In the present study, we have characterized the effects of AKN-028 on AML cells in more detail. AKN-028 induced a dose-dependent G(0)/arrest in AML cell line MV4-11. Treatment with AKN-028 caused significantly altered gene expression in all AML cell types tested (430 downregulated, 280 upregulated transcripts). Subsequent gene set enrichment analysis revealed enrichment of genes associated with the proto-oncogene and cell cycle regulator c-Myc among the downregulated genes in both AKN-028 and midostaurin treated cells. Kinase activity profiling in AML cell lines and primary AML samples showed that tyrosine kinase activity, but not serine/threonine kinase activity, was inhibited by AKN-028 in a dose dependent manner in all samples tested, reaching approximately the same level of kinase activity. Cells sensitive to AKN-028 showed a higher overall tyrosine kinase activity than more resistant ones, whereas serine/threonine kinase activity was similar for all primary AML samples. In summary, AKN-028 induces cell cycle arrest in AML cells, downregulates Myc-associated genes and affect several signaling pathways. AML cells with high global tyrosine kinase activity seem to be more sensitive to the cytotoxic effect of AKN-028 in vitro.

  • 6.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Lennartsson, Andreas
    Karolinska Inst, Stockholm, Sweden.
    Lehmann, Sören
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis2015In: Experimental Hematology, ISSN 0301-472X, E-ISSN 1873-2399, Vol. 43, no 8, p. 609-624Article in journal (Refereed)
    Abstract [en]

    As a result of the introduction of new sequencing technologies, the molecular landscape of acute myeloid leukemia (AML) is rapidly evolving. From karyotyping, which detects only large genomic aberrations of metaphase chromosomes, we have moved into an era when sequencing of each base pair allows us to define the AML genome at highest resolution. This has revealed a new complex landscape of genetic aberrations where addition of mutations in epigenetic regulators has been one of the most important contributions to the understanding of the pathogenesis of AML. These findings, together with new insights into epigenetic mechanisms, have placed dysregulated epigenetic mechanisms at the forefront of AML development. Not only have several new mutations in genes directly involved in epigenetic regulatory mechanisms been discovered, but also previously well-known gene fusions have been found to exert aberrant effects through epigenetic mechanisms. In addition, mutations in epigenetic regulators such as DNMT3A, TET2, and ASXL1 have recently been found to be the earliest known events during AML evolution and to be present as preleukemic lesions before the onset of AML. In this article, we review epigenetic changes in AML also in relation to what is known about their mechanism of action and their prognostic role.

  • 7.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Osterros, Albin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Hassan, Sadia Bashir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Rickardson, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Jarvius, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Nygren, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Fryknäs, Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Repositioning of Quinacrine for Treatment of Acute Myeloid Leukemia2014In: Blood, ISSN 0006-4971, E-ISSN 1528-0020, Vol. 124, no 21Article in journal (Other academic)
  • 8.
    Eriksson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Österroos, Albin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Hassan, Sadia Bashir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Rickardson, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Jarvius, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Nygren, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Fryknäs, Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia2015In: Blood Cancer Journal, ISSN 2044-5385, E-ISSN 2044-5385, Vol. 5, article id e307Article in journal (Refereed)
    Abstract [en]

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 mu M drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug-drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis.

  • 9.
    Ungerstedt, J.
    et al.
    Karolinska Inst, Dept Med, Stockholm, Sweden..
    Eriksson, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Olander, E.
    Umea Univ, Dept Med, Umea, Sweden..
    Bergfelt, Emma
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Liljeholm, M.
    Umea Univ, Dept Med, Umea, Sweden..
    Kristjanssdottir, H. Lind
    Karolinska Inst, Dept Med, Stockholm, Sweden..
    Erger, T.
    Erixon, D.
    Umea Univ, Dept Med, Umea, Sweden..
    Isaksson, C.
    Umea Univ, Dept Med, Umea, Sweden..
    Birgegård, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology. Uppsala Univ, Dept Med Sci, Uppsala, Sweden..
    Development of a Progress Test Based on the EHA Curriculum and EHA CV Passport, Used for Yearly Evaluation of Hematology Residency In Sweden2015In: Haematologica, ISSN 0390-6078, E-ISSN 1592-8721, Vol. 100, p. 776-776Article in journal (Other academic)
  • 10. Ungerstedt, J.
    et al.
    Eriksson, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Olander, E.
    Theander, J.
    Liljeholm, M.
    Isaksson, C.
    Birgegard, G.
    Development of Progress Test Based on EHA Curriculum and EHA CV Passport, Used for Yearly Evaluation of Hematology Residency in Sweden2014In: Haematologica (online), ISSN 0390-6078, E-ISSN 1592-8721, Vol. 99, p. 788-788Article in journal (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf