uu.seUppsala University Publications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lindman, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Wennborg, Anders
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Non-invasive determination of HER2-expression in metastatic breast cancer by using Ga-68-ABY025 PET/CT.2015In: Journal of Clinical Oncology, ISSN 0732-183X, E-ISSN 1527-7755, Vol. 33, no 15Article in journal (Other academic)
  • 2.
    Lubberink, Mark
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lindskog, K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wennborg, A.
    Feldwisch, J.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Nilsson, Greger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Olofsson, H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Radiation dosimetry and tracer kinetic analysis of Ga-68-ABY025 Affibody in breast cancer patients2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S292-S293, article id OP606Article in journal (Other academic)
  • 3.
    Mosavi, Firas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sandberg, Dan T
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Turesson, Ingela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Whole-Body Diffusion-Weighted MRI Compared With 18F-NaF PET/CT for Detection of Bone Metastases in Patients With High-Risk Prostate Carcinoma2012In: American Journal of Roentgenology, ISSN 0361-803X, E-ISSN 1546-3141, Vol. 199, no 5, p. 1114-1120Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE:

    The purpose of this study was to evaluate the accuracy of whole-body diffusion-weighted MRI (DWI) and 18F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate cancer.

    SUBJECTS AND METHODS:

    Both patient- and lesion-based analyses were performed on 49 consecutive patients (median age, 67 years; age range, 57-80 years) with recently diagnosed high-risk prostate cancer. All patients underwent bone scintigraphy, whole-body MRI including DWI and 18F-NaF PET/CT before treatment. Bone scintigraphy, conventional MR images, and follow-up images were used as the standard of reference to evaluate 18F-NaF PET/CT and DWI.

    RESULTS:

    On patient-based analysis, five patients had skeletal metastases on reference imaging that both DWI and 18F-NaF PET/CT could verify, and 18F-NaF PET/CT and DWI showed false-positive findings in four and one patient, respectively. With lesion-based analysis, 18F-NaF PET/CT and DWI showed nine and five true-positive lesions, zero and four false-negative lesions, and seven and two false-positive lesions, respectively. Two patients with uncountable bone metastases were analyzed separately. In these patients, 18F-NaF PET/CT showed more bone metastases than did DWI.

    CONCLUSION:

    We believe 18F-NaF PET/CT is a sensitive modality for detection of bone metastases caused by prostate cancer. Whole-body DWI shows a higher specificity but lower sensitivity than 18F-NaF PET/CT. Future studies with a larger patient cohort along with analyses of costs and clinical availability are needed before implementation of these methods can be considered.

  • 4.
    Sandberg, Dan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Feldwisch, J.
    Wennborg, A.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Carlsson, J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Sandström, M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Molecular imaging using the Affibody molecule [111In]ABY-025 can identify the HER2 status in breast cancer patients2012In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 39, no S2, p. S296-S296Article in journal (Other academic)
  • 5.
    Sandberg, Dan T
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Wennborg, Anders
    Affibody AB, Solna, Sweden.
    Feldwisch, Joachim
    Affibody AB, Solna, Sweden.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT.2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, no 8, p. 1337-1346Article in journal (Refereed)
    Abstract [en]

    PURPOSE: In phase I/II-studies radiolabelled ABY-025 Affibody molecules identified human epidermal growth factor receptor 2 (HER2) expression in breast cancer metastases using PET and SPECT imaging. Here, we wanted to investigate the utility of a simple intra-image normalization using tumour-to-reference tissue-ratio (T/R) as a HER2 status discrimination strategy to overcome potential issues related to cross-calibration of scanning devices.

    METHODS: Twenty-three women with pre-diagnosed HER2-positive/negative metastasized breast cancer were scanned with [(111)In]-ABY-025 SPECT/CT (n = 7) or [(68)Ga]-ABY-025 PET/CT (n = 16). Uptake was measured in all metastases and in normal spleen, lung, liver, muscle, and blood pool. Normal tissue uptake variation and T/R-ratios were established for various time points and for two different doses of injected peptide from a total of 94 whole-body image acquisitions. Immunohistochemistry (IHC) was used to verify HER2 expression in 28 biopsied metastases. T/R-ratios were compared to IHC findings to establish the best reference tissue for each modality and each imaging time-point. The impact of shed HER2 in serum was investigated.

    RESULTS: Spleen was the best reference tissue across modalities, followed by blood pool and lung. Spleen-T/R was highly correlated to PET SUV in metastases after 2 h (r = 0.96, P < 0.001) and reached an accuracy of 100% for discriminating IHC HER2-positive and negative metastases at 4 h (PET) and 24 h (SPECT) after injection. In a single case, shed HER2 resulted in intense tracer retention in blood. In the remaining patients shed HER2 was elevated, but without significant impact on ABY-025 biodistribution.

    CONCLUSION: T/R-ratios using spleen as reference tissue accurately quantify HER2 expression with radiolabelled ABY-025 imaging in breast cancer metastases with SPECT and PET. Tracer binding to shed HER2 in serum might affect quantification in the extreme case.

  • 6.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lindskog, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irma
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Wennborg, Anders
    Affibody AB, Solna, Sweden..
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, Solna, Sweden..
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule Ga-68-ABY-025 in Breast Cancer Patients2016In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 57, no 6, p. 867-871Article in journal (Refereed)
    Abstract [en]

    Ga-68-ABY-025 is a radiolabeled Affibody molecule for in vivo diagnosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer tumors with PET. The aim of the present work was to measure the biodistribution and estimate the radiation dosimetry of Ga-68-ABY-025 for 2 different peptide mass doses in a single group of patients using dynamic and serial whole-body PET/CT. Methods: Eight patients with metastatic breast cancer were included. Each patient underwent an abdominal 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 4 h after injection of a low peptide dose (LD) and a high peptide dose (HD), with approximately the same amount of radioactivity, in separate investigations 1 wk apart. As input to the absorbed dose calculations, volumes of interest were drawn on all clearly identifiable source organs: liver, kidneys, spleen, descending aorta, and upper large intestine. Absorbed doses were calculated using OLINDA/EXM, version 1.1. Results: Of the major organs, the highest radionuclide uptake at 1, 2, and 4 h after injection was observed in the kidneys and liver. The highest absorbed organ doses were seen in the kidneys, followed by the liver for both LD and HD Ga-68-ABY-025. Absorbed doses to liver and kidneys were slightly but significantly higher for LD. Total effective dose was 0.030 +/- 0.003 mSv/MBq for LD and 0.028 +/- 0.002 mSv/MBq for HD. Conclusion: The effective dose for a typical 200-MBq administration of Ga-68-ABY-025 is 6.0 mSv for LD and 5.6 mSv for HD. Therefore, from a radiation dosimetry point of view, HD is preferred for PET/CT evaluation of HER2-expressing breast cancer tumors. These effective doses are somewhat higher than earlier published values for other Ga-68-labeled tracers, such as 0.021 +/- 0.003 mSv/MBq for Ga-68-DOTATATE and Ga-68-DOTATOC, mainly because of higher uptake in liver and kidney.

  • 7.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Wennborg, Anders
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Åström, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    First-in-Human Molecular Imaging of HER2 Expression in Breast Cancer Metastases Using the In-111-ABY-025 Affibody Molecule2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 5, p. 730-735Article in journal (Refereed)
    Abstract [en]

    The expression status of human epidermal growth factor receptor type 2 (HER2) predicts the response of HER2-targeted therapy in breast cancer. ABY-025 is a small reengineered Affibody molecule targeting a unique epitope of the HER2 receptor, not occupied by current therapeutic agents. This study evaluated the distribution, safety, dosimetry, and efficacy of In-111-ABY-025 for determining the HER2 status in metastatic breast cancer. Methods: Seven patients with metastatic breast cancer and HER2-positive (n = 5) or - negative (n 5 2) primary tumors received an intravenous injection of approximately 100 mu g (similar to 140 MBq) of In-111-ABY-025. Planar gamma-camera imaging was performed after 30 min, followed by SPECT/CT after 4, 24, and 48 h. Blood levels of radioactivity, antibodies, shed serum HER2, and toxicity markers were evaluated. Lesional HER2 status was verified by biopsies. The metastases were located by F-18-FDG PET/CT 5 d before In-111-ABY-025 imaging. Results: Injection of In-111-ABY-025 yielded a mean effective dose of 0.15 mSv/MBq and was safe, well tolerated, and without drug-related adverse events. Fast blood clearance allowed high-contrast HER2 images within 4-24 h. No anti-ABY025 antibodies were observed. When metastatic uptake at 24 h was normalized to uptake at 4 h, the ratio increased in HER2-positive metastases and decreased in negative ones (P, < 0.05), with no overlap and confirmation by biopsies. In 1 patient, with HER2- positive primary tumor, In-111-ABY-025 imaging correctly suggested a HER2negative status of the metastases. The highest normal-tissue uptake was in the kidneys, followed by the liver and spleen. Conclusion: In-111-ABY- 025 appears safe for use in humans and is a promising noninvasive tool for discriminating HER2 status in metastatic breast cancer, regardless of ongoing HER2-targeted antibody treatment.

  • 8.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Wennborg, Anders
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [(68)Ga]ABY-025 Affibody PET/CT2016In: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 6, no 2, p. 262-271Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Positron Emission Tomography (PET) imaging of HER2 expression could potentially be used to select patients for HER2-targed therapy, predict response based on uptake and be used for monitoring. In this phase I/II study the HER2-binding Affibody molecule ABY-025 was labeled with (68)Ga-gallium ([(68)Ga]ABY-025) for PET to study effect of peptide mass, test-retest variability and correlation of quantified uptake in tumors to histopathology.

    EXPERIMENTAL DESIGN: Sixteen women with known metastatic breast cancer and on-going treatment were included and underwent FDG PET/CT to identify viable metastases. After iv injection of 212±46 MBq [(68)Ga]ABY-025 whole-body PET was performed at 1, 2 and 4 h. In the first 10 patients (6 with HER2-positive and 4 with HER2-negative primary tumors), [(68)Ga]ABY-025 PET/CT with two different doses of injected peptide was performed one week apart. In the last six patients (5 HER2-positive and 1 HER2-negative primary tumors), repeated [(68)Ga]ABY-025 PET were performed one week apart as a test-retest of uptake in individual lesions. Biopsies from 16 metastases in 12 patients were collected for verification of HER2 expression by immunohistochemistry and in-situ hybridization.

    RESULTS: Imaging 4h after injection with high peptide content discriminated HER2-positive metastases best (p<0.01). PET SUV correlated with biopsy HER2-scores (r=0.91, p<0.001). Uptake was five times higher in HER2-positive than in HER2-negative lesions with no overlap (p=0.005). The test-retest intra-class correlation was r=0.996. [(68)Ga]ABY-025 PET correctly identified conversion and mixed expression of HER2 and targeted treatment was changed in 3 of the 16 patients.

    CONCLUSION: [(68)Ga]ABY-025 PET accurately quantifies whole-body HER2-receptor status in metastatic breast cancer.

  • 9.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wennborg, A.
    Feldwisch, J.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Nilsson, Greger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Olofsson, H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Measuring HER2-expression in metastatic breast cancer using 68Ga-ABY025 PET/CT2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S226-S226, article id OP298Article in journal (Other academic)
  • 10.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wennborg, Anders
    Feldwisch, Joachim
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Jorgen
    Lindman, Henrik
    Accuracy of [Ga-68]ABY-025 PET/CT for determination of HER2-expression in metastatic breast cancer2015In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 56, no 3Article in journal (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf