uu.seUppsala University Publications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Avelin, Benny
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Hed, Lisa
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity2015In: Potential Analysis, ISSN 0926-2601, E-ISSN 1572-929X, Vol. 43, no 3, p. 531-545Article in journal (Refereed)
    Abstract [en]

    We show that bounded pseudoconvex domains that are Hölder continuous for all α < 1 are hyperconvex, extending the well-known result by Demailly (Math. Z. 184 1987) beyond Lipschitz regularity. 

  • 2.
    Avelin, Benny
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Hed, Lisa
    Department of mathematics and mathematical statistics, Umeå University.
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Approximation and Bounded Plurisubharmonic Exhaustion Functions Beyond Lipschitz DomainsManuscript (preprint) (Other academic)
    Abstract [en]

    Using techniques from the analysis of PDEs to studythe boundary behaviour of functions on domains with low boundaryregularity, we extend results by Fornaæss-Wiegerinck (1989)on plurisubharmonic approximation and by Demailly (1987) onthe existence on bounded plurisubharmonic exhaustion functionsto domains beyond Lipschitz boundary regularity.

  • 3.
    Avelin, Benny
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory. Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland.
    Hed, Lisa
    Umeå University.
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Approximation of plurisubharmonic functions2016In: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 61, no 1, p. 23-28Article in journal (Refereed)
    Abstract [en]

    We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

  • 4.
    Backlund, Ulf
    et al.
    Danderyds Gymnasium, Danderyd, Sweden..
    Carlsson, Linus
    Malardalen Univ, Acad Culture & Commun, Vasteras, Sweden..
    Fallström, Anders
    Umea Univ, Dept Math & Math Stat, Umea, Sweden..
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Semi-Bloch Functions in Several Complex Variables2016In: Journal of Geometric Analysis, ISSN 1050-6926, E-ISSN 1559-002X, Vol. 26, no 1, p. 463-473Article in journal (Refereed)
    Abstract [en]

    Let M be an n-dimensional complex manifold. A holomorphic function f : M -> C is said to be semi-Bloch if for every lambda is an element of C the function g(lambda) = exp(lambda f(z)) is normal on M. We characterize semi-Bloch functions on infinitesimally Kobayashi non-degenerate M in geometric as well as analytic terms. Moreover, we show that on such manifolds, semi-Bloch functions are normal.

  • 5. Czyz, Rafal
    et al.
    Hed, Lisa
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.
    Plurisubharmonic functions on compact sets2012In: Annales Polonici Mathematici, ISSN 0066-2216, E-ISSN 1730-6272, Vol. 106, p. 133-144Article in journal (Refereed)
    Abstract [en]

    Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in C-n. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.

  • 6. Hed, Lisa
    et al.
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
    Plurisubharmonic approximation and boundary values of plurisubharmonic functions2014In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 413, no 2, p. 700-714Article in journal (Refereed)
    Abstract [en]

    We study the problem of approximating plurisubharmonic functions on a bounded domain Omega by continuous plurisubharmonic functions defined on neighborhoods of (Omega) over bar. It turns out that this problem can be linked to the problem of solving a Dirichlet type problem for functions plurisubharmonic on the compact set (Omega) over bar in the sense of Poletsky. A stronger notion of hyperconvexity is introduced to fully utilize this connection, and we show that for this class of domains the duality between the two problems is perfect. In this setting, we give a characterization of plurisubharmonic boundary values, and prove some theorems regarding the approximation of plurisubharmonic functions.

  • 7.
    Nyström, Kaj
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.
    Sande, Olow
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Applied Mathematics.
    Boundary estimates for non-negative solutions to non-linear parabolic equations2015In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 54, no 1, p. 847-879Article in journal (Refereed)
    Abstract [en]

    This paper is mainly devoted to  the boundary behavior of non-negative solutions to the equation\[\H u =\partial_tu-\nabla\cdot \operatorname{A}(x,t,\nabla u) = 0\]in domains of the form $\Omega_T=\Omega\times (0,T)$ where $\Omega\subset\mathbb R^n$ is a bounded non-tangentially accessible (NTA) domain and $T>0$. The assumptions we impose on$A$ imply that $H$ is a non-linear parabolic operator with linear growth. Our main results include a backward Harnackinequality, and the H\"older continuity  up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary. Furthermore, to each such solution one can associate a natural Riesz measure supported on the lateral boundary and one of our main result is a proof of the doubling property for this measure. Our results generalize,  to the setting of non-linear equations with linear growth, previous results concerningthe boundary behaviour, in Lipschitz cylinders and time-independent NTA-cylinders, established for  non-negative solutions to equations of the type $\partial_tu-\nabla\cdot (\operatorname{A}(x,t)\nabla u)=0$, where $A$ is a measurable, bounded and uniformly positive definite matrix-valued function. In the latter case the measure referred to above is essentially the caloric or parabolic measure associated to  the operator and related to Green's function. At the end of the paper we also remark that our arguments are general enough to allow us to generalize parts of our results to general fully non-linear parabolic partial differential equations of second order.

  • 8.
    Nyström, Kaj
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Sande, Olow
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Boundary estimates for solutions to linear degenerate parabolic equations2015In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 259, no 8, p. 3577-3614Article in journal (Refereed)
    Abstract [en]

    Let $\Omega\subset\mathbb R^n$ be a bounded NTA-domain and let $\Omega_T=\Omega\times (0,T)$ for some $T>0$.  We study the boundary behaviour of non-negativesolutions to the equation\[Hu =\partial_tu-\partial_{x_i}(a_{ij}(x,t)\partial_{x_j}u) = 0, \ (x,t)\in \Omega_T.\]We assume that $A(x,t)=\{a_{ij}(x,t)\}$ is measurable, real, symmetric and that\begin{equation*}\beta^{-1}\lambda(x)|\xi|^2\leq \sum_{i,j=1}^na_{ij}(x,t)\xi_i\xi_j\leq\beta\lambda(x)|\xi|^2\mbox{ for all }(x,t)\in\mathbb R^{n+1},\ \xi\in\mathbb R^{n},\end{equation*}for some constant $\beta\geq 1$ and for some non-negative and real-valued function $\lambda=\lambda(x)$belonging to the Muckenhoupt class $A_{1+2/n}(\mathbb R^n)$.Our main results includethe doubling property of the associated parabolic measure andthe H\"older continuity  up to the boundary of quotients of non-negative solutionswhich vanish continuously on a portion of the boundary. Our resultsgeneralize previous results of Fabes, Kenig, Jerison, Serapioni, see \cite{FKS}, \cite{FJK}, \cite{FJK1}, to a parabolic setting.

  • 9.
    Persson, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
    Studies of the Boundary Behaviour of Functions Related to Partial Differential Equations and Several Complex Variables2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis consists of a comprehensive summary and six scientific papers dealing with the boundary behaviour of functions related to parabolic partial differential equations and several complex variables.

    Paper I concerns solutions to non-linear parabolic equations of linear growth. The main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary of an NTA cylinder. It is also shown that the Riesz measure associated with such solutions has the doubling property.

    Paper II is concerned with solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a weight in the Muckenhoupt class 1+2/n. Two main results are that non-negative solutions which vanish continuously on the lateral boundary of an NTA cylinder satisfy a backward Harnack inequality and that the quotient of two such functions is Hölder continuous up to the boundary. Another result is that the parabolic measure associated to such equations has the doubling property.

    In Paper III, it is shown that a bounded pseudoconvex domain whose boundary is α-Hölder for each 0<α<1, is hyperconvex. Global estimates of the exhaustion function are given.

    In Paper IV, it is shown that on the closure of a domain whose boundary locally is the graph of a continuous function, all plurisubharmonic functions with continuous boundary values can be uniformly approximated by smooth plurisubharmonic functions defined in neighbourhoods of the closure of the domain.

    Paper V studies  Poletsky’s notion of plurisubharmonicity on compact sets. It is shown that a function is plurisubharmonic on a given compact set if, and only if, it can be pointwise approximated by a decreasing sequence of smooth plurisubharmonic functions defined in neighbourhoods of the set.

    Paper VI introduces the notion of a P-hyperconvex domain. It is shown that in such a domain, both the Dirichlet problem with respect to functions plurisubharmonic on the closure of the domain, and the problem of approximation by smooth plurisubharmoinc functions in neighbourhoods of the closure of the domain have satisfactory answers in terms of plurisubharmonicity on the boundary. 

    List of papers
    1. Boundary estimates for non-negative solutions to non-linear parabolic equations
    Open this publication in new window or tab >>Boundary estimates for non-negative solutions to non-linear parabolic equations
    2015 (English)In: Calculus of Variations and Partial Differential Equations, ISSN 0944-2669, E-ISSN 1432-0835, Vol. 54, no 1, p. 847-879Article in journal (Refereed) Published
    Abstract [en]

    This paper is mainly devoted to  the boundary behavior of non-negative solutions to the equation\[\H u =\partial_tu-\nabla\cdot \operatorname{A}(x,t,\nabla u) = 0\]in domains of the form $\Omega_T=\Omega\times (0,T)$ where $\Omega\subset\mathbb R^n$ is a bounded non-tangentially accessible (NTA) domain and $T>0$. The assumptions we impose on$A$ imply that $H$ is a non-linear parabolic operator with linear growth. Our main results include a backward Harnackinequality, and the H\"older continuity  up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary. Furthermore, to each such solution one can associate a natural Riesz measure supported on the lateral boundary and one of our main result is a proof of the doubling property for this measure. Our results generalize,  to the setting of non-linear equations with linear growth, previous results concerningthe boundary behaviour, in Lipschitz cylinders and time-independent NTA-cylinders, established for  non-negative solutions to equations of the type $\partial_tu-\nabla\cdot (\operatorname{A}(x,t)\nabla u)=0$, where $A$ is a measurable, bounded and uniformly positive definite matrix-valued function. In the latter case the measure referred to above is essentially the caloric or parabolic measure associated to  the operator and related to Green's function. At the end of the paper we also remark that our arguments are general enough to allow us to generalize parts of our results to general fully non-linear parabolic partial differential equations of second order.

    National Category
    Mathematics
    Research subject
    Mathematics
    Identifiers
    urn:nbn:se:uu:diva-204871 (URN)10.1007/s00526-014-0808-8 (DOI)000359941200033 ()
    Available from: 2013-08-12 Created: 2013-08-12 Last updated: 2017-12-06Bibliographically approved
    2. Boundary estimates for solutions to linear degenerate parabolic equations
    Open this publication in new window or tab >>Boundary estimates for solutions to linear degenerate parabolic equations
    2015 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 259, no 8, p. 3577-3614Article in journal (Refereed) Published
    Abstract [en]

    Let $\Omega\subset\mathbb R^n$ be a bounded NTA-domain and let $\Omega_T=\Omega\times (0,T)$ for some $T>0$.  We study the boundary behaviour of non-negativesolutions to the equation\[Hu =\partial_tu-\partial_{x_i}(a_{ij}(x,t)\partial_{x_j}u) = 0, \ (x,t)\in \Omega_T.\]We assume that $A(x,t)=\{a_{ij}(x,t)\}$ is measurable, real, symmetric and that\begin{equation*}\beta^{-1}\lambda(x)|\xi|^2\leq \sum_{i,j=1}^na_{ij}(x,t)\xi_i\xi_j\leq\beta\lambda(x)|\xi|^2\mbox{ for all }(x,t)\in\mathbb R^{n+1},\ \xi\in\mathbb R^{n},\end{equation*}for some constant $\beta\geq 1$ and for some non-negative and real-valued function $\lambda=\lambda(x)$belonging to the Muckenhoupt class $A_{1+2/n}(\mathbb R^n)$.Our main results includethe doubling property of the associated parabolic measure andthe H\"older continuity  up to the boundary of quotients of non-negative solutionswhich vanish continuously on a portion of the boundary. Our resultsgeneralize previous results of Fabes, Kenig, Jerison, Serapioni, see \cite{FKS}, \cite{FJK}, \cite{FJK1}, to a parabolic setting.

    National Category
    Mathematics
    Research subject
    Mathematics
    Identifiers
    urn:nbn:se:uu:diva-204869 (URN)10.1016/j.jde.2015.04.028 (DOI)000363434300004 ()
    Available from: 2013-08-12 Created: 2013-08-12 Last updated: 2017-12-06Bibliographically approved
    3. A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity
    Open this publication in new window or tab >>A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity
    2015 (English)In: Potential Analysis, ISSN 0926-2601, E-ISSN 1572-929X, Vol. 43, no 3, p. 531-545Article in journal (Refereed) Published
    Abstract [en]

    We show that bounded pseudoconvex domains that are Hölder continuous for all α < 1 are hyperconvex, extending the well-known result by Demailly (Math. Z. 184 1987) beyond Lipschitz regularity. 

    Place, publisher, year, edition, pages
    Håkan Persson, 2015
    Keywords
    plurisubharmonic functions, continuous boundary, hyperconvexity, bounded exhaustion function, Hölder for all exponents, log-lipschitz, boundary regularity, Reinhardt domains.
    National Category
    Mathematical Analysis
    Research subject
    Mathematics
    Identifiers
    urn:nbn:se:uu:diva-251330 (URN)10.1007/s11118-015-9486-1 (DOI)000365769100010 ()
    Available from: 2015-04-15 Created: 2015-04-15 Last updated: 2017-12-04Bibliographically approved
    4. Approximation of plurisubharmonic functions
    Open this publication in new window or tab >>Approximation of plurisubharmonic functions
    2016 (English)In: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 61, no 1, p. 23-28Article in journal (Refereed) Published
    Abstract [en]

    We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

    Keywords
    plurisubharmonic functions, approximation, continuous boundary, boundary regularity, Mergelyan type approximation
    National Category
    Mathematical Analysis
    Research subject
    Mathematics
    Identifiers
    urn:nbn:se:uu:diva-251324 (URN)10.1080/17476933.2015.1053473 (DOI)000365643500003 ()
    Available from: 2015-04-15 Created: 2015-04-15 Last updated: 2017-12-04Bibliographically approved
    5. Plurisubharmonic functions on compact sets
    Open this publication in new window or tab >>Plurisubharmonic functions on compact sets
    2012 (English)In: Annales Polonici Mathematici, ISSN 0066-2216, E-ISSN 1730-6272, Vol. 106, p. 133-144Article in journal (Refereed) Published
    Abstract [en]

    Poletsky has introduced a notion of plurisubharmonicity for functions defined on compact sets in C-n. We show that these functions can be completely characterized in terms of monotone convergence of plurisubharmonic functions defined on neighborhoods of the compact.

    Keywords
    plurisubharmonic functions on compacts, Jensen measures, monotone convergence
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:uu:diva-189931 (URN)10.4064/ap106-0-11 (DOI)000311525700011 ()
    Available from: 2013-01-04 Created: 2013-01-04 Last updated: 2017-12-06Bibliographically approved
    6. Plurisubharmonic approximation and boundary values of plurisubharmonic functions
    Open this publication in new window or tab >>Plurisubharmonic approximation and boundary values of plurisubharmonic functions
    2014 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 413, no 2, p. 700-714Article in journal (Refereed) Published
    Abstract [en]

    We study the problem of approximating plurisubharmonic functions on a bounded domain Omega by continuous plurisubharmonic functions defined on neighborhoods of (Omega) over bar. It turns out that this problem can be linked to the problem of solving a Dirichlet type problem for functions plurisubharmonic on the compact set (Omega) over bar in the sense of Poletsky. A stronger notion of hyperconvexity is introduced to fully utilize this connection, and we show that for this class of domains the duality between the two problems is perfect. In this setting, we give a characterization of plurisubharmonic boundary values, and prove some theorems regarding the approximation of plurisubharmonic functions.

    Keywords
    Plurisubharmonic functions on compacts, Jensen measures, Approximation, Plurisubharmonic extension, Plurisubharmonic boundary values
    National Category
    Mathematics
    Identifiers
    urn:nbn:se:uu:diva-220970 (URN)10.1016/j.jmaa.2013.12.041 (DOI)000331344600014 ()
    Available from: 2014-03-26 Created: 2014-03-24 Last updated: 2017-12-05Bibliographically approved
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf