uu.seUppsala University Publications
Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson Sunden, E.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sangaroon, Siriyaporn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Developments of time-of-flight and proton recoil neutron spectrometry techniques in view of a possible JET DT campaign and for ITER2011In: 38th EPS Conference on Plasma Physics 2011 (EPS 2011): Europhysics Conference Abstracts, 2011, p. 329-332Conference paper (Refereed)
  • 2. Blanken, T. C.
    et al.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, I
    Yadykin, Dimitry
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dori, V
    Real-time plasma state monitoring and supervisory control on TCV2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026017Article in journal (Refereed)
    Abstract [en]

    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

  • 3.
    Cecconello, Marco
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jones, O. M.
    Boeglin, W. U.
    Perez, R. V.
    Darrow, D. S.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sharapov, S. E.
    Fitzgerald, M.
    McClements, K. G.
    Keeling, D. L.
    Allan, S. Y.
    Michael, C. A.
    Akers, R. J.
    Conway, N. J.
    Scannell, R.
    Turnyanskiy, M.
    Ericsson, G.
    Energetic ion behaviour in MAST2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 1, p. 014006-Article in journal (Refereed)
    Abstract [en]

    Recent studies of fast ion transport resulting from a range of instabilities, including n = 1 internal kink modes (fishbones and long-lived modes), toroidal Alfven eigenmodes and sawteeth have been carried out at MAST. Strong correlations were found between relative changes in magnetic edge coils signals, edge D alpha signal a fast ion D alpha system, a prototype collimated neutron flux monitor and a recently installed prototype charged fusion product detector array, indicating both redistribution and loss of fast ions. Preliminary interpretation of these observations with a suite of stability, modelling and interpretative codes is discussed.

  • 4.
    Cecconello, Marco
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jones, O. M.
    Garzotti, L.
    McClements, K. G.
    Carr, M.
    Henderson, S. S.
    Sharapov, S. E.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Impurity transport driven by fishbones in MAST2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 3, article id 032002Article in journal (Refereed)
    Abstract [en]

    In MAST, bursting toroidal Alfven eigenmodes and fishbones are observed to give rise to an asymmetric perturbation to the soft x-ray (SXR) emission close to the magnetic axis which grows and decays on the time scale of the fishbone evolution. As the fishbone nears its maximum amplitude, the SXR emission starts to increase (decrease) at radial positions smaller (larger) than the radial position of the magnetic axis. This trend in the SXR emission persists for a few milliseconds, until the fishbone starts to decay in amplitude and the slower overall trend of the SXR emission once again becomes dominant. A preliminary analysis suggests that the change in the SXR emission is due to the localized accumulation of high-Z impurities, sustained against parallel transport by the effects of fishbones on the fast ion population.

  • 5.
    Cecconello, Marco
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sangaroon, Siriyaporn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Turnyanskiy, M.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Akers, R. J.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Observation of fast ion behaviour with a neutron emission profile monitor in MAST2012In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 52, no 9, p. 094015-Article in journal (Refereed)
    Abstract [en]

    Preliminary measurements of neutron emissivity at the Mega Amp Spherical Tokamak (MAST) along collimated lines-of-sight showa clear correlation between the neutron emissivity temporal and spatial evolution and the evolution of different MHD instabilities. In particular, the variations in neutron emissivity during sawtooth oscillations are compared with changes in the classical fast ion slowing-down time, while fast ion losses are observed in bursts during fishbones or as a continuous process during long-lived modes.

  • 6.
    Chapman, I. T.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Adamek, J.
    AS CR, Inst Plasma Phys, Vvi, Prague, Czech Republic..
    Akers, R. J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Allan, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Appel, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Asunta, O.
    Aalto Univ, TEKES, Espoo, Finland..
    Barnes, M.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England..
    Ben Ayed, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Bigelow, T.
    Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA..
    Boeglin, W.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA..
    Bradley, J.
    Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England..
    Bruenner, J.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Cahyna, P.
    AS CR, Inst Plasma Phys, Vvi, Prague, Czech Republic..
    Carr, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Caughman, J.
    Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA..
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Challis, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Chapman, S.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Chorley, J.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Colyer, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Conway, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Cooper, W. A.
    Ecole Polytech Fed Lausanne, CRPP, CH-1015 Lausanne, Switzerland..
    Cox, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Crocker, N.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA..
    Crowley, B.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Cunningham, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Danilov, A.
    Inst Nucl Fus, Kurchatov Inst, Russian Res Ctr, Moscow, Russia..
    Darrow, D.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Dendy, R.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Diallo, A.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Dickinson, D.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Diem, S.
    Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA..
    Dorland, W.
    Univ Maryland, College Pk, MD 20742 USA..
    Dudson, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Dunai, D.
    KFKI RMKI, H-1525 Budapest, Hungary..
    Easy, L.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Elmore, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Field, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Fishpool, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Fox, M.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England..
    Fredrickson, E.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Freethy, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Garzotti, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Ghim, Y. C.
    Natl Fus Res Inst, Daejeon 169148, South Korea..
    Gibson, K.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Graves, J.
    Ecole Polytech Fed Lausanne, CRPP, CH-1015 Lausanne, Switzerland..
    Gurl, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Guttenfelder, W.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Ham, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Harrison, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Harting, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Havlickova, E.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hawke, J.
    Dutch Inst Fundamental Energy Res, NL-3430 BE Nieuwegein, Netherlands..
    Hawkes, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hender, T.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Henderson, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;Univ Strathclyde, Dept Phys SUPA, Glasgow G4 ONG, Lanark, Scotland..
    Highcock, E.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England..
    Hillesheim, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hnat, B.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Holgate, J.
    Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England..
    Horacek, J.
    AS CR, Inst Plasma Phys, Vvi, Prague, Czech Republic..
    Howard, J.
    Australian Natl Univ, Plasma Res Lab, Canberra, ACT 0200, Australia..
    Huang, B.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Imada, K.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Jones, O.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Kaye, S.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Keeling, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Kirk, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Kocan, M.
    ITER Org, CS 90046, F-13067 St Paul Les Durance, France..
    Leggate, H.
    Dublin City Univ, Dublin 9, Ireland..
    Lilley, M.
    Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England..
    Lipschultz, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Lisgo, S.
    ITER Org, CS 90046, F-13067 St Paul Les Durance, France..
    Liu, Y. Q.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lloyd, B.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lomanowski, B.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Lupelli, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Maddison, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Mailloux, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Martin, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McArdle, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McClements, K.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McMillan, B.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Meakins, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Meyer, H.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Michael, C.
    Australian Natl Univ, Plasma Res Lab, Canberra, ACT 0200, Australia..
    Militello, F.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Milnes, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Morris, A. W.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Motojima, G.
    NIFS, Toki, Gifu, Japan..
    Muir, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Nardon, E.
    CEN Cadarache, F-13108 St Paul Les Durance, France..
    Naulin, V.
    Risoe, Natl Lab Sustainable Energy, Roskilde, Denmark..
    Naylor, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Nielsen, A.
    Risoe, Natl Lab Sustainable Energy, Roskilde, Denmark..
    O'Brien, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    O'Gorman, T.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Ono, Y.
    Univ Tokyo, Kashiwa, Chiba 2778561, Japan..
    Oliver, H.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Pamela, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Pangione, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Parra, F.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England..
    Patel, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Peebles, W.
    Univ Calif Los Angeles, Los Angeles, CA 90095 USA..
    Peng, M.
    Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA..
    Perez, R.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA..
    Pinches, S.
    ITER Org, CS 90046, F-13067 St Paul Les Durance, France..
    Piron, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Podesta, M.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Price, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Reinke, M.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Ren, Y.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Roach, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Robinson, J.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Romanelli, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Rozhansky, V.
    St Petersburg State Polytech Univ, Dept Plasma Phys, St Petersburg, Russia..
    Saarelma, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sangaroon, Siriyaporn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Saveliev, A.
    Ioffe Inst, St Petersburg 194021, Russia..
    Scannell, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Schekochihin, A.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England..
    Sharapov, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sharples, R.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Shevchenko, V.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Silburn, S.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Simpson, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Storrs, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Takase, Y.
    Univ Tokyo, Kashiwa, Chiba 2778561, Japan..
    Tanabe, H.
    Univ Tokyo, Kashiwa, Chiba 2778561, Japan..
    Tanaka, H.
    Kyoto Univ, Grad Sch Energy Sci, Kyoto 6068502, Japan..
    Taylor, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Taylor, G.
    Princeton Plasma Phys Lab, Princeton, NJ 08543 USA..
    Thomas, D.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Thomas-Davies, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Thornton, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Turnyanskiy, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Valovic, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Vann, R.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Walkden, N.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Wilson, H.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Wyk, L. V.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England..
    Yamada, T.
    Univ Tokyo, Kashiwa, Chiba 2778561, Japan..
    Zoletnik, S.
    KFKI RMKI, H-1525 Budapest, Hungary..
    Overview of MAST results2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 10, article id 104008Article in journal (Refereed)
    Abstract [en]

    The Mega Ampere Spherical Tokamak (MAST) programme is strongly focused on addressing key physics issues in preparation for operation of ITER as well as providing solutions for DEMO design choices. In this regard, MAST has provided key results in understanding and optimizing H-mode confinement, operating with smaller edge localized modes (ELMs), predicting and handling plasma exhaust and tailoring auxiliary current drive. In all cases, the high-resolution diagnostic capability on MAST is complemented by sophisticated numerical modelling to facilitate a deeper understanding. Mitigation of ELMs with resonant magnetic perturbations (RMPs) with toroidal mode number n(RMP) = 2, 3, 4, 6 has been demonstrated: at high and low collisionality; for the first ELM following the transition to high confinement operation; during the current ramp-up; and with rotating n(RMP) = 3 RMPs. n(RMP) = 4, 6 fields cause less rotation braking whilst the power to access H-mode is less with n(RMP) = 4 than n(RMP) = 3, 6. Refuelling with gas or pellets gives plasmas with mitigated ELMs and reduced peak heat flux at the same time as achieving good confinement. A synergy exists between pellet fuelling and RMPs, since mitigated ELMs remove fewer particles. Inter-ELM instabilities observed with Doppler backscattering are consistent with gyrokinetic simulations of micro-tearing modes in the pedestal. Meanwhile, ELM precursors have been strikingly observed with beam emission spectroscopy (BES) measurements. A scan in beta at the L-H transition shows that pedestal height scales strongly with core pressure. Gyro-Bohm normalized turbulent ion heat flux (as estimated from the BES data) is observed to decrease with increasing tilt of the turbulent eddies. Fast ion redistribution by energetic particle modes depends on density, and access to a quiescent domain with 'classical' fast ion transport is found above a critical density. Highly efficient electron Bernstein wave current drive (1 A W-1) has been achieved in solenoid-free start-up. A new proton detector has characterized escaping fusion products. Langmuir probes and a high-speed camera suggest filaments play a role in particle transport in the private flux region whilst coherence imaging has measured scrape-off layer (SOL) flows. BOUT++ simulations show that fluxes due to filaments are strongly dependent on resistivity and magnetic geometry of the SOL, with higher radial fluxes at higher resistivity. Finally, MAST Upgrade is due to begin operation in 2016 to support ITER preparation and importantly to operate with a Super-X divertor to test extended leg concepts for particle and power exhaust.

  • 7.
    Harrison, J. R.
    et al.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Akers, R. J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Allan, S. Y.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Allcock, J. S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England.
    Allen, J. O.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Appel, L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Barnes, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Plasma Sci & Fus Ctr, 167 Albany St, Cambridge, MA 02139 USA.
    Ben Ayedl, N.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Boeglin, W.
    Florida Int Univ, Dept Phys, 11200 SW, Miami, FL 33199 USA.
    Bowman, C.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Bradley, J.
    Univ Liverpool, Dept Elect Engn & Elect, Brownlow Hill, Liverpool L69 3GJ, Merseyside, England.
    Browning, P.
    Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England.
    Bryant, P.
    Univ Liverpool, Dept Elect Engn & Elect, Brownlow Hill, Liverpool L69 3GJ, Merseyside, England.
    Carr, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Challis, C. D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Chapman, S.
    Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England.
    Chapman, I. T.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Colyer, G. J.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Univ Exeter, Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conway, N. J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Cox, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Cunningham, G.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Dendy, R. O.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England.
    Dorland, W.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Dudson, B. D.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Easy, L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Elmore, S. D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Farley, T.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Liverpool, Dept Elect Engn & Elect, Brownlow Hill, Liverpool L69 3GJ, Merseyside, England.
    Feng, X.
    Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England.
    Field, A. R.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Fil, A.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Fishpool, G. M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Fitzgerald, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Flesch, K.
    Univ Wisconsin, Madison, WI USA.
    Fox, M. F. J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Univ Oxford Merton Coll, Oxford OX1 4JD, England.
    Frerichs, H.
    Univ Wisconsin, Madison, WI USA.
    Gadgil, S.
    Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England.
    Gahle, D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Strathclyde, Dept Phys SUPA, Glasgow G4 ONG, Lanark, Scotland.
    Garzotti, L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Ghim, Y-C
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea.
    Gibson, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England.
    Gibson, K. J.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Hall, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Ham, C.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Heiberg, N.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Henderson, S. S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Highcock, E.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden.
    Hnat, B.
    Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England.
    Howard, J.
    Australian Natl Univ, Plasma Res Lab, Canberra, ACT 0200, Australia.
    Huang, J.
    Chinese Acad Sci, Inst Plasma Phys, PO 1126, Hefei 230031, Anhui, Peoples R China.
    Irvine, S. W. A.
    Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England.
    Jacobsen, A. S.
    Max Planck Inst Plasma Phys, Garching, Germany.
    Jones, O.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England.
    Katramados, I
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Keeling, D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Kirk, A.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Kogan, L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Leland, J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Liverpool, Dept Elect Engn & Elect, Brownlow Hill, Liverpool L69 3GJ, Merseyside, England.
    Lipschultz, B.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Lloyd, B.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Lovell, J.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
    Madsen, B.
    Tech Univ Denmark, Dept Phys, Lyngby, Denmark.
    Marshall, O.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Martin, R.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    McArdle, G.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    McClements, K.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    McMillan, B.
    Univ Warwick, Ctr Fus Space & Astrophys, Dept Phys, Coventry CV4 7AL, W Midlands, England.
    Meakins, A.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Meyer, H. F.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Militello, F.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Milnes, J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Mordijck, S.
    Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA.
    Morris, A. W.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Moulton, D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Muir, D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Mukhi, K.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England.
    Murphy-Sugrue, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Liverpool, Dept Elect Engn & Elect, Brownlow Hill, Liverpool L69 3GJ, Merseyside, England.
    Myatra, O.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Naylor, G.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Naylor, P.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Newton, S. L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    O'Gorman, T.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Omotani, J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    O'Mullane, M. G.
    Univ Strathclyde, Dept Phys SUPA, Glasgow G4 ONG, Lanark, Scotland.
    Orchard, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Pamela, S. J. P.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Pangione, L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Parra, F.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England.
    Perez, R. , V
    Piron, L.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Price, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Reinke, M. L.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
    Riva, F.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Roach, C. M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Robb, D.
    Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
    Ryan, D.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Saarelma, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Salewski, M.
    Tech Univ Denmark, Dept Phys, Lyngby, Denmark.
    Scannell, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Schekochihin, A. A.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;Univ Oxford Merton Coll, Oxford OX1 4JD, England.
    Schmitz, O.
    Univ Wisconsin, Madison, WI USA.
    Sharapov, S.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Sharples, R.
    Univ Durham, Ctr Adv Instrumentat, South Rd, Durham DH1 3LE, England.
    Silburn, S. A.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Smith, S. F.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Sperduti, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Stephen, R.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Thomas-Davies, N. T.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Thornton, A. J.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Turnyanskiy, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Valovic, M.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Van Wyk, F.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England;STFC Daresbury Lab, Daresbury WA4 4AD, Cheshire, England.
    Vann, R. G. L.
    Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Walkden, N. R.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
    Waters, I
    Univ Wisconsin, Madison, WI USA.
    Wilson, H. R.
    CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England;Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Overview of new MAST physics in anticipation of first results from MAST Upgrade2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 11, article id 112011Article in journal (Refereed)
    Abstract [en]

    The mega amp spherical tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 similar to 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics issues for the operation of ITER, design of DEMO and future spherical tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and modelling to significantly advance our understanding. An empirical scaling of the energy confinement time that favours higher power, lower collisionality devices is consistent with gyrokinetic modelling of electron scale turbulence. Measurements of ion scale turbulence with beam emission spectroscopy and gyrokinetic modelling in up-down symmetric plasmas find that the symmetry of the turbulence is broken by flow shear. Near the non-linear stability threshold, flow shear tilts the density fluctuation correlation function and skews the fluctuation amplitude distribution. Results from fast particle physics studies include the observation that sawteeth are found to redistribute passing and trapped fast particles injected from neutral beam injectors in equal measure, suggesting that resonances between the m = 1 perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport. Measured D-D fusion products from a neutron camera and a charged fusion product detector are 40% lower than predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding centre approximation. Modelling of fast ion losses in the presence of resonant magnetic perturbations (RMPs) can reproduce trends observed in experiments when the plasma response and charge-exchange losses are accounted for. Measurements with a neutral particle analyser during merging-compression start-up indicate the acceleration of ions and electrons. Transport at the plasma edge has been improved through reciprocating probe measurements that have characterised a geodesic acoustic mode at the edge of an ohmic L-mode plasma and particle-in-cell modelling has improved the interpretation of plasma potential estimates from ball-pen probes. The application of RMPs leads to a reduction in particle confinement in L-mode and H-mode and an increase in the core ionization source. The ejection of secondary filaments following type-I ELMs correlates with interactions with surfaces near the X-point. Simulations of the interaction between pairs of filaments in the scrape-off layer suggest this results in modest changes to their velocity, and in most cases can be treated as moving independently. A stochastic model of scrape-off layer profile formation based on the superposition of non-interacting filaments is in good agreement with measured time-average profiles. Transport in the divertor has been improved through fast camera imaging, indicating the presence of a quiescent region devoid of filament near the X-point, extending from the separatrix to psi(n) similar to 1.02. Simulations of turbulent transport in the divertor show that the angle between the divertor leg on the curvature vector strongly influences transport into the private flux region via the interchange mechanism. Coherence imaging measurements show counter-streaming flows of impurities due to gas puffing increasing the pressure on field lines where the gas is ionised. MAST Upgrade is based on the original MAST device, with substantially improved capabilities to operate with a Super-X divertor to test extended divertor leg concepts. SOLPS-ITER modelling predicts the detachment threshold will be reduced by more than a factor of 2, in terms of upstream density, in the Super-X compared with a conventional configuration and that the radiation front movement is passively stabilised before it reaches the X-point. 1D fluid modelling reveals the key role of momentum and power loss mechanisms in governing detachment onset and evolution. Analytic modelling indicates that long legs placed at large major radius, or equivalently low B at the target compared with the X-point arc more amenable to external control. With MAST Upgrade experiments expected in 2019, a thorough characterisation of the sources of the intrinsic error field has been carried out and a mitigation strategy developed.

  • 8.
    Jones, O. M.
    et al.
    Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England; Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    McClements, K. G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Akers, R. J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Boeglin, W. U.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
    Keeling, D. L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Meakins, A. J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Perez, R. V.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
    Sharapov, S. E.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Turnyanskiy, M.
    EUROfus PMU Garching, ITER Phys Dept, D-85748 Garching, Germany.
    Measurements and modelling of fast-ion redistribution due to resonant MHD instabilities in MAST2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 12, article id 125009Article in journal (Refereed)
    Abstract [en]

    The results of a comprehensive investigation into the effects of toroidicity-induced Alfven eigenmodes (TAE) and energetic particle modes on the NBI-generated fast-ion population in MAST plasmas are reported. Fast-ion redistribution due to frequency-chirping TAE in the range 50 kHz-100 kHz and frequency-chirping energetic particle modes known as fishbones in the range 20 kHz-50 kHz, is observed. TAE and fishbones are also observed to cause losses of fast ions from the plasma. The spatial and temporal evolution of the fast-ion distribution is determined using a fission chamber, a radially-scanning collimated neutron flux monitor, a fast-ion deuterium alpha spectrometer and a charged fusion product detector. Modelling using the global transport analysis code TRANSP, with ad hoc anomalous diffusion and fishbone loss models introduced, reproduces the coarsest features of the affected fast-ion distribution in the presence of energetic particle-driven modes. The spectrally and spatially resolved measurements show, however, that these models do not fully capture the effects of chirping modes on the fast-ion distribution.

  • 9. Keeling, D. L.
    et al.
    Barrett, T. R.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Challis, C. D.
    Hawkes, N.
    Jones, O. M.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    McClements, K. G.
    Meakins, A.
    Milnes, J.
    Turnyanskiy, M.
    Mitigation of MHD induced fast-ion redistribution in MAST and implications for MAST-Upgrade design2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 1, article id 013021Article in journal (Refereed)
    Abstract [en]

    The phenomenon of the redistribution of neutral beam fast ions due to magnetohydrodynamic (MHD) activity in plasma has been observed on many tokamaks and more recently has been a focus of research on MAST (Turnyanskiy et al 2013 Nucl. Fusion 53 053016). n = 1 fishbone modes are observed to cause a large decrease in the neutron emission rate indicating the existence of a significant perturbation of the fast-ion population in the plasma. Theoretical work on fishbone modes states that the fast-ion distribution itself acts as the source of free energy driving the modes that cause the redistribution. Therefore a series of experiments have been carried out on MAST to investigate a range of plasma densities at two neutral-beam power levels to determine the region within this parameter space in which fishbone activity and consequent fast-ion redistribution is suppressed. Analysis of these experiments shows complete suppression of fishbone activity at high densities with increasing activity and fast-ion redistribution at lower densities and higher neutral-beam power, accompanied by strong evidence that the redistribution effect primarily affects a specific region in the plasma core with a weaker effect over a wider region of the plasma. The results also indicate the existence of correlations between gradients in the modelled fast-ion distribution function, the amplitude and growth rate of the fishbone modes, and the magnitude of the redistribution effect. The same analysis has been carried out on models of MAST-Upgrade baseline plasma scenarios to determine whether significant fast-ion redistribution due to fishbone modes is likely to occur in that device. A simple change to the neutral-beam injector geometry is proposed which is shown to have a significant mitigating effect in terms of the fishbone mode drive and is therefore expected to allow effective plasma heating and current drive over a wider range of plasma conditions in MAST-Upgrade.

  • 10.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Modelling and Measurements of MAST Neutron Emission2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Measurements of neutron emission from a fusion plasma can provide a wealth of information on the underlying temporal, spatial and energy distributions of reacting ions and how they are affected by a wide range of magneto-hydro-dynamic (MHD) instabilities.

    This thesis focuses on the interpretation of the experimental measurements recorded by neutron flux monitors with and without spectroscopic capabilities installed on the Mega Ampere Spherical Tokamak (MAST). In particular, the temporally and spatially resolved measurements of the neutron rate measured by the neutron camera, which also possesses spectroscopic capabilities, are combined with the temporally resolved measurements of the total neutron rate provided by the absolutely calibrated fission chamber in order to study the properties of the fast ion distributions in different plasma scenarios.

    The first part of the thesis describes in detail the two forward modelling methods, which employ the set of interconnected codes developed to interpret experimental observations such as neutron count rate profiles and recoil proton pulse height spectra provided by the neutron camera. In the second part of the thesis the developed methods are applied to model the neutron camera observations performed in a variety of plasma scenarios. The first method, which involves only TRANSP/NUBEAM and LINE2 codes, was used to validate the neutron count rate profiles measured by the neutron camera in three different plasma scenarios covering the wide range of total neutron rate typically observed on MAST. In addition, the first framework was applied to model the changes in the total and local neutron rates caused by fishbone instability as well as to estimate the Hydrogen and Deuterium ion ratio. The second modelling method, which involves TRANSP/NUBEAM, LINE2, DRESS and NRESP, was used to validate the measured recoil proton pulse height spectra in a MHD-quiescent plasma scenario.

    List of papers
    1. TRANSP modelling of neutron emissivity on MAST
    Open this publication in new window or tab >>TRANSP modelling of neutron emissivity on MAST
    Show others...
    2012 (English)Conference proceedings (editor) (Other academic)
    Abstract [en]

    The aim of this paper is to validate a set of methods to model the measured neutron emission on Mega Amp Spherical Tokamak (MAST) using TRANSP. Neutrons are measured along a set of collimated lines of sight (LoS) at MAST by a Neutron Camera (NC). The neutron emissivity is modeled with TRANSP [1] for different plasma discharges using a selfconsistent data set produced by a data preparation and analysis tool. The modeled neutron emissivity is then compared with NC experimental data using a full 3D solid angle calculation to model the transport of neutrons from plasma to detector. A good agreement between the modelled and experimental neutron rate was found.

    Place, publisher, year, edition, pages
    010 Publishers, 2012
    National Category
    Fusion, Plasma and Space Physics
    Identifiers
    urn:nbn:se:uu:diva-275195 (URN)
    Conference
    39th EPS Conference & 16th Int. Congress on Plasma Physics, Stockholm, 2-6 July, 2012
    Available from: 2016-02-01 Created: 2016-02-01 Last updated: 2016-05-12
    2. TRANSP modelling of total and local neutron emission on MAST
    Open this publication in new window or tab >>TRANSP modelling of total and local neutron emission on MAST
    Show others...
    2015 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 2, article id 023003Article in journal (Refereed) Published
    Abstract [en]

    The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)-for different plasma scenarios on MAST are reported. In addition, the effect of various plasma parameters on neutron emission is studied by means of TRANSP simulation. The fast ion redistribution and losses due to fishbone modes, which belong to a wider category of energetic particle modes, are observed by the NC and modelled in TRANSP.

    Keywords
    neutron measurements, TRANSP/NUBEAM simulations, fishbone
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:uu:diva-247139 (URN)10.1088/0029-5515/55/2/023003 (DOI)000348843100004 ()
    Available from: 2015-03-17 Created: 2015-03-13 Last updated: 2017-12-04Bibliographically approved
    3. TRANSP modelling of experimentally measured fast particle redistribution and losses on MAST
    Open this publication in new window or tab >>TRANSP modelling of experimentally measured fast particle redistribution and losses on MAST
    Show others...
    2013 (English)Conference proceedings (editor) (Other academic)
    Abstract [en]

    MAST is a mid-size spherical tokamak with BT = 0.3-0.6 T and two NBI systems delivering up to 3.5 MW of super-Alfvénic deuterons and therefore suitable for understanding the dynamics of fast particles in ITER-relevant scenarios. It is well known that MHD instabilities can cause redistribution and/or losses of fast ions as observed in many tokamaks (such as NSTX, TFTR, DIII-D, JET, ASDEX, NSTX and MAST). In particular, on MAST, the effect of fast particle driven instabilities, such as fishbones and long-lived modes upon the total neutron yield measured by fission chamber (FC) and the neutron count rates measured by Neutron Camera (NC) has been observed [1]. Fishbones are characterized by burst-like behaviour observed in magnetic and SXR diagnostics and by the sweeping of the mode frequency during a burst. The resonant interaction between the toroidal and poloidal motion of the fast ions in the plasma with the n = 1, m = 1 internal kink mode is the mechanism responsible for driving the fishbone instability [2].

    Place, publisher, year, edition, pages
    010 Publishers, 2013
    National Category
    Fusion, Plasma and Space Physics
    Identifiers
    urn:nbn:se:uu:diva-275193 (URN)
    Conference
    40th EPS Conference on Plasma Physics, Espoo, Finland, 1-5 July, 2013
    Available from: 2016-02-01 Created: 2016-02-01 Last updated: 2016-05-12
    4. Determination of hydrogen/deuterium ratio with neutron measurements on MAST
    Open this publication in new window or tab >>Determination of hydrogen/deuterium ratio with neutron measurements on MAST
    Show others...
    2014 (English)In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 11, p. 11E109-Article in journal (Refereed) Published
    Abstract [en]

    On MAST, compressional Alfven eigenmodes can be destabilized by the presence of a sufficiently large population of energetic particles in the plasma. This dependence was studied in a series of very similar discharges in which increasing amounts of hydrogen were puffed into a deuterium plasma. A simple method to estimate the isotopic ratio n(H)/n(D) using neutron emission measurements is here described. The inferred isotopic ratio ranged from 0.0 to 0.6 and no experimental indication of changes in radial profile of n(H)/n(D) were observed. These findings are confirmed by TRANSP/NUBEAM simulations of the neutron emission.

    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:uu:diva-240140 (URN)10.1063/1.4889910 (DOI)000345646000129 ()25430288 (PubMedID)
    Available from: 2015-01-07 Created: 2015-01-05 Last updated: 2017-12-05Bibliographically approved
    5. Validation of neutron emission and neutron energy spectrum calculations on MAST with DRESS
    Open this publication in new window or tab >>Validation of neutron emission and neutron energy spectrum calculations on MAST with DRESS
    (English)Article in journal (Refereed) Submitted
    National Category
    Fusion, Plasma and Space Physics
    Identifiers
    urn:nbn:se:uu:diva-281186 (URN)
    Available from: 2016-03-20 Created: 2016-03-20 Last updated: 2016-05-12
  • 11.
    Klimek, Iwona
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorelenkova, M.
    Keeling, D.
    Meakins, A.
    Jones, O.
    Akers, R.
    Lupelli, I.
    Turnyanskiy, M.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    TRANSP modelling of total and local neutron emission on MAST2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 2, article id 023003Article in journal (Refereed)
    Abstract [en]

    The results of TRANSP simulations of neutron count rate profiles measured by a collimated neutron flux monitor-neutron camera (NC)-for different plasma scenarios on MAST are reported. In addition, the effect of various plasma parameters on neutron emission is studied by means of TRANSP simulation. The fast ion redistribution and losses due to fishbone modes, which belong to a wider category of energetic particle modes, are observed by the NC and modelled in TRANSP.

  • 12.
    Klimek, Iwona
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sharapov, S. E.
    Harrison, J.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Determination of hydrogen/deuterium ratio with neutron measurements on MAST2014In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 11, p. 11E109-Article in journal (Refereed)
    Abstract [en]

    On MAST, compressional Alfven eigenmodes can be destabilized by the presence of a sufficiently large population of energetic particles in the plasma. This dependence was studied in a series of very similar discharges in which increasing amounts of hydrogen were puffed into a deuterium plasma. A simple method to estimate the isotopic ratio n(H)/n(D) using neutron emission measurements is here described. The inferred isotopic ratio ranged from 0.0 to 0.6 and no experimental indication of changes in radial profile of n(H)/n(D) were observed. These findings are confirmed by TRANSP/NUBEAM simulations of the neutron emission.

  • 13.
    McClements, K. G.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Akers, R. J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Boeglin, W. U.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Keeling, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Jones, O. M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England; Univ Durham, Dept Phys, Durham DH1 3LE, England.
    Kirk, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Perez, R. V.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
    Shinohara, K.
    Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan.
    Tani, K.
    Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan.
    The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 7, article id 075003Article in journal (Refereed)
    Abstract [en]

    The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion D alpha (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.

  • 14.
    Meyer, H.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Eich, T.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Beurskens, M.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece.;Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Coda, S.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Hakola, A.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Martin, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Adamek, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Agostini, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Aguiam, D.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Ahn, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Aho-Mantila, L.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Akers, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Albanese, R.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Aledda, R.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Alessi, E.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Allan, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Alves, D.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Ambrosino, R.
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Amicucci, L.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Anand, H.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Anastassiou, G.
    Natl Tech Univ Athens, Athens, Greece..
    Andrebe, Y.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Angioni, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Apruzzese, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Ariola, M.
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Arnichand, H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Arter, W.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Baciero, A.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal.;CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Barnes, M.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Barrera, L.
    EUROfus PMU, Boltzmannstr 2, D-85748 Garching, Germany.;Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Behn, R.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Bencze, A.
    Bernardo, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Bernert, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bettini, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Bilkova, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Bin, W.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Birkenmeier, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bizarro, J. P. S.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Blanchard, P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Blanken, T.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Bluteau, M.
    Univ Strathclyde, Dept Phys, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland..
    Bobkov, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bogar, O.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Boehm, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Bolzonella, T.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Boncagni, L.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Botrugno, A.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bottereau, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bouquey, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bourdelle, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bremond, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Brezinsek, S.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Brida, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Brochard, F.
    Univ Lorraine, Inst Jean Lamour, F-54000 Nancy, France..
    Buchanan, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Bufferand, H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Buratti, P.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cahyna, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Calabro, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Camenen, Y.
    Aix Marseille Univ, CNRS, PIIM, F-13013 Marseille, France..
    Caniello, R.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Cannas, B.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Canton, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cardinali, A.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Carnevale, D.
    Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy..
    Carr, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Carralero, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Carvalho, P.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Casali, L.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Castaldo, C.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Castejon, F.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Castro, R.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Causa, F.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cavazzana, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cavedon, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ceccuzzi, S.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cesario, R.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Challis, C. D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Chapman, I. T.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Chapman, S.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Chernyshova, M.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Choi, D.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Cianfarani, C.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Ciraolo, G.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Citrin, J.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Clairet, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Classen, I.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Coelho, R.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Coenen, J. W.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Colas, L.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Conway, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Corre, Y.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Costea, S.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Crisanti, F.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cruz, N.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Cseh, G.
    Czarnecka, A.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    D'Arcangelo, O.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    De Angeli, M.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    De Masi, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    De Temmerman, G.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    De Tommasi, G.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Decker, J.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Delogu, R. S.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Dendy, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Denner, P.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Di Troia, C.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Dimitrova, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    D'Inca, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Doric, V.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Douai, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Drenik, A.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Dudson, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Dunai, D.
    Dunne, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Duval, B. P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Easy, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Elmore, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Erdos, B.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Esposito, B.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Fable, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Faitsch, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Fanni, A.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Fedorczak, N.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Felici, F.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Ferreira, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fevrier, O.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ficker, O.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Fietz, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Figini, L.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Figueiredo, A.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fil, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Fishpool, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Fitzgerald, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Fontana, M.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Ford, O.
    Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Frassinetti, L.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Fridstr, R.
    Frigione, D.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Fuchert, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Fuchs, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Palumbo, M. Furno
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Futatani, S.
    Barcelona Supercomp Ctr, Jordi Girona 29, Barcelona 08034, Spain..
    Gabellieri, L.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Galazka, K.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Galdon-Quiroga, J.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Galeani, S.
    Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy..
    Gallart, D.
    Barcelona Supercomp Ctr, Jordi Girona 29, Barcelona 08034, Spain..
    Gallo, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Galperti, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.;CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Gao, Y.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Garavaglia, S.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Garcia, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Garcia-Carrasco, A.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Garcia-Lopez, J.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Garcia-Munoz, M.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Gardarein, J. -L
    Garzotti, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Gaspar, J.
    Aix Marseille Univ, CNRS, PIIM, F-13013 Marseille, France..
    Gauthier, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Geelen, P.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Geiger, B.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Ghendrih, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ghezzi, F.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Giacomelli, L.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Giannone, L.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Giovannozzi, E.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Giroud, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Gleason Gonzalez, C.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Gobbin, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Goodman, T. P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Gorini, G.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Gospodarczyk, M.
    Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy..
    Granucci, G.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Gruber, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Gude, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Guimarais, L.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Guirlet, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Gunn, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hacek, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Hacquin, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hall, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Ham, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Happel, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Harrison, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Harting, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hauer, V.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Havlickova, E.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hellsten, T.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Helou, W.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Henderson, S.
    Univ Strathclyde, Dept Phys, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland..
    Hennequin, P.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Heyn, M.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Hnat, B.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Holzl, M.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Hogeweij, D.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Honore, C.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Hopf, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Horacek, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Hornung, G.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Horvath, L.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Huang, Z.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Huber, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Igitkhanov, J.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Igochine, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Imrisek, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Innocente, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Ionita-Schrittwieser, C.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Isliker, H.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Ivanova-Stanik, I.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Jacobsen, A. S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Jacquet, P.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Jakubowski, M.
    Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Jardin, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Jaulmes, F.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Jenko, F.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Jensen, T.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Busk, O. Jeppe Miki
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Jessen, M.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Joffrin, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Jones, O.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Jonsson, T.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Kallenbach, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Kallinikos, N.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Kalvin, S.
    Kappatou, A.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Karhunen, J.
    Aalto Univ, Dept Appl Phys, POB 14100, FI-00076 Aalto, Finland..
    Karpushov, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Kasilov, S.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Kasprowicz, G.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Kendl, A.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Kernbichler, W.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Kim, D.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Kirk, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Kjer, S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Kocsis, G.
    Kogut, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Komm, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Korsholm, S. B.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Koslowski, H. R.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Koubiti, M.
    Aix Marseille Univ, CNRS, PIIM, F-13013 Marseille, France..
    Kovacic, J.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Kovarik, K.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic.;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Krawczyk, N.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Krbec, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Krieger, K.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Krivska, A.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Kube, R.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Kudlacek, O.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Kurki-Suonio, T.
    Aalto Univ, Dept Appl Phys, POB 14100, FI-00076 Aalto, Finland..
    Labit, B.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Laggner, F. M.
    Tech Univ Wien, Inst Angew Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria..
    Laguardia, L.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Lahtinen, A.
    Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland..
    Lalousis, P.
    Fdn Res & Technol, Iraklion, NE, Greece..
    Lang, P.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lauber, P.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lazanyi, N.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Lazaros, A.
    Natl Tech Univ Athens, Athens, Greece..
    Le, H. B.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Lebschy, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Leddy, J.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Lefevre, L.
    Univ Grenoble Alpes, LCIS, F-26902 Valence, France..
    Lehnen, M.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Leipold, F.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Lessig, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Leyland, M.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Li, L.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Liang, Y.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Lipschultz, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Liu, Y. Q.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Loarer, T.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Loarte, A.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Loewenhoff, T.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Lomanowski, B.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Loschiavo, V. P.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Lunt, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lupelli, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lux, H.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lyssoivan, A.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Madsen, J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Maget, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Maggi, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Maggiora, R.
    Politecn Torino, DET, Turin, Italy..
    Magnussen, M. L.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Mailloux, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Maljaars, B.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Malygin, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Mantica, P.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Mantsinen, M.
    Barcelona Supercomp Ctr, Jordi Girona 29, Barcelona 08034, Spain.;ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain..
    Maraschek, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Marchand, B.
    Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland..
    Marconato, N.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Marini, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Marinucci, M.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Markovic, T.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Marocco, D.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Marrelli, L.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Martin, Y.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Solis, J. R. Martin
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Martitsch, A.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Mastrostefano, S.
    Univ Cassino, DIEI, CREATE, ENEA, Via Di Biasio 43, I-03043 Cassino, FR, Italy.;Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Mattei, M.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Matthews, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Mavridis, M.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Mayoral, M. -L
    Mazon, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    McCarthy, P.
    Univ Coll Cork, Cork, Ireland..
    McAdams, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McArdle, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McClements, K.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McDermott, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    McMillan, B.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Meisl, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Merle, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Meyer, O.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Milanesio, D.
    Politecn Torino, DET, Turin, Italy..
    Militello, F.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Miron, I. G.
    Natl Inst Laser Plasma & Radiat Phys, POB MG-36, Bucharest, Romania..
    Mitosinkova, K.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Mlynar, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Mlynek, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Molina, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Molina, P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Monakhov, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Morales, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Moreau, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Morel, P.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Moret, J. -M
    Moro, A.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Moulton, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Mueller, H. W.
    Nabais, F.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Nardon, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Naulin, V.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nemes-Czopf, A.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Nespoli, F.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Neu, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Nielsen, A. H.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nielsen, S. K.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nikolaeva, V.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Nimb, S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nocente, M.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Nouailletas, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Nowak, S.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Oberkofler, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Oberparleiter, M.
    Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Ochoukov, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Odstrcil, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Olsen, J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Omotani, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    O'Mullane, M. G.
    Univ Strathclyde, Dept Phys, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland..
    Orain, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Osterman, N.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Paccagnella, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pamela, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Pangione, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Panjan, M.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Papp, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Paprok, R.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Parail, V.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Parra, I.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Pau, A.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Pautasso, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Pehkonen, S. -P
    Pereira, A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Cippo, E. Perelli
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Ridolfini, V. Pericoli
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Peterka, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Petersson, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Petrzilka, V.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Piovesan, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Piron, C.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pironti, A.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Pisano, F.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Pisokas, T.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Pitts, R.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Ploumistakis, I.
    Fdn Res & Technol, Iraklion, NE, Greece..
    Plyusnin, V.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Pokol, G.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Poljak, D.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Poloskei, P.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Popovic, Z.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Por, G.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Porte, L.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Potzel, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Predebon, I.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Preynas, M.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Primc, G.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Pucella, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Puiatti, M. E.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Putterich, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rack, M.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Ramogida, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Rapson, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rasmussen, J. Juul
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Rasmussen, J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Ratta, G. A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Ratynskaia, S.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Ravera, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Refy, D.
    Reich, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Reimerdes, H.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Reimold, F.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Reinke, M.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Reiser, D.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Resnik, M.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Reux, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ripamonti, D.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Rittich, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Riva, G.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Rodriguez-Ramos, M.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Rohde, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rosato, J.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Ryter, F.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Saarelma, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sabot, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Saint-Laurent, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Salewski, M.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Salmi, A.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Samaddar, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sanchis-Sanchez, L.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Santos, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Sauter, O.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Scannell, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Scheffer, M.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Schneider, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Schneider, B.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Schneider, P.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schneller, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schrittwieser, R.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Schubert, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schweinzer, J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Seidl, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Sertoli, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Sesnic, S.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Shabbir, A.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Shalpegin, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Shanahan, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Sharapov, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sheikh, U.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Sias, G.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Sieglin, B.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Silva, C.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Silva, A.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fuglister, M. Silva
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Simpson, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Snicker, A.
    Aalto Univ, Dept Appl Phys, POB 14100, FI-00076 Aalto, Finland..
    Sommariva, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Sozzi, C.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Spagnolo, S.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Spizzo, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Spolaore, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Stange, T.
    Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Pedersen, M. Stejner
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Stepanov, I.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Stober, J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Strand, P.
    Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Susnjara, A.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Suttrop, W.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Szepesi, T.
    Tal, B.
    Tala, T.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Tamain, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Tardini, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Tardocchi, M.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Teplukhina, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Terranova, D.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Testa, D.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Theiler, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Thornton, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Tolias, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Tophoj, L.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Treutterer, W.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Trevisan, G. L.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Tripsky, M.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Tsironis, C.
    Natl Tech Univ Athens, Athens, Greece..
    Tsui, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Tudisco, O.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Uccello, A.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Urban, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Valisa, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Vallejos, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Valovic, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Van den Brand, H.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Vanovac, B.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Varoutis, S.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Vartanian, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Vega, J.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Verdoolaege, G.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Verhaegh, K.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Vermare, L.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Vianello, N.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy.;Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Vicente, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Viezzer, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Vignitchouk, L.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Vijvers, W. A. J.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.;FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Villone, F.
    Univ Cassino, DIEI, CREATE, ENEA, Via Di Biasio 43, I-03043 Cassino, FR, Italy..
    Viola, B.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Vlahos, L.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Voitsekhovitch, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;EUROfus PMU, Boltzmannstr 2, D-85748 Garching, Germany..
    Vondracek, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Vu, N. M. T.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Wagner, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Walkden, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Wang, N.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Wauters, T.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Weiland, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Weinzettl, V.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Westerhof, E.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Wiesenberger, M.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Willensdorfer, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Wischmeier, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wolfrum, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Yadykin, Dimitry
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zagorski, R.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Zammuto, I.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Zanca, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Zaplotnik, R.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Zestanakis, P.
    Natl Tech Univ Athens, Athens, Greece..
    Zhang, W.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Zoletnik, S.
    Zuin, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 10, article id 102014Article in journal (Refereed)
    Abstract [en]

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.

  • 15. Oliver, H. J. C.
    et al.
    Sharapov, S. E.
    Akers, R.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Compressional Alfven and ion-ion hybrid waves in tokamak plasmas with two ion species2014In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 56, no 12, p. 125017-Article in journal (Refereed)
    Abstract [en]

    Compressional Alfven and ion-ion hybrid waves excited by energetic beam ions are studied in plasmas with two ion species. In our experiment, a hydrogen-deuterium (H-D) plasma is used to produce instabilities similar to those likely to be present in the burning deuterium-tritium plasmas of future tokamaks. Modes are suppressed in the deuterium cyclotron frequency range with increasing hydrogen gas puffing. In plasmas with H/D concentrations of 2.57 or higher, short-lived modes with small and predominantly negative toroidal mode numbers are observed at frequencies omega/omega(beta D0) approximate to 2.25, where omega(beta D0) = omega(beta D0)(R-0) is the on-axis deuterium cyclotron frequency. These are the highest mode frequencies yet detected in the ion cyclotron range in a spherical tokamak. Modeling of the transparency regions and plasma resonances using the cold plasma dispersion relation explains the observed features. Mode conversion at ion-ion hybrid resonances and subsequent kinetic damping is believed to be responsible for mode suppression. The high frequency modes are present due to excitation by wave-particle resonances within the transparency region for high hydrogen concentrations. The absence of other wave-particle resonances explains significant features of our experiment. This technique has possible applications in plasma heating, current drive and real-time diagnosis of relative ion concentration in the plasma core.

  • 16. Perez, R. V.
    et al.
    Boeglin, W. U.
    Darrow, D. S.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Allan, S. Y.
    Akers, R. J.
    Keeling, D. L.
    McClements, K. G.
    Scannell, R.
    Turnyanskiy, M.
    Angulo, A.
    Avila, P.
    Leon, O.
    Lopez, C.
    Jones, O. M.
    Conway, N. J.
    Michael, C. A.
    Investigating fusion plasma instabilities in the Mega Amp Spherical Tokamak using mega electron volt proton emissions2014In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 11, p. 11D701-Article in journal (Refereed)
    Abstract [en]

    The proton detector (PD) measures 3 MeV proton yield distributions from deuterium-deuterium fusion reactions within the Mega Amp Spherical Tokamak (MAST). The PD's compact four-channel system of collimated and individually oriented silicon detectors probes different regions of the plasma, detecting protons (with gyro radii large enough to be unconfined) leaving the plasma on curved trajectories during neutral beam injection. From first PD data obtained during plasma operation in 2013, proton production rates (up to several hundred kHz and 1 ms time resolution) during sawtooth events were compared to the corresponding MAST neutron camera data. Fitted proton emission profiles in the poloidal plane demonstrate the capabilities of this new system.

  • 17.
    Sangaroon, Siriyaporn
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Turnyanskiy, M.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Validation of neutron emission profiles in MAST with a collimated neutron monitor2012In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 83, no 10, p. 10D910-Article in journal (Refereed)
    Abstract [en]

    A neutron camera with liquid scintillator detectors is used in MAST to measure the neutron emissivity from D(d,n) 3He reactions along collimated lines of sight. In this work, the measured recoil proton pulse height spectra generated in the detectors by the incident neutrons is modelled taking into account the energy spectrum of the generated neutrons, their spatial distribution and transport to the detectors as well as the detectors response function. The contribution of scattered neutrons to the pulse height spectrum is also modelled. Good agreement is found between the experimental data and the simulations. Examples are given showing the sensitivity of the recoil proton pulse height spectra to different observation angles with respect the neutral beam injection and the plasma rotation direction.

  • 18.
    Sangaroon, Siriyaporn
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Bettolo, C. M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Turnyanskiy, M.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Characterization of MAST neutron camera detectors and first measurements2011In: 38th EPS Conference on Plasma Physics 2011 (EPS 2011): Europhysics Conference Abstracts, 2011, p. 1508-1511Conference paper (Refereed)
  • 19.
    Sias, G.
    et al.
    Univ Cagliari, Elect & Elect Engn Dept, Cagliari, Italy.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Yadykin, D.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res NCBJ, Otwock, Poland.
    A locked mode indicator for disruption prediction on JET and ASDEX upgrade2019In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 138, p. 254-266Article in journal (Refereed)
    Abstract [en]

    The aim of this paper is to present a signal processing algorithm that, applied to the raw Locked Mode signal, allows us to obtain a disruption indicator in principle exploitable on different tokamaks. A common definition of such an indicator for different machines would facilitate the development of portable systems for disruption prediction, which is becoming of increasingly importance for the next tokamak generations. Moreover, the indicator allows us to overcome some intrinsic problems in the diagnostic system such as drift and offset. The behavior of the proposed indicator as disruption predictor, based on crossing optimized thresholds of the signal amplitude, has been analyzed using data of both JET and ASDEX Upgrade experiments. A thorough analysis of the disruption prediction performance shows how the indicator is able to recover some missed and tardy detections of the raw signal. Moreover, it intervenes and corrects premature or even wrong alarms due to, e.g., drifts and/or offsets.

  • 20. Tierens, W.
    et al.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klimek, I
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Yadykin, Dimitry
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zuin, M.
    Validation of the ICRF antenna coupling code RAPLICASOL against TOPICA and experiments2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 4, article id 046001Article in journal (Refereed)
    Abstract [en]

    In this paper we validate the finite element code RAPLICASOL, which models radiofrequency wave propagation in edge plasmas near ICRF antennas, against calculations with the TOPICA code. We compare the output of both codes for the ASDEX Upgrade 2-strap antenna, and for a 4-strap WEST-like antenna. Although RAPLICASOL requires considerably fewer computational resources than TOPICA, we find that the predicted quantities of experimental interest (including reflection coefficients, coupling resistances, S- and Z-matrix entries, optimal matching settings, and even radiofrequency electric fields) are in good agreement provided we are careful to use the same geometry in both codes.

  • 21. Trier, E.
    et al.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Yadykin, D.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zuin, M.
    ELM-induced cold pulse propagation in ASDEX Upgrade2019In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, no 4, article id 045003Article in journal (Refereed)
    Abstract [en]

    In ASDEX Upgrade, the propagation of cold pulses induced by type-I edge localized modes (ELMs) is studied using electron cyclotron emission measurements, in a dataset of plasmas with moderate triangularity. It is found that the edge safety factor or the plasma current are the main determining parameters for the inward penetration of the T-e perturbations. With increasing plasma current the ELM penetration is more shallow in spite of the stronger ELMs. Estimates of the heat pulse diffusivity show that the corresponding transport is too large to be representative of the inter-ELM phase. Ergodization of the plasma edge during ELMs is a possible explanation for the observed properties of the cold pulse propagation, which is qualitatively consistent with non-linear magneto-hydro-dynamic simulations.

  • 22. Turnyanskiy, M.
    et al.
    Challis, C. D.
    Akers, R. J.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Keeling, D. L.
    Kirk, A.
    Lake, R.
    Pinches, S. D.
    Sangaroon, Siriyaporn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wodniak, I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Measurement and control of the fast ion redistribution on MAST2013In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 5, p. 053016-Article in journal (Refereed)
    Abstract [en]

    Previous experiments on MAST and other tokamaks have indicated that the level of fast ion redistribution can exceed that expected from classical diffusion and that this level increases with beam power. In this paper we present a quantification of this effect in MAST plasmas using a recently commissioned scanning neutron camera. The observed fast ion diffusivity correlates with the amplitude of n = 1 energetic particle modes, indicating that they are the probable cause of the non-classical fast ion diffusion in MAST. Finally, it will be shown that broadening the fast ion pressure profile by the application of neutral beam injection at an off-axis location can mitigate the growth of these modes and result in the classical fast ion behaviour.

  • 23.
    Weiszflog, Matthias
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sangaroon, Siriyaporn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Keeling, D.
    Martin, R.
    Turnyanskiy, M.
    Conceptual design of a neutron camera for MAST Upgrade2014In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 11, p. 11E121-Article in journal (Refereed)
    Abstract [en]

    This paper presents two different conceptual designs of neutron cameras for Mega Ampere Spherical Tokamak (MAST) Upgrade. The first one consists of two horizontal cameras, one equatorial and one vertically down-shifted by 65 cm. The second design, viewing the plasma in a poloidal section, also consists of two cameras, one radial and the other one with a diagonal view. Design parameters for the different cameras were selected on the basis of neutron transport calculations and on a set of target measurement requirements taking into account the predicted neutron emissivities in the different MAST Upgrade operating scenarios. Based on a comparison of the cameras' profile resolving power, the horizontal cameras are suggested as the best option.

  • 24.
    Wodniak, Iwona
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, MarcoUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.Lake, RichardJones, OwenTurnyanskiy, MikhailSangaroon, SiriyapornUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.Ericsson, GoranUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    TRANSP modelling of experimentally measured fast particle redistribution and losses on MAST2013Conference proceedings (editor) (Other academic)
    Abstract [en]

    MAST is a mid-size spherical tokamak with BT = 0.3-0.6 T and two NBI systems delivering up to 3.5 MW of super-Alfvénic deuterons and therefore suitable for understanding the dynamics of fast particles in ITER-relevant scenarios. It is well known that MHD instabilities can cause redistribution and/or losses of fast ions as observed in many tokamaks (such as NSTX, TFTR, DIII-D, JET, ASDEX, NSTX and MAST). In particular, on MAST, the effect of fast particle driven instabilities, such as fishbones and long-lived modes upon the total neutron yield measured by fission chamber (FC) and the neutron count rates measured by Neutron Camera (NC) has been observed [1]. Fishbones are characterized by burst-like behaviour observed in magnetic and SXR diagnostics and by the sweeping of the mode frequency during a burst. The resonant interaction between the toroidal and poloidal motion of the fast ions in the plasma with the n = 1, m = 1 internal kink mode is the mechanism responsible for driving the fishbone instability [2].

  • 25.
    Wodniak, Iwona
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Gorelenkova, MarinaConroy, SeanUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.Cecconello, MarcoUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.Turnyanskiy, MikhailSangaroon, SiriyapornUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.Keeling, DavidMichael, CliveColyer, GregEricsson, GoranUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    TRANSP modelling of neutron emissivity on MAST2012Conference proceedings (editor) (Other academic)
    Abstract [en]

    The aim of this paper is to validate a set of methods to model the measured neutron emission on Mega Amp Spherical Tokamak (MAST) using TRANSP. Neutrons are measured along a set of collimated lines of sight (LoS) at MAST by a Neutron Camera (NC). The neutron emissivity is modeled with TRANSP [1] for different plasma discharges using a selfconsistent data set produced by a data preparation and analysis tool. The modeled neutron emissivity is then compared with NC experimental data using a full 3D solid angle calculation to model the transport of neutrons from plasma to detector. A good agreement between the modelled and experimental neutron rate was found.

1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf