Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Avgränsa sökresultatet
1 - 42 av 42
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Blom, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Organisk kemi I.
    Photoswitchable peptidomimetics with a stiff-stilbene chromophore for inhibition of Mycobacterium tuberculosis RNRManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Peptidomimetics incorporating two amino acids 1 and 2 with a stiff stilbene chromophore have been screened by a computational study and compared to a previously investigated analog 3 with stilbene chromophore. The effect of E-Z isomerization of the chromophores on the conformational properties of the petidomimetics was assessed via the frequency of hydrogen bonding between the two peptide strands attached to either side of the chromophore. Substantial differences between the three amino acids were thus indicated, in line with the anticipated effect of chromophore rigidity variation.

  • 2.
    Blom, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Synthesis and characterization of photoswitchable stiff-stilbene based amino acid derivativesManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Synthetic routes towards the Boc-protected amino acids 1 and 2 incorporating the stiff stilbene chromophore via the corresponding indanone carboxylic acids have been devised. Crucial steps are a reductive McMurry coupling of the indanone carboxylic acids, yielding stiff stilbene dicarboxylic acid esters. Hydrolysis to the monoester and conversion to the azides, followed by a Curtius rearrangement afforded the Boc-protected amino acid ester 1.

  • 3.
    Blom, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Norrehed, Sara
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Andersson, Claes-Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Light, Mark E.
    Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
    Bergquist, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Synthesis and Properties of Bis-Porphyrin Molecular Tweezers: Effects of Spacer Flexibility on Binding and Supramolecular Chirogenesis2016Ingår i: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 21, nr 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Abstract: Ditopic binding of various dinitrogen compounds to three bisporphyrin molecular tweezers with spacers of varying conformational rigidity, incorporating the planar ene-diyne (1), the helical stiff stilbene (2), or the semirigid glycoluril motif fused to  the porphyrins (3) are compared. Binding constants Ka = 10^4 to 10^6 M^-1 reveal subtle  differences between these tweezers, that are discussed in terms of porphyrin dislocation  modes. Exciton coupled circular dichroism (ECCD) of complexes with chiral dinitrogen  guests provides experimental evidence for the conformational properties of the tweezers. The results are further supported and rationalized by conformational analysis.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Emanuelsson, Rikard
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Kosgei, Cosmas Kipyego
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone based conducting redox polymers for electrical energy storage2017Ingår i: Russian journal of electrochemistry, ISSN 1023-1935, E-ISSN 1608-3342, Vol. 53, nr 1, s. 8-15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting redox polymers (CRPs) constitute a promising class of materials for the development of organic matter based batteries with the potential to overcome the main limitations connected to this type of rechargeable battery systems including low conductivity and dissolution problems. In this report we show that the potential of quinones can be effectively tuned into the conducting region of polypyrrole (PPy), both in water based solutions and in acetonitrile, which is a prerequisite for profitable combination of the two units. We also present a device where both anode and cathode are made from PPy substituted with different quinone pendant groups and where good rate performance is achieved without any conductivity additives thus providing support for the hypothesized synergetic effect of a conducting polymer backbone and a covalently attached redox active pendant group. This device constitutes, to the best of our knowledge, the first all-CRP based battery reported to date.

  • 5.
    Emanuelsson, Rikard
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Kosgei, Cosmas Kipyego
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone based conducting redox polymers for electrical energy storage2017Ingår i: Elektrokhimiya, ISSN 0424-8570, Vol. 53, nr 1, s. 11-20Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting redox polymers (CRPs) constitute a promising class of materials for the development of organic matter based batteries with the potential to overcome the main limitations connected to this type of rechargeable battery systems including low conductivity and dissolution problems. In this report we show that the potential of quinones can be effectively tuned into the conducting region of polypyrrole (PPy), both in water based solutions and in acetonitrile, which is a prerequisite for profitable combination of the two units. We also present a device where both anode and cathode are made from PPy substituted with different quinone pendant groups and where good rate performance is achieved without any conductivity additives thus providing support for the hypothesized synergetic effect of a conducting polymer backbone and a covalently attached redox active pendant group. This device constitutes, to the best of our knowledge, the first all-CRP based battery reported to date.

  • 6.
    Hao, Huang
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone Based Polypyrroles for Energy Storage Materials2015Konferensbidrag (Refereegranskat)
  • 7.
    Hao, Huang
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone Functionalized Polypyrroles: Organic Materials for Energy Storage2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Quinones, which are naturally occurring redox active organic compounds,have been proposed as cathode materials in lithium ionbatteries for their high theoretical specific capacities and more environmentallyfriendly manufacturing compared to conventional inorganiccathode materials (see figure on the right). However,many of them suffer from poor kinetics as well as capacity lossdue to dissolution.¹ In our work, by attaching quinones as pendantmoieties onto conducting polmers, e.g. polypyrroles, we havecomposed conducting redox polymers, which are expected to decreaseproblems with resistance and dissolution while retainingcapacity and cyclability² (see figure on the left). A series of monomericcompounds incorporating pyrrole and quinone units weresynthesized and polymerized electrochemically. The resultingpolymers were studied by in-situ spectro-electrochemical techniquesas well as by EQCM to elucidate the redox chemistry ofthe quinone units as well as the kinetics ofpolymer redox performance.

  • 8.
    Hao, Huang
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone Functionalized Pyrroles: Polymeric Materials for Energy Storage2015Konferensbidrag (Refereegranskat)
  • 9.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone-Pyrrole Dyad Based Polymers for Organic Batteries: From Design to Application2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Organic electrode materials are finding increasing use in energy storage devices due to their attractive properties that allow building of flexible and low weight devices in an environmentally friendlier manner than traditional alternatives. Among these organic electrode materials, conducting redox polymers (CRPs), consisting of conducing polymer (CP) with covalently attached redox active pendant groups (PG), have attracted our interests. This is due to the advantageous synergy between CP and PG, e.g. electronic conductivity, high stability and large charge storage capacity. In this thesis polypyrrole has been selected as CP and quinones as PGs. A series of quinone-pyrrole dyad polymers has been synthesized with a variety of quinone substituents, demonstrating the adjustability of quinone formal potentials by choice of substituents. Importantly, in this series we show that the CP-PG redox match, i.e. that the formal potential of the PG is within the conducting region of the CP, is a requirement for fast charge transfer from the electrode to the PGs. Moreover, a series of quinone-pyrrole dyad polymers with various linkers was synthesized, showing that the choice of linker has a pronounced impact on the interactions between the PG and CP. In addition, the temperature dependence of conductance during doping of the polymers reveals the charge transport mechanism. To summarize, the adjustability of the quinone formal potential as well as the fast charge transport in the bulk material ensures the applicability of the CRPs as electrode materials in organic batteries.

    Delarbeten
    1. Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)
    Öppna denna publikation i ny flik eller fönster >>Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)
    Visa övriga...
    2014 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, nr 41, s. 23499-23508Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Conducting polymers with redox active pendant groups show properties typical of both conducting polymers (i.e., capacitive charging and intrinsic conductivity) and redox polymers (i.e., electrochemical surface response at the formal potential of the pendant groups). The two components can also exert significant interaction on each other during their separate electrochemical reactions. In poly(pyrrol-3-ylhydroquinone), a polypyrrole derivative functionalized with hydroquinone units, the redox conversion of the pendant groups has a large impact on the polymer backbone. This interaction is manifested by a loss of bipolaron states during the hydroquinone oxidation, leading to a decreasing p-doping level with increasing potential, something which, to the best of our knowledge, has never been observed for a conducting polymer. Another effect is a contraction of the polymer film, and subsequent mass loss due to solvent expulsion upon hydroquinone oxidation, which counteracts the normal swelling of polypyrrole with increased potential. The conducting redox polymer under investigation has been synthesized via two routes, leading to different fractions of subunits bearing redox active hydroquinone groups. While the redox potentials are unaffected by the synthesis route, the backbone/pendant group interaction varies notably depending on the degree of quinone functionalization. This type of polymers could find use in, e.g., organic energy storage materials, since the polymer backbone both increases the electronic conductivity and prevents dissolution of the active material, as well as in actuator application, due to polymer contraction over the relatively narrow potential region where the pendant group redox chemistry occurs.

    Nationell ämneskategori
    Fysikalisk kemi Teknik och teknologier
    Forskningsämne
    Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-230486 (URN)10.1021/jp506821z (DOI)000343333600007 ()
    Tillgänglig från: 2014-09-10 Skapad: 2014-08-26 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
    2. Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions
    Öppna denna publikation i ny flik eller fönster >>Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions
    Visa övriga...
    2013 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, nr 45, s. 23558-23567Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    While various organic molecules have been suggested as environmentally friendly alternatives to inorganic electrode materials for lithium ion batteries, most of them suffer from slow kinetics as well as capacity fading due to dissolution. Herein we present the synthesis of poly(pyrrol-3-ylhydroquinone) (PPyQ), a polypyrrole (PPy) derivative with pending hydroquinone groups, for investigation of the use of a conducting polymer to immobilize redox active quinone units. This strategy eliminates dissolution of the active material while also increasing the conductivity. The quinone pending groups in PPyQ cycle reversibly in the potential region where the polymer backbone is conducting and chemically stable. In situ spectroelectrochemistry on PPyQ films reveals UV/vis transitions inherent to PPy, as well as quinone centered transitions, allowing detailed investigation of the interplay between the polymer doping process and the quinone redox conversion. Intriguingly, it is found that the charging of the PPy backbone halts during the redox reaction of the quinone pending groups. This opens up for the possibility of using PPy at low and constant doping levels while utilizing the charge storage capacity of the quinone pending groups when creating electric energy storage materials based on sustainable and renewable components.

    Nationell ämneskategori
    Fysikalisk kemi Teknik och teknologier
    Forskningsämne
    Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-210983 (URN)10.1021/jp408567h (DOI)000327110500015 ()
    Tillgänglig från: 2013-11-18 Skapad: 2013-11-18 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
    3. Hydroquinone–pyrrole dyads with varied linkers
    Öppna denna publikation i ny flik eller fönster >>Hydroquinone–pyrrole dyads with varied linkers
    Visa övriga...
    2016 (Engelska)Ingår i: Beilstein Journal of Organic Chemistry, ISSN 2195-951X, E-ISSN 1860-5397, Vol. 12, s. 89-96Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C) has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

    Nyckelord
    conjugation, heterocycles, hydroquinone, linker effect, pyrrole
    Nationell ämneskategori
    Organisk kemi Teknik och teknologier
    Forskningsämne
    Kemi med inriktning mot organisk kemi; Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-276440 (URN)10.3762/bjoc.12.10 (DOI)000368473900001 ()
    Forskningsfinansiär
    Stiftelsen för strategisk forskning (SSF)Carl Tryggers stiftelse för vetenskaplig forskning Stiftelsen Olle Engkvist ByggmästareSweGRIDS - Swedish Centre for Smart Grids and Energy Storage
    Tillgänglig från: 2016-02-12 Skapad: 2016-02-12 Senast uppdaterad: 2017-11-30Bibliografiskt granskad
    4. Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers
    Öppna denna publikation i ny flik eller fönster >>Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers
    Visa övriga...
    2015 (Engelska)Ingår i: RSC Advances, E-ISSN 2046-2069, Vol. 5, nr 15, s. 11309-11316Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.

    Nationell ämneskategori
    Fysikalisk kemi Teknik och teknologier Nanoteknik
    Forskningsämne
    Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-230488 (URN)10.1039/c4ra15708g (DOI)000348986900057 ()
    Tillgänglig från: 2014-09-10 Skapad: 2014-08-26 Senast uppdaterad: 2022-09-15
    5. Synthesis and Characterization of Poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on Backbone/Pendant Interactions in a Conducting Redox Polymer
    Öppna denna publikation i ny flik eller fönster >>Synthesis and Characterization of Poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on Backbone/Pendant Interactions in a Conducting Redox Polymer
    Visa övriga...
    2017 (Engelska)Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 16, s. 10427-10435Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an InterDigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

    Nationell ämneskategori
    Nanoteknik
    Forskningsämne
    Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-316490 (URN)10.1039/c6cp08736a (DOI)000400117700025 ()28379225 (PubMedID)
    Forskningsfinansiär
    Stiftelsen för strategisk forskning (SSF)VetenskapsrådetCarl Tryggers stiftelse för vetenskaplig forskning Stiftelsen Olle Engkvist ByggmästareEnergimyndighetenEU, Horisont 2020, 644631
    Tillgänglig från: 2017-03-01 Skapad: 2017-03-01 Senast uppdaterad: 2017-11-25
    6. Potential Tuning in Quinone-pyrrole Dyad Based Conducting Redox Polymers
    Öppna denna publikation i ny flik eller fönster >>Potential Tuning in Quinone-pyrrole Dyad Based Conducting Redox Polymers
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    In this study, conducting redox polymers (CRPs), which consist of a polypyrrole conducting polymer (CP) backbone with attached quinone pendant groups (PGs), have been explored as electrode materials for organic batteries. A modular organic synthetic approach allows the assembly of the pyrrole and quinone units into quinone-pyrrole dyads. These dyad monomers were copolymerized electrochemically with pyrrole to yield the CRPs. DFT calculations were used to predict the formal potentials of the dyads, showing excellent agreement with the experimental values of the corresponding CRPs. Moreover, it is shown that the matching between the redox potential of PGs and the conductive region of CPs is an absolute requirement for good performance of these materials. With access to CRP materials with varying quinone formal potentials a prototype of a full organic based battery was constructed by choosing two CRPs with different quinone potentials. A galvanostatic charge-discharge study showed that the cell potentials coincided well with the difference in redox potential between the quinone substituents used in the anode and cathode CRP.

    Nationell ämneskategori
    Nanoteknik Organisk kemi
    Forskningsämne
    Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-316491 (URN)
    Tillgänglig från: 2017-03-01 Skapad: 2017-03-01 Senast uppdaterad: 2017-12-11
    7. Mechanistic Investigation of Charge Transport in a Conducting Redox Polymer
    Öppna denna publikation i ny flik eller fönster >>Mechanistic Investigation of Charge Transport in a Conducting Redox Polymer
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Herein we report a mechanistic study of the charge transport in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole by conductance measurements at various temperatures performed in situ during doping of the polypyrrole backbone in contact with an aqueous electrolyte. Charge transport was found to occur by electron hopping with associated electron transfer activation energies in the range of 0.08 – 0.2 eV. In situ EPR experiments indicated polarons as the dominant charge carriers and the charge transport was found to follow a second-order dependence with respect to the number of accumulated charges. Based on the findings two plausible charge transport mechanisms are suggested for the electronic conduction in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole.

    Nationell ämneskategori
    Nanoteknik
    Identifikatorer
    urn:nbn:se:uu:diva-316489 (URN)
    Tillgänglig från: 2017-03-01 Skapad: 2017-03-01 Senast uppdaterad: 2017-03-13
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (jpg)
    preview image
  • 10.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Mamedov, Fikret
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, A
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan..
    Polaron Disproportionation Charge Transport in a Conducting Redox Polymer2017Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 24, s. 13078-13083Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Herein we report a mechanistic study of the charge transport in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole by conductance measurements at various temperatures performed in situ during doping of the polypyrrole backbone in contact with an aqueous electrolyte. Charge transport was found to occur by electron hopping with associated electron transfer activation energies in the range of 0.08-0.2 eV. In situ electron paramagnetic resonance experiments indicated polarons as the dominant charge carriers and the charge transport was found to follow a second-order dependence with respect to the number of accumulated charges. Based on the findings, we present a polaron comproportionation/disproportionation model for electron conduction in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, thus, providing a complement to existing models for charge propagation in conducting polymers.

  • 11.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Monomers And Polymers Of Quinone Functionalized Pyrrole For Organic Energy Storage2014Konferensbidrag (Refereegranskat)
  • 12.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Synthesis and Characterization of Poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on Backbone/Pendant Interactions in a Conducting Redox Polymer2017Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 16, s. 10427-10435Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an InterDigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  • 13.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Organisk kemi I. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Hydroquinone–pyrrole dyads with varied linkers2016Ingår i: Beilstein Journal of Organic Chemistry, ISSN 2195-951X, E-ISSN 1860-5397, Vol. 12, s. 89-96Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C) has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Quinone Functionalized Pyrrole For Organic Energy Storage2014Konferensbidrag (Refereegranskat)
  • 15.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Gogoll, A
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Potential-tuning in quinone-pyrrole dyad-based conducting redox polymers2021Ingår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 389, s. 19099-19108Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, conducting redox polymers (CRPs), which consist of a polypyrrole conducting polymer backbone with attached quinone pendant groups, have been explored as electrode materials for organic batteries. A modular organic synthetic approach is presented that allows the assembly of pyrrole and quinone units into quinone-pyrrole dyads and modifying the dyads by varying the substitution pattern on the quinone moiety. These dyad monomers were copolymerized electrochemically with pyrrole to yield the CRPs with quinone formal potentials varying within a 0.6 V range. With access to CRP materials with tunable quinone formal potentials an all-organic water-based battery was constructed by choosing CRPs with different quinone potentials as anode and cathode material. Galvanostatic charge-discharge of the cell showed that the cell potentials coincided well with the difference in redox potential between the quinone substituents used in the anode and cathode CRP.

  • 16.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Exploring the Redox Behavior of Quinone in Conducting Redox Polymers2016Konferensbidrag (Refereegranskat)
  • 17.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Exploring the Redox Behavior of Quinone in Conducting Redox Polymers2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Quinones have been suggested as alternative electrodes materials in battery applications for their attractive redox chemistry on the ketone groups where oxidation/reduction reaction occurs at well-defined potential. By attaching quinone onto a conducting polymer (CP) backbone e.g polypyrrole, a conducting redox polymer was constructed, which is expected to offer solutions for the general drawbacks of using small electro-active molecules in a battery system, e.g. dissolution in electrolyte which causes capacity fading and slow kinetics due to limitad electronic conductivities. With substitution on the quinones, the potential for the redox reaction can be tuned. A series of monomers with various functional groups on the quinone ring which is covalently linked to pyrrole was synthesized. DFT calculations were performed to predict the potentials for the candidates and to further understand the redox properties of the molecules at electronic level. All the monomers were electrochemically co-polymerized with pyrrole and the resulting polymers were studied by electrochemical in order to obtain the redox characteristics of the co-polymers. Comparison of computational results and experimental results for the redox potential were made and more insight of modulating the quinone unit was gained for further molecular design in the quinone-based electrode materials. 

  • 18.
    Huang, Hao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Tuning potentials in quinone based polypyrroles : Understanding pendent group effects on Conducting Redox polymers2016Konferensbidrag (Refereegranskat)
  • 19.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Olsson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Kinetics of conducting polymers with side chain quinone units2013Konferensbidrag (Refereegranskat)
    Abstract [en]

    Quinones have been suggested as active material in organic lithium ion battery (LIB) cathodes. They are expected to have higher specific capacities and to be cheaper and more environmentally friendly than the inorganic lithium intercalation compounds used in LIBs today. However, quinone compounds suggested for this purpose often suffer from slow kinetics and low cyclability due to dissolution. In this work, conducting polymers containing pending quinone moieties were synthesized. Immobilizing the redox active quinone units on a conducting polymer matrix decreases both resistance and solubility, which improves the speed and the cyclability of the system, while maintaining a high specific capacity. The two-electron redox reaction of the quinone units in these polymers yields a theoretical capacity of ~300 mAh/g. The polymers were studied electrochemically and spectroscopically to elucidate the kinetics of the polymer charging and the redox cycling of the quinone units.

  • 20.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Olsson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Poly(pyrrol-3-ylhydroquinone) – A Conducting Redox Polymer for Electric Energy Storage2013Konferensbidrag (Refereegranskat)
  • 21.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Olsson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Poly(pyrrol-3-ylhydroquinone) – A Conducting Redox Polymer for Electric Energy Storage2013Konferensbidrag (Refereegranskat)
  • 22.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods2015Ingår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 179, s. 336-342Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polypyrrole functionalized with redox active pendant groups constitutes a so called conducting redox polymer, and functions both as a conducting polymer and as a redox polymer. The electrochemical response reveals capacitive charging of the conducting backbone as well as redox cycling of the pendant groups. While the backbone provides an electrically conducting matrix for fast electron transport through the material, the pendant groups offer a large charge storage capacity, much greater than that of polypyrrole itself. We have investigated such polypyrrole-hydroquinone conducting redox polymers, with focus on their in situ conductivity during electrochemical cycling, in order to understand the charge transport mechanisms in this type of system. The most notable feature is that oxidation of the pendant groups leads to a large decrease in the polymer conductivity. The causes of this phenomenon are discussed, as well as the rate limitations of fast redox cycling of the polymer, which are investigated through a combination of bipotentiostat cyclic voltammetry and potential steps of polymer films on interdigitated array electrodes.

  • 23.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Charge transport in pyrrole/quinone conducting redox polymers2014Konferensbidrag (Refereegranskat)
  • 24.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Conducting Redox Polymers – New Candidates for Organic Electrode Materials2013Konferensbidrag (Refereegranskat)
  • 25.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Conducting Redox Polymers – New Candidates for Organic Electrode Materials2014Konferensbidrag (Refereegranskat)
  • 26.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers2015Ingår i: RSC Advances, E-ISSN 2046-2069, Vol. 5, nr 15, s. 11309-11316Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.

  • 27.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions2013Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, nr 45, s. 23558-23567Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    While various organic molecules have been suggested as environmentally friendly alternatives to inorganic electrode materials for lithium ion batteries, most of them suffer from slow kinetics as well as capacity fading due to dissolution. Herein we present the synthesis of poly(pyrrol-3-ylhydroquinone) (PPyQ), a polypyrrole (PPy) derivative with pending hydroquinone groups, for investigation of the use of a conducting polymer to immobilize redox active quinone units. This strategy eliminates dissolution of the active material while also increasing the conductivity. The quinone pending groups in PPyQ cycle reversibly in the potential region where the polymer backbone is conducting and chemically stable. In situ spectroelectrochemistry on PPyQ films reveals UV/vis transitions inherent to PPy, as well as quinone centered transitions, allowing detailed investigation of the interplay between the polymer doping process and the quinone redox conversion. Intriguingly, it is found that the charging of the PPy backbone halts during the redox reaction of the quinone pending groups. This opens up for the possibility of using PPy at low and constant doping levels while utilizing the charge storage capacity of the quinone pending groups when creating electric energy storage materials based on sustainable and renewable components.

  • 28.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)2014Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, nr 41, s. 23499-23508Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers with redox active pendant groups show properties typical of both conducting polymers (i.e., capacitive charging and intrinsic conductivity) and redox polymers (i.e., electrochemical surface response at the formal potential of the pendant groups). The two components can also exert significant interaction on each other during their separate electrochemical reactions. In poly(pyrrol-3-ylhydroquinone), a polypyrrole derivative functionalized with hydroquinone units, the redox conversion of the pendant groups has a large impact on the polymer backbone. This interaction is manifested by a loss of bipolaron states during the hydroquinone oxidation, leading to a decreasing p-doping level with increasing potential, something which, to the best of our knowledge, has never been observed for a conducting polymer. Another effect is a contraction of the polymer film, and subsequent mass loss due to solvent expulsion upon hydroquinone oxidation, which counteracts the normal swelling of polypyrrole with increased potential. The conducting redox polymer under investigation has been synthesized via two routes, leading to different fractions of subunits bearing redox active hydroquinone groups. While the redox potentials are unaffected by the synthesis route, the backbone/pendant group interaction varies notably depending on the degree of quinone functionalization. This type of polymers could find use in, e.g., organic energy storage materials, since the polymer backbone both increases the electronic conductivity and prevents dissolution of the active material, as well as in actuator application, due to polymer contraction over the relatively narrow potential region where the pendant group redox chemistry occurs.

  • 29.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone Pendant Group Kinetics in Poly(pyrrol-3-ylhydroquinone)2014Ingår i: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 735, s. 95-98Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Herein, we investigate the kinetics of the redox processes occurring in acidic aqueous electrolyte in electropolymerized poly(pyrrol-3-ylhydroquinone), which has been proposed for electrical energy storage applications. The redox conversion of the pendant groups is found to be limited by the quinone redox kinetics in thin films, rather than by the conduction through the polypyrrole backbone. Rate constants for the elementary steps involved in this 2e, 2H+ process are reported. As the films are made thicker, a gradual transition to a diffusion limited reaction is observed. The origin of the diffusion process, as well as the elementary reaction steps limiting the pendant group redox conversion is analyzed using DFT computations. The fact that the electron transport through the thin film conducting polymer backbone is not limiting the quinone reaction kinetics should allow for design of battery electrodes with high rate capabilities based on the studied material.

  • 30.
    Karlsson, Christoffer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone pending groups on polypyrrole affect the backbone doping behavior2014Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Karlsson, Christoffer
    et al.
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University.
    Strietzel, Christian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Jannasch, Patric
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University.
    Nonstoichiometric Triazolium Protic Ionic Liquids for All-Organic Batteries2018Ingår i: ACS Applied Energy Materials, E-ISSN 2574-0962, nr 11, s. 6451-6462Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nonstoichiometric protic ionic liquids (NSPILs) are efficient electrolytes for protic electrochemical devices such as the all-organic proton battery, which has been suggested as a sustainable approach to energy storage. NSPILs contain a mixture of proton donors and acceptors and are ideal for this purpose due to their high proton conductivity, high electrochemical stability, low cost, and ease of synthesis. However, the electrolyte proton activity must be controlled carefully in these devices since it greatly influences the kinetics and energetics of the electrode redox reactions and, hence, also impacts battery device performance. In this study, specific NSPILs were designed and evaluated as electrolytes for the all-organic proton battery. The NSPILs were based on either 1,2,4-triazole or 1-methyl-1,2,4-triazole partially protonated with bis(trifluoromethylsulfonyl)imide (TFSI) to produce a range of NSPILs with different degrees of protonation. Both types of NSPIL investigated here exhibited a maximum conductivity of 1.2 S/cm (at 120 and 70 °C, respectively), and the eutectic composition of 1-methyl-1,2,4-triazolium TFSI also had high conductivity at 25 °C (24.9 mS/cm), superior to, e.g., imidazolium TFSI NSPILs. Pulsed field gradient NMR in conjunction with electrochemical impedance spectroscopy showed that the conductivity originated mainly from vehicle diffusion and proton hopping. Quinone functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes exhibited reversible, fast, and stable redox conversion in these electrolytes, and a model is suggested to determine proton activities of NSPILs based on the quinone formal potential. An all-organic proton battery cell was assembled to demonstrate the usefulness of these electrolytes in devices. Fast and complete redox conversion with a cell potential of 0.45 V was demonstrated, even up to scan rates corresponding to 140 C. Compared to the pyridine based electrolytes used for the all-organic proton battery up until now, the present electrolytes display several advantages including lower melting point, lower toxicity, and compatibility with plastic materials.

  • 32.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Xiao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Gogoll, A
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone-Substituted Conducting Polymers as Electrode Materials for All-Organic Proton Batteries2018Konferensbidrag (Refereegranskat)
  • 33.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Wang, Huan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Conducting Redox Polymer Batteries2018Konferensbidrag (Refereegranskat)
  • 34.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strietzel, Christian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Wang, Huan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Xiao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Gogoll, A
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Conducting Redox Polymer Based Batteries2017Konferensbidrag (Refereegranskat)
  • 35.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Åkerlund, Lisa
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Xiao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Organic Batteries Based on Quinone-Substituted Conducting Polymers2017Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Wang, Huan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Åkerlund, Lisa
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, A
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Organisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Organiska batterier för hållbar och ökad energi-effektivitet i lokal energilagring2018Konferensbidrag (Övrigt vetenskapligt)
  • 37.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Olsson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Organic Battery Materials based on Conducting Polymer Backbones with High Capacity Pending Groups2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Organic matter based battery materials have attracted large interest due to their inherent ability to provide an environmentally benign alternative to inorganic batteries because such materials can be produced from renewable resources via eco-efficient processes. The development of organic battery materials rely on several key factors that need to be resolved, the most important being dissolution problems, limited electronic conductivity, degradation of active material and slow redox kinetics. Conducting polymers are insoluble in most electrolytes, they are electronically conducting and show fast redox conversion but are, to some extent, unstable and have insufficient charge capacities for battery applications.

                To understand the instability of conducting polymers we have measured self discharge rates in polypyrrole at different temperatures. From these experiments it is clear that the self-discharge originates from an activated redox reaction with an activation barrier of around 0.4 eV. Although the exact nature of the redox reaction has not been identified we have been able to link the self discharge to, what is commonly referred to as, over-oxidation. Over-oxidation is common to polyacetylene, polyparaphenylene, polypyrrole and polythiophene and this mechanism of self discharge is thus a general feature of conducting polymers. This self-discharge mechanism is suppressed by low polymer doping levels, low potentials and low temperatures.     

    By attaching high capacity redox active groups onto the conducting polymer backbone the charge capacity can be increased while retaining electronic conductivity and insolubility. We have attached quinone groups to each repeat unit of polypyrrole for this purpose. Interestingly, in-situ spectroscopic measurements show that during quinone redox conversion the polymer doping level is in-fact reduced. Since the doping level of the polymer affects the rate of self-discharge the attachment of quinone units to the polypyrrole chain not only increases the charge capacity but also provides a conceptual strategy to control self discharge. 

  • 38.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Quinone Based Conducting Redox Polymers for Electrical Energy Storage2015Konferensbidrag (Refereegranskat)
  • 39.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Xiao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanielsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Rational design of conducting redox polymers for electrical energy storage2015Konferensbidrag (Refereegranskat)
  • 40.
    Sjödin, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Karlsson, Christoffer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Xiao, Huang
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Syntetisk organisk kemi.
    Design principles for constructing conducting redox polymer based battery materials2015Konferensbidrag (Refereegranskat)
  • 41.
    Strietzel, Christian
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Sterby, Mia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.
    An Aqueous Conducting Redox-Polymer-Based Proton Battery that Can Withstand Rapid Constant-Voltage Charging and Sub-Zero Temperatures2020Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 59, nr 24, s. 9631-9638Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrodes based on organic matter operating in aqueous electrolytes enable new approaches and technologies for assembling and utilizing batteries that are difficult to achieve with traditional electrode materials. Here, we report how thiophene‐based trimeric structures with naphthoquinone or hydroquinone redox‐active pendent groups can be processed in solution, deposited, dried and subsequently polymerized in solid state to form conductive (redox) polymer layers without any additives. Such post‐deposition polymerization offers efficient use of material, high mass loading (up to 10 mg cm−2) and good flexibility in the choice of substrate and coating method. By employing these materials as anode and cathode in an acidic aqueous electrolyte a rocking‐chair proton battery is built. The battery shows good cycling stability (85 % after 500 cycles), withstands rapid charging, with full capacity (60 mAh g−1) reached within 100 seconds, allows for direct integration with photovoltaics, and retains its favorable characteristics even at −24 °C.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Åkerlund, Lisa
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Renault, Stevén
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Huang, Hao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Sjödin, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    The Proton Trap Technology - Toward High Potential Quinone-Based Organic Energy Storage2017Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 7, nr 20, artikel-id 1700259Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An organic cathode material based on a copolymer of poly(3,4-ethylenedioxythiophene) containing pyridine and hydroquinone functionalities is described as a proton trap technology. Utilizing the quinone to hydroquinone redox conversion, this technology leads to electrode materials compatible with lithium and sodium cycling chemistries. These materials have high inherent potentials that in combination with lithium give a reversible output voltage of above 3.5 V (vs Li0/+) without relying on lithiation of the material, something that is not showed for quinones previously. Key to success stems from coupling an intrapolymeric proton transfer, realized by an incorporated pyridine proton donor/acceptor functionality, with the hydroquinone redox reactions. Trapping of protons in the cathode material effectively decouples the quinone redox chemistry from the cycling chemistry of the anode, which makes the material insensitive to the nature of the electrolyte cation and hence compatible with several anode materials. Furthermore, the conducting polymer backbone allows assembly without any additives for electronic conductivity. The concept is demonstrated by electrochemical characterization in several electrolytes and finally by employing the proton trap material as the cathode in lithium and sodium batteries. These findings represent a new concept for enabling high potential organic materials for the next generation of energy storage systems.

1 - 42 av 42
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf