uu.seUppsala University Publications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abu-Siniyeh, Ahmed
    et al.
    Univ New S Wales, Sch Med Sci, ARC Ctr Adv Mol Imaging, Sydney, NSW 2052, Australia.;Univ New S Wales, Australian Ctr NanoMed, Sydney, NSW 2052, Australia..
    Owen, Dylan M.
    Kings Coll London, Dept Phys, London WC2R 2LS, England.;Kings Coll London, Randall Div Cell & Mol Biophys, London WC2R 2LS, England..
    Benzing, Carola
    Univ New S Wales, Sch Med Sci, ARC Ctr Adv Mol Imaging, Sydney, NSW 2052, Australia.;Univ New S Wales, Australian Ctr NanoMed, Sydney, NSW 2052, Australia..
    Rinkwitz, Silke
    Becker, Thomas S.
    Univ Sydney, Brain & Mind Res Inst, Sydney Med Sch, Sydney, NSW 2006, Australia.;Univ Sydney, Dept Hlth Sci, Sydney, NSW 2006, Australia..
    Majumdar, Arindam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Gaus, Katharina
    Univ New S Wales, Sch Med Sci, ARC Ctr Adv Mol Imaging, Sydney, NSW 2052, Australia.;Univ New S Wales, Australian Ctr NanoMed, Sydney, NSW 2052, Australia..
    The aPKC/Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis2016In: Traffic: the International Journal of Intracellular Transport, ISSN 1398-9219, E-ISSN 1600-0854, Vol. 17, no 1, p. 66-79Article in journal (Refereed)
    Abstract [en]

    The differential distribution of lipids between apical and basolateral membranes is necessary for many epithelial cell functions, but how this characteristic membrane organization is integrated within the polarity network during ductal organ development is poorly understood. Here we quantified membrane order in the gut, kidney and liver ductal epithelia in zebrafish larvae at 3-11 days post fertilization (dpf) with Laurdan 2-photon microscopy. We then applied a combination of Laurdan imaging, antisense knock-down and analysis of polarity markers to understand the relationship between membrane order and apical-basal polarity. We found a reciprocal relationship between membrane order and the cell polarity network. Reducing membrane condensation by exogenously added oxysterol or depletion of cholesterol reduced apical targeting of the polarity protein, aPKC. Conversely, using morpholino knock down in zebrafish, we found that membrane order was dependent upon the Crb3 and Par3 polarity protein expression in ductal epithelia. Hence our data suggest that the biophysical property of membrane lipid packing is a regulatory element in apical basal polarity.

  • 2.
    Ebarasi, Lwaki
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Ashraf, Shazia
    Bierzynska, Agnieszka
    Gee, Heon Yung
    McCarthy, Hugh J.
    Lovric, Svjetlana
    Sadowski, Carolin E.
    Pabst, Werner
    Vega-Warner, Virginia
    Fang, Humphrey
    Koziell, Ania
    Simpson, Michael A.
    Dursun, Ismail
    Serdaroglu, Erkin
    Levy, Shawn
    Saleem, Moin A.
    Hildebrandt, Friedhelm
    Majumdar, Arindam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Defects of CRB2 Cause Steroid-Resistant Nephrotic Syndrome2015In: American Journal of Human Genetics, ISSN 0002-9297, E-ISSN 1537-6605, Vol. 96, no 1, p. 153-161Article in journal (Refereed)
    Abstract [en]

    Nephrotic syndrome (NS), the association of gross proteinuria, hypoalbuminaemia, edema, and hyperlipidemia, can be clinically divided into steroid-sensitive (SSNS) and steroid-resistant (SRNS) forms. SRNS regularly progresses to end-stage renal failure. By homozygosity mapping and whole exome sequencing, we here identify recessive mutations in Crumbs homolog 2 (CRB2) in four different families affected by SRNS. Previously, we established a requirement for zebrafish crb2b, a conserved regulator of epithelial polarity, in podocyte morphogenesis. By characterization of a loss-of-function mutation in zebrafish crb2b, we now show that zebrafish crb2b is required for podocyte foot process arborization, slit diaphragm formation, and proper nephrin trafficking. Furthermore, by complementation experiments in zebrafish, we demonstrate that CRB2 mutations result in loss of function and therefore constitute causative mutations leading to NS in humans. These results implicate defects in podocyte apico-basal polarity in the pathogenesis of NS.

  • 3. Ebarasi, Lwaki
    et al.
    Gaengel, Konstantin
    Majumdar, Arindam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Betsholtz, Christer
    Evidence for the presence of pericytes in the zebrafish2013In: Angiogenesis, ISSN 0969-6970, E-ISSN 1573-7209, Vol. 16, no 1, p. 273-273Article in journal (Other academic)
  • 4. Gaengel, Konstantin
    et al.
    Niaudet, Colin
    Hagikura, Kazuhiro
    Siemsen, Barbara Lavina
    Muhl, Lars
    Hofmann, Jennifer J.
    Ebarasi, Lwaki
    Nystrom, Staffan
    Rymo, Simin
    Chen, Long Long
    Pang, Mei-Fong
    Jin, Yi
    Raschperger, Elisabeth
    Roswall, Pernilla
    Schulte, Doerte
    Benedito, Rui
    Larsson, Jimmy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Hellström, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Fuxe, Jonas
    Uhlen, Per
    Adams, Ralf
    Jakobsson, Lars
    Majumdar, Arindam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Vestweber, Dietmar
    Uv, Anne
    Betsholtz, Christer
    The Sphingosine-1-Phosphate Receptor S1PR1 Restricts Sprouting Angiogenesis by Regulating the Interplay between VE-Cadherin and VEGFR22012In: Developmental Cell, ISSN 1534-5807, E-ISSN 1878-1551, Vol. 23, no 3, p. 587-599Article in journal (Refereed)
    Abstract [en]

    Angiogenesis, the process by which new blood vessels arise from preexisting ones, is critical for embryonic development and is an integral part of many disease processes. Recent studies have provided detailed information on how angiogenic sprouts initiate, elongate, and branch, but less is known about how these processes cease. Here, we show that S1PR1, a receptor for the blood-borne bioactive lipid sphingosine-1-phosphate (S1P), is critical for inhibition of angiogenesis and acquisition of vascular stability. Loss of S1PR1 leads to increased endothelial cell sprouting and the formation of ectopic vessel branches. Conversely, S1PR1 signaling inhibits angiogenic sprouting and enhances cell-to-cell adhesion. This correlates with inhibition of vascular endothelial growth factor-A (VEGF-A)-induced signaling and stabilization of vascular endothelial (VE)-cadherin localization at endothelial junctions. Our data suggest that S1PR1 signaling acts as a vascular-intrinsic stabilization mechanism, protecting developing blood vessels against aberrant angiogenic responses.

  • 5. Gaengel, Konstantin
    et al.
    Niaudet, Colin
    Hagikura, Kazuhiro
    Siemsen, Lavina Barbara
    Muhl, Lar
    Hofmann, J. Jennifer
    Ebarasi, Lwaki
    Nystrom, Staffan
    Rymo, Simin
    Long, Chen Long
    Mei-Fong, Pang
    Yi, Jin
    Raschperger, Elisabeth
    Roswall, Pernilla
    Schulte, Doerte
    Benedito, Rui
    Larsson, Jimmy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Hellstrom, Mats
    Fuxe, Jonas
    Uhlen, Per
    Adams, Ralf
    Jakobsson, Lars
    Majumdar, Arindam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Vestweber, Dietmar
    Uv, Anne
    Betsholtz, Christer
    The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR22013In: Angiogenesis, ISSN 0969-6970, E-ISSN 1573-7209, Vol. 16, no 1, p. 246-247Article in journal (Other academic)
  • 6.
    Hayashi, Makoto
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Majumdar, Arindam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Li, Xiujuan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Adler, Jeremy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Sun, Zuyue
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Vertuani, Simona
    Hellberg, Carina
    Mellberg, Sofie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Koch, Sina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Dimberg, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Koh, Gou Young
    Dejana, Elisabetta
    Belting, Heinz-Georg
    Affolter, Markus
    Thurston, Gavin
    Holmgren, Lars
    Vestweber, Dietmar
    Claesson-Welsh, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation2013In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 4, p. 1672-Article in journal (Refereed)
    Abstract [en]

    Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase (VE-PTP). VE-PTP acts on VEGF receptor-2 located in endothelial junctions indirectly, via the Angiopoietin-1 receptor Tie2. VE-PTP inactivation in mouse embryoid bodies leads to excess VEGF receptor-2 activity in stalk cells, increased tyrosine phosphorylation of VE-cadherin and loss of cell polarity and lumen formation. Vessels in ve-ptp(-/-) teratomas also show increased VEGF receptor-2 activity and loss of endothelial polarization. Moreover, the zebrafish VE-PTP orthologue ptp-rb is essential for polarization and lumen formation in intersomitic vessels. We conclude that the role of Tie2 in maintenance of vascular quiescence involves VE-PTP-dependent dephosphorylation of VEGF receptor-2, and that VEGF receptor-2 activity regulates VE-cadherin tyrosine phosphorylation, endothelial cell polarity and lumen formation.

  • 7. Hultin, Sara
    et al.
    Zheng, Yujuan
    Mojallal, Mahdi
    Vertuani, Simona
    Gentili, Christian
    Balland, Martial
    Milloud, Rachel
    Belting, Heinz-Georg
    Affolter, Markus
    Helker, Christian S M
    Adams, Ralf H
    Herzog, Wiebke
    Uhlen, Per
    Majumdar, Arindam
    Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska University Hospital, 171 76 Stockholm, Sweden.
    Holmgren, Lars
    AmotL2 links VE-cadherin to contractile actin fibres necessary for aortic lumen expansion2014In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 5, article id 3743Article in journal (Refereed)
    Abstract [en]

    The assembly of individual endothelial cells into multicellular tubes is a complex morphogenetic event in vascular development. Extracellular matrix cues and cell-cell junctional communication are fundamental to tube formation. Together they determine the shape of endothelial cells and the tubular structures that they ultimately form. Little is known regarding how mechanical signals are transmitted between cells to control cell shape changes during morphogenesis. Here we provide evidence that the scaffold protein amotL2 is needed for aortic vessel lumen expansion. Using gene inactivation strategies in zebrafish, mouse and endothelial cell culture systems, we show that amotL2 associates to the VE-cadherin adhesion complex where it couples adherens junctions to contractile actin fibres. Inactivation of amotL2 dissociates VE-cadherin from cytoskeletal tensile forces that affect endothelial cell shape. We propose that the VE-cadherin/amotL2 complex is responsible for transmitting mechanical force between endothelial cells for the coordination of cellular morphogenesis consistent with aortic lumen expansion and function.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf