uu.seUppsala University Publications

Please wait ... |

Refine search result

CiteExportLink to result list
http://uu.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22authority-person%3A18229%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt1166_recordPermLink",{id:"formSmash:upper:j_idt1166:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt1166_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt1166_j_idt1168",{id:"formSmash:upper:j_idt1166:j_idt1168",widgetVar:"widget_formSmash_upper_j_idt1166_j_idt1168",target:"formSmash:upper:j_idt1166:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt1184",{id:"formSmash:upper:j_idt1184",widgetVar:"widget_formSmash_upper_j_idt1184",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt1184",e:"change",f:"formSmash",p:"formSmash:upper:j_idt1184",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt1195",{id:"formSmash:upper:j_idt1195",widgetVar:"widget_formSmash_upper_j_idt1195",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt1195",e:"change",f:"formSmash",p:"formSmash:upper:j_idt1195",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt1205",{id:"formSmash:upper:j_idt1205",widgetVar:"widget_formSmash_upper_j_idt1205"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1268",{id:"formSmash:items:resultList:0:j_idt1268",widgetVar:"widget_formSmash_items_resultList_0_j_idt1268",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1271",{id:"formSmash:items:resultList:0:j_idt1271",widgetVar:"widget_formSmash_items_resultList_0_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaPersson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity2015In: Potential Analysis, ISSN 0926-2601, E-ISSN 1572-929X, Vol. 43, no 3, p. 531-545Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:0:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_0_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We show that bounded pseudoconvex domains that are Hölder continuous for all α < 1 are hyperconvex, extending the well-known result by Demailly (Math. Z. 184 1987) beyond Lipschitz regularity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1268",{id:"formSmash:items:resultList:1:j_idt1268",widgetVar:"widget_formSmash_items_resultList_1_j_idt1268",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1271",{id:"formSmash:items:resultList:1:j_idt1271",widgetVar:"widget_formSmash_items_resultList_1_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaDepartment of mathematics and mathematical statistics, Umeå University.Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Approximation and Bounded Plurisubharmonic Exhaustion Functions Beyond Lipschitz DomainsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:1:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_1_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Using techniques from the analysis of PDEs to studythe boundary behaviour of functions on domains with low boundaryregularity, we extend results by Fornaæss-Wiegerinck (1989)on plurisubharmonic approximation and by Demailly (1987) onthe existence on bounded plurisubharmonic exhaustion functionsto domains beyond Lipschitz boundary regularity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. Avelin, Benny PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1268",{id:"formSmash:items:resultList:2:j_idt1268",widgetVar:"widget_formSmash_items_resultList_2_j_idt1268",onLabel:"Avelin, Benny ",offLabel:"Avelin, Benny ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1271",{id:"formSmash:items:resultList:2:j_idt1271",widgetVar:"widget_formSmash_items_resultList_2_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaUmeå University.Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Approximation of plurisubharmonic functions2016In: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 61, no 1, p. 23-28Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:2:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_2_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Backlund, Ulf PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1268",{id:"formSmash:items:resultList:3:j_idt1268",widgetVar:"widget_formSmash_items_resultList_3_j_idt1268",onLabel:"Backlund, Ulf ",offLabel:"Backlund, Ulf ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1271",{id:"formSmash:items:resultList:3:j_idt1271",widgetVar:"widget_formSmash_items_resultList_3_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Danderyds Gymnasium, Danderyd, Sweden..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Carlsson, LinusMalardalen Univ, Acad Culture & Commun, Vasteras, Sweden..Fallström, AndersUmea Univ, Dept Math & Math Stat, Umea, Sweden..Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Semi-Bloch Functions in Several Complex Variables2016In: Journal of Geometric Analysis, ISSN 1050-6926, E-ISSN 1559-002X, Vol. 26, no 1, p. 463-473Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:3:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_3_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let M be an n-dimensional complex manifold. A holomorphic function f : M -> C is said to be semi-Bloch if for every lambda is an element of C the function g(lambda) = exp(lambda f(z)) is normal on M. We characterize semi-Bloch functions on infinitesimally Kobayashi non-degenerate M in geometric as well as analytic terms. Moreover, we show that on such manifolds, semi-Bloch functions are normal.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Czyz, Rafal et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1271",{id:"formSmash:items:resultList:4:j_idt1271",widgetVar:"widget_formSmash_items_resultList_4_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hed, LisaPersson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Plurisubharmonic functions on compact sets2012In: Annales Polonici Mathematici, ISSN 0066-2216, E-ISSN 1730-6272, Vol. 106, p. 133-144Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:4:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_4_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in C-n. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. Hed, Lisa et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1271",{id:"formSmash:items:resultList:5:j_idt1271",widgetVar:"widget_formSmash_items_resultList_5_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Plurisubharmonic approximation and boundary values of plurisubharmonic functions2014In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 413, no 2, p. 700-714Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:5:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_5_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We study the problem of approximating plurisubharmonic functions on a bounded domain Omega by continuous plurisubharmonic functions defined on neighborhoods of (Omega) over bar. It turns out that this problem can be linked to the problem of solving a Dirichlet type problem for functions plurisubharmonic on the compact set (Omega) over bar in the sense of Poletsky. A stronger notion of hyperconvexity is introduced to fully utilize this connection, and we show that for this class of domains the duality between the two problems is perfect. In this setting, we give a characterization of plurisubharmonic boundary values, and prove some theorems regarding the approximation of plurisubharmonic functions.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Nyström, Kaj PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1268",{id:"formSmash:items:resultList:6:j_idt1268",widgetVar:"widget_formSmash_items_resultList_6_j_idt1268",onLabel:"Nyström, Kaj ",offLabel:"Nyström, Kaj ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1271",{id:"formSmash:items:resultList:6:j_idt1271",widgetVar:"widget_formSmash_items_resultList_6_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.Sande, OlowUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Boundary estimates for non-negative solutions to non-linear parabolic equations2015In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 54, no 1, p. 847-879Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:6:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_6_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This paper is mainly devoted to the boundary behavior of non-negative solutions to the equation\[\H u =\partial_tu-\nabla\cdot \operatorname{A}(x,t,\nabla u) = 0\]in domains of the form $\Omega_T=\Omega\times (0,T)$ where $\Omega\subset\mathbb R^n$ is a bounded non-tangentially accessible (NTA) domain and $T>0$. The assumptions we impose on$A$ imply that $H$ is a non-linear parabolic operator with linear growth. Our main results include a backward Harnackinequality, and the H\"older continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary. Furthermore, to each such solution one can associate a natural Riesz measure supported on the lateral boundary and one of our main result is a proof of the doubling property for this measure. Our results generalize, to the setting of non-linear equations with linear growth, previous results concerningthe boundary behaviour, in Lipschitz cylinders and time-independent NTA-cylinders, established for non-negative solutions to equations of the type $\partial_tu-\nabla\cdot (\operatorname{A}(x,t)\nabla u)=0$, where $A$ is a measurable, bounded and uniformly positive definite matrix-valued function. In the latter case the measure referred to above is essentially the caloric or parabolic measure associated to the operator and related to Green's function. At the end of the paper we also remark that our arguments are general enough to allow us to generalize parts of our results to general fully non-linear parabolic partial differential equations of second order.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Nyström, Kaj PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1268",{id:"formSmash:items:resultList:7:j_idt1268",widgetVar:"widget_formSmash_items_resultList_7_j_idt1268",onLabel:"Nyström, Kaj ",offLabel:"Nyström, Kaj ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1271",{id:"formSmash:items:resultList:7:j_idt1271",widgetVar:"widget_formSmash_items_resultList_7_j_idt1271",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Persson, HåkanUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.Sande, OlowUppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Boundary estimates for solutions to linear degenerate parabolic equations2015In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 259, no 8, p. 3577-3614Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:7:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_7_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Let $\Omega\subset\mathbb R^n$ be a bounded NTA-domain and let $\Omega_T=\Omega\times (0,T)$ for some $T>0$. We study the boundary behaviour of non-negativesolutions to the equation\[Hu =\partial_tu-\partial_{x_i}(a_{ij}(x,t)\partial_{x_j}u) = 0, \ (x,t)\in \Omega_T.\]We assume that $A(x,t)=\{a_{ij}(x,t)\}$ is measurable, real, symmetric and that\begin{equation*}\beta^{-1}\lambda(x)|\xi|^2\leq \sum_{i,j=1}^na_{ij}(x,t)\xi_i\xi_j\leq\beta\lambda(x)|\xi|^2\mbox{ for all }(x,t)\in\mathbb R^{n+1},\ \xi\in\mathbb R^{n},\end{equation*}for some constant $\beta\geq 1$ and for some non-negative and real-valued function $\lambda=\lambda(x)$belonging to the Muckenhoupt class $A_{1+2/n}(\mathbb R^n)$.Our main results includethe doubling property of the associated parabolic measure andthe H\"older continuity up to the boundary of quotients of non-negative solutionswhich vanish continuously on a portion of the boundary. Our resultsgeneralize previous results of Fabes, Kenig, Jerison, Serapioni, see \cite{FKS}, \cite{FJK}, \cite{FJK1}, to a parabolic setting.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Persson, Håkan PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1268",{id:"formSmash:items:resultList:8:j_idt1268",widgetVar:"widget_formSmash_items_resultList_8_j_idt1268",onLabel:"Persson, Håkan ",offLabel:"Persson, Håkan ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Studies of the Boundary Behaviour of Functions Related to Partial Differential Equations and Several Complex Variables2015Doctoral thesis, comprehensive summary (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1306_0_j_idt1307",{id:"formSmash:items:resultList:8:j_idt1306:0:j_idt1307",widgetVar:"widget_formSmash_items_resultList_8_j_idt1306_0_j_idt1307",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); This thesis consists of a comprehensive summary and six scientific papers dealing with the boundary behaviour of functions related to parabolic partial differential equations and several complex variables.

Paper I concerns solutions to non-linear parabolic equations of linear growth. The main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary of an NTA cylinder. It is also shown that the Riesz measure associated with such solutions has the doubling property.

Paper II is concerned with solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a weight in the Muckenhoupt class 1+2/n. Two main results are that non-negative solutions which vanish continuously on the lateral boundary of an NTA cylinder satisfy a backward Harnack inequality and that the quotient of two such functions is Hölder continuous up to the boundary. Another result is that the parabolic measure associated to such equations has the doubling property.

In Paper III, it is shown that a bounded pseudoconvex domain whose boundary is α-Hölder for each 0<α<1, is hyperconvex. Global estimates of the exhaustion function are given.

In Paper IV, it is shown that on the closure of a domain whose boundary locally is the graph of a continuous function, all plurisubharmonic functions with continuous boundary values can be uniformly approximated by smooth plurisubharmonic functions defined in neighbourhoods of the closure of the domain.

Paper V studies Poletsky’s notion of plurisubharmonicity on compact sets. It is shown that a function is plurisubharmonic on a given compact set if, and only if, it can be pointwise approximated by a decreasing sequence of smooth plurisubharmonic functions defined in neighbourhoods of the set.

Paper VI introduces the notion of a P-hyperconvex domain. It is shown that in such a domain, both the Dirichlet problem with respect to functions plurisubharmonic on the closure of the domain, and the problem of approximation by smooth plurisubharmoinc functions in neighbourhoods of the closure of the domain have satisfactory answers in terms of plurisubharmonicity on the boundary.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt1306:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); List of papers PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt1310",{id:"formSmash:items:resultList:8:j_idt1310",widgetVar:"widget_formSmash_items_resultList_8_j_idt1310",onLabel:"List of papers",offLabel:"List of papers",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); 1. Boundary estimates for non-negative solutions to non-linear parabolic equationsOpen this publication in new window or tab >>Boundary estimates for non-negative solutions to non-linear parabolic equations### Nyström, Kaj

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.### Persson, Håkan

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.### Sande, Olow

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_0_overlay_some",{id:"formSmash:items:resultList:8:j_idt1311:0:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_0_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_0_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt1311:0:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_0_overlay_otherAuthors",multiple:true}); 2015 (English)In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 54, no 1, p. 847-879Article in journal (Refereed) Published##### Abstract [en]

This paper is mainly devoted to the boundary behavior of non-negative solutions to the equation\[\H u =\partial_tu-\nabla\cdot \operatorname{A}(x,t,\nabla u) = 0\]in domains of the form $\Omega_T=\Omega\times (0,T)$ where $\Omega\subset\mathbb R^n$ is a bounded non-tangentially accessible (NTA) domain and $T>0$. The assumptions we impose on$A$ imply that $H$ is a non-linear parabolic operator with linear growth. Our main results include a backward Harnackinequality, and the H\"older continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary. Furthermore, to each such solution one can associate a natural Riesz measure supported on the lateral boundary and one of our main result is a proof of the doubling property for this measure. Our results generalize, to the setting of non-linear equations with linear growth, previous results concerningthe boundary behaviour, in Lipschitz cylinders and time-independent NTA-cylinders, established for non-negative solutions to equations of the type $\partial_tu-\nabla\cdot (\operatorname{A}(x,t)\nabla u)=0$, where $A$ is a measurable, bounded and uniformly positive definite matrix-valued function. In the latter case the measure referred to above is essentially the caloric or parabolic measure associated to the operator and related to Green's function. At the end of the paper we also remark that our arguments are general enough to allow us to generalize parts of our results to general fully non-linear parabolic partial differential equations of second order.

##### National Category

Mathematics##### Research subject

Mathematics##### Identifiers

urn:nbn:se:uu:diva-204871 (URN)10.1007/s00526-014-0808-8 (DOI)000359941200033 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_0_overlay_j_idt1486",{id:"formSmash:items:resultList:8:j_idt1311:0:overlay:j_idt1486",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_0_overlay_j_idt1486",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_0_overlay_j_idt1492",{id:"formSmash:items:resultList:8:j_idt1311:0:overlay:j_idt1492",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_0_overlay_j_idt1492",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_0_overlay_j_idt1498",{id:"formSmash:items:resultList:8:j_idt1311:0:overlay:j_idt1498",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_0_overlay_j_idt1498",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay639989",{id:"formSmash:items:resultList:8:j_idt1311:0:j_idt1315",widgetVar:"overlay639989",target:"formSmash:items:resultList:8:j_idt1311:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 2. Boundary estimates for solutions to linear degenerate parabolic equationsOpen this publication in new window or tab >>Boundary estimates for solutions to linear degenerate parabolic equations### Nyström, Kaj

### Persson, Håkan

### Sande, Olow

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_1_overlay_some",{id:"formSmash:items:resultList:8:j_idt1311:1:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_1_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_1_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt1311:1:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_1_overlay_otherAuthors",multiple:true}); 2015 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 259, no 8, p. 3577-3614Article in journal (Refereed) Published##### Abstract [en]

Let $\Omega\subset\mathbb R^n$ be a bounded NTA-domain and let $\Omega_T=\Omega\times (0,T)$ for some $T>0$. We study the boundary behaviour of non-negativesolutions to the equation\[Hu =\partial_tu-\partial_{x_i}(a_{ij}(x,t)\partial_{x_j}u) = 0, \ (x,t)\in \Omega_T.\]We assume that $A(x,t)=\{a_{ij}(x,t)\}$ is measurable, real, symmetric and that\begin{equation*}\beta^{-1}\lambda(x)|\xi|^2\leq \sum_{i,j=1}^na_{ij}(x,t)\xi_i\xi_j\leq\beta\lambda(x)|\xi|^2\mbox{ for all }(x,t)\in\mathbb R^{n+1},\ \xi\in\mathbb R^{n},\end{equation*}for some constant $\beta\geq 1$ and for some non-negative and real-valued function $\lambda=\lambda(x)$belonging to the Muckenhoupt class $A_{1+2/n}(\mathbb R^n)$.Our main results includethe doubling property of the associated parabolic measure andthe H\"older continuity up to the boundary of quotients of non-negative solutionswhich vanish continuously on a portion of the boundary. Our resultsgeneralize previous results of Fabes, Kenig, Jerison, Serapioni, see \cite{FKS}, \cite{FJK}, \cite{FJK1}, to a parabolic setting.

##### National Category

Mathematics##### Research subject

Mathematics##### Identifiers

urn:nbn:se:uu:diva-204869 (URN)10.1016/j.jde.2015.04.028 (DOI)000363434300004 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_1_overlay_j_idt1486",{id:"formSmash:items:resultList:8:j_idt1311:1:overlay:j_idt1486",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_1_overlay_j_idt1486",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_1_overlay_j_idt1492",{id:"formSmash:items:resultList:8:j_idt1311:1:overlay:j_idt1492",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_1_overlay_j_idt1492",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_1_overlay_j_idt1498",{id:"formSmash:items:resultList:8:j_idt1311:1:overlay:j_idt1498",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_1_overlay_j_idt1498",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay639981",{id:"formSmash:items:resultList:8:j_idt1311:1:j_idt1315",widgetVar:"overlay639981",target:"formSmash:items:resultList:8:j_idt1311:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 3. A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularityOpen this publication in new window or tab >>A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity### Avelin, Benny

### Hed, Lisa

### Persson, Håkan

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_2_overlay_some",{id:"formSmash:items:resultList:8:j_idt1311:2:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_2_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_2_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt1311:2:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_2_overlay_otherAuthors",multiple:true}); 2015 (English)In: Potential Analysis, ISSN 0926-2601, E-ISSN 1572-929X, Vol. 43, no 3, p. 531-545Article in journal (Refereed) Published##### Abstract [en]

We show that bounded pseudoconvex domains that are Hölder continuous for all α < 1 are hyperconvex, extending the well-known result by Demailly (Math. Z. 184 1987) beyond Lipschitz regularity.

##### Place, publisher, year, edition, pages

Håkan Persson, 2015##### Keywords

plurisubharmonic functions, continuous boundary, hyperconvexity, bounded exhaustion function, Hölder for all exponents, log-lipschitz, boundary regularity, Reinhardt domains.##### National Category

Mathematical Analysis##### Research subject

Mathematics##### Identifiers

urn:nbn:se:uu:diva-251330 (URN)10.1007/s11118-015-9486-1 (DOI)000365769100010 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_2_overlay_j_idt1486",{id:"formSmash:items:resultList:8:j_idt1311:2:overlay:j_idt1486",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_2_overlay_j_idt1486",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_2_overlay_j_idt1492",{id:"formSmash:items:resultList:8:j_idt1311:2:overlay:j_idt1492",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_2_overlay_j_idt1492",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_2_overlay_j_idt1498",{id:"formSmash:items:resultList:8:j_idt1311:2:overlay:j_idt1498",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_2_overlay_j_idt1498",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay805439",{id:"formSmash:items:resultList:8:j_idt1311:2:j_idt1315",widgetVar:"overlay805439",target:"formSmash:items:resultList:8:j_idt1311:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 4. Approximation of plurisubharmonic functionsOpen this publication in new window or tab >>Approximation of plurisubharmonic functions### Avelin, Benny

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland.### Hed, Lisa

Umeå University.### Persson, Håkan

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_3_overlay_some",{id:"formSmash:items:resultList:8:j_idt1311:3:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_3_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_3_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt1311:3:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_3_overlay_otherAuthors",multiple:true}); 2016 (English)In: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 61, no 1, p. 23-28Article in journal (Refereed) Published##### Abstract [en]

We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

##### Keywords

plurisubharmonic functions, approximation, continuous boundary, boundary regularity, Mergelyan type approximation##### National Category

Mathematical Analysis##### Research subject

Mathematics##### Identifiers

urn:nbn:se:uu:diva-251324 (URN)10.1080/17476933.2015.1053473 (DOI)000365643500003 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_3_overlay_j_idt1486",{id:"formSmash:items:resultList:8:j_idt1311:3:overlay:j_idt1486",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_3_overlay_j_idt1486",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_3_overlay_j_idt1492",{id:"formSmash:items:resultList:8:j_idt1311:3:overlay:j_idt1492",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_3_overlay_j_idt1492",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_3_overlay_j_idt1498",{id:"formSmash:items:resultList:8:j_idt1311:3:overlay:j_idt1498",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_3_overlay_j_idt1498",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay805413",{id:"formSmash:items:resultList:8:j_idt1311:3:j_idt1315",widgetVar:"overlay805413",target:"formSmash:items:resultList:8:j_idt1311:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 5. Plurisubharmonic functions on compact setsOpen this publication in new window or tab >>Plurisubharmonic functions on compact sets### Czyz, Rafal

### Hed, Lisa

### Persson, Håkan

PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_4_overlay_some",{id:"formSmash:items:resultList:8:j_idt1311:4:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_4_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_4_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt1311:4:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_4_overlay_otherAuthors",multiple:true}); 2012 (English)In: Annales Polonici Mathematici, ISSN 0066-2216, E-ISSN 1730-6272, Vol. 106, p. 133-144Article in journal (Refereed) Published##### Abstract [en]

Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in C-n. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.

##### Keywords

plurisubharmonic functions on compacts, Jensen measures, monotone convergence##### National Category

Natural Sciences##### Identifiers

urn:nbn:se:uu:diva-189931 (URN)10.4064/ap106-0-11 (DOI)000311525700011 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_4_overlay_j_idt1486",{id:"formSmash:items:resultList:8:j_idt1311:4:overlay:j_idt1486",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_4_overlay_j_idt1486",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_4_overlay_j_idt1492",{id:"formSmash:items:resultList:8:j_idt1311:4:overlay:j_idt1492",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_4_overlay_j_idt1492",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_4_overlay_j_idt1498",{id:"formSmash:items:resultList:8:j_idt1311:4:overlay:j_idt1498",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_4_overlay_j_idt1498",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay582576",{id:"formSmash:items:resultList:8:j_idt1311:4:j_idt1315",widgetVar:"overlay582576",target:"formSmash:items:resultList:8:j_idt1311:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); 6. Plurisubharmonic approximation and boundary values of plurisubharmonic functionsOpen this publication in new window or tab >>Plurisubharmonic approximation and boundary values of plurisubharmonic functions### Hed, Lisa

### Persson, Håkan

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_5_overlay_some",{id:"formSmash:items:resultList:8:j_idt1311:5:overlay:some",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_5_overlay_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_5_overlay_otherAuthors",{id:"formSmash:items:resultList:8:j_idt1311:5:overlay:otherAuthors",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_5_overlay_otherAuthors",multiple:true}); 2014 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 413, no 2, p. 700-714Article in journal (Refereed) Published##### Abstract [en]

We study the problem of approximating plurisubharmonic functions on a bounded domain Omega by continuous plurisubharmonic functions defined on neighborhoods of (Omega) over bar. It turns out that this problem can be linked to the problem of solving a Dirichlet type problem for functions plurisubharmonic on the compact set (Omega) over bar in the sense of Poletsky. A stronger notion of hyperconvexity is introduced to fully utilize this connection, and we show that for this class of domains the duality between the two problems is perfect. In this setting, we give a characterization of plurisubharmonic boundary values, and prove some theorems regarding the approximation of plurisubharmonic functions.

##### Keywords

Plurisubharmonic functions on compacts, Jensen measures, Approximation, Plurisubharmonic extension, Plurisubharmonic boundary values##### National Category

Mathematics##### Identifiers

urn:nbn:se:uu:diva-220970 (URN)10.1016/j.jmaa.2013.12.041 (DOI)000331344600014 ()PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_5_overlay_j_idt1486",{id:"formSmash:items:resultList:8:j_idt1311:5:overlay:j_idt1486",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_5_overlay_j_idt1486",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_5_overlay_j_idt1492",{id:"formSmash:items:resultList:8:j_idt1311:5:overlay:j_idt1492",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_5_overlay_j_idt1492",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_items_resultList_8_j_idt1311_5_overlay_j_idt1498",{id:"formSmash:items:resultList:8:j_idt1311:5:overlay:j_idt1498",widgetVar:"widget_formSmash_items_resultList_8_j_idt1311_5_overlay_j_idt1498",multiple:true}); $(function(){PrimeFaces.cw("OverlayPanel","overlay707923",{id:"formSmash:items:resultList:8:j_idt1311:5:j_idt1315",widgetVar:"overlay707923",target:"formSmash:items:resultList:8:j_idt1311:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});}); PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:partsPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://uu.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22authority-person%3A18229%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt1586_recordPermLink",{id:"formSmash:lower:j_idt1586:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt1586_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1586_j_idt1588",{id:"formSmash:lower:j_idt1586:j_idt1588",widgetVar:"widget_formSmash_lower_j_idt1586_j_idt1588",target:"formSmash:lower:j_idt1586:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1604",{id:"formSmash:lower:j_idt1604",widgetVar:"widget_formSmash_lower_j_idt1604",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt1604",e:"change",f:"formSmash",p:"formSmash:lower:j_idt1604",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1615",{id:"formSmash:lower:j_idt1615",widgetVar:"widget_formSmash_lower_j_idt1615",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt1615",e:"change",f:"formSmash",p:"formSmash:lower:j_idt1615",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt1625",{id:"formSmash:lower:j_idt1625",widgetVar:"widget_formSmash_lower_j_idt1625"});});

- html
- text
- asciidoc
- rtf