uu.seUppsala University Publications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dahl, Markus
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lönn, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Papoutsoglou, Panagiotis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Zieba, Agata
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Vanlandewijck, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    van der Heide, Lars P
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Watanabe, Yukihide
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Söderberg, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hottiger, Michael O
    Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland.
    Heldin, Carl-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Moustakas, Aristidis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 8, p. e103651-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ) signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose) polymerase 1 (PARP-1) negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose) glycohydrolase (PARG) can remove poly(ADP-ribose) chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling.

    METHODS:

    A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference.

    RESULTS:

    TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7) and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1.

    CONCLUSION:

    Nuclear Smad function is negatively regulated by PARP-1 that is assisted by PARP-2 and positively regulated by PARG during the course of TGFβ signaling.

    Download full text (pdf)
    fulltext
  • 2.
    Enroth, Stefan
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    Maturi, Varun
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Berggrund, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bosdotter Enroth, Sofia
    Med Prod Agcy, POB 26, SE-75103 Uppsala, Sweden..
    Moustakas, Aristidis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Johansson, Åsa
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    Gyllensten, Ulf B.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    Systemic and specific effects of antihypertensive and lipid-lowering medication on plasma protein biomarkers for cardiovascular diseases2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 5531Article in journal (Refereed)
    Abstract [en]

    A large fraction of the adult population is on lifelong medication for cardiovascular disorders, but the metabolic consequences are largely unknown. This study determines the effects of common anti-hypertensive and lipid lowering drugs on circulating plasma protein biomarkers. We studied 425 proteins in plasma together with anthropometric and lifestyle variables, and the genetic profile in a cross-sectional cohort. We found 8406 covariate-protein associations, and a two-stage GWAS identified 17253 SNPs to be associated with 109 proteins. By computationally removing variation due to lifestyle and genetic factors, we could determine that medication, per se, affected the abundance levels of 35.7% of the plasma proteins. Medication either affected a single, a few, or a large number of protein, and were found to have a negative or positive influence on known disease pathways and biomarkers. Anti-hypertensive or lipid lowering drugs affected 33.1% of the proteins. Angiotensin-converting enzyme inhibitors showed the strongest lowering effect by decreasing plasma levels of myostatin. Cell-culture experiments showed that angiotensin-converting enzyme inhibitors reducted myostatin RNA levels. Thus, understanding the effects of lifelong medication on the plasma proteome is important both for sharpening the diagnostic precision of protein biomarkers and in disease management.

    Download full text (pdf)
    fulltext
  • 3.
    Kahata, Kaoru
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Moustakas, Aristidis
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    TGF-beta Family Signaling in Ductal Differentiation and Branching Morphogenesis2018In: Cold Spring Harbor Perspectives in Biology, ISSN 1943-0264, E-ISSN 1943-0264, Vol. 10, no 3, article id a031997Article in journal (Refereed)
    Abstract [en]

    Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-beta (TGF-beta) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-beta family members in the control of the ductal tissues in the vertebrate body.

  • 4.
    Lehmann, Laura C.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hewitt, Graeme
    Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England..
    Aibara, Shintaro
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, S-17165 Solna, Sweden..
    Leitner, Alexander
    Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, CH-8093 Zurich, Switzerland..
    Marklund, Emil
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Maslen, Sarah L.
    MRC Lab Mol Biol, Francis Crick Ave,Cambridge Biomed Campus, Cambridge CB2 0QH, England..
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Chen, Yang
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    van der Spoel, David
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Skehel, J. Mark
    MRC Lab Mol Biol, Francis Crick Ave,Cambridge Biomed Campus, Cambridge CB2 0QH, England..
    Moustakas, Aristidis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Boulton, Simon J.
    Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England..
    Deindl, Sebastian
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC12017In: Molecular Cell, ISSN 1097-2765, E-ISSN 1097-4164, Vol. 68, no 5, p. 847-859.e7Article in journal (Refereed)
    Abstract [en]

    Human ALC1 is an oncogene-encoded chromatin-remodeling enzyme required for DNA repair that possesses a poly(ADP-ribose) (PAR)-binding macro domain. Its engagement with PARylated PARP1 activates ALC1 at sites of DNA damage, but the underlying-mechanism remains unclear. Here, we establish a dual role for the macro domain in autoinhibition of ALC1 ATPase activity and coupling to nucleosome mobilization. In the absence of DNA damage, an inactive conformation of the ATPase is maintained by juxtaposition of the macro domain against predominantly the C-terminal ATPase lobe through conserved electrostatic interactions. Mutations within this interface displace the macro domain, constitutively activate the ALC1 ATPase independent of PARylated PARP1, and alter the dynamics of ALC1 recruitment at DNA damage sites. Upon DNA damage, binding of PARylated PARP1 by the macro domain induces a conformational change that relieves autoinhibitory interactions with the ATPase motor, which selectively activates ALC1 remodeling upon recruitment to sites of DNA damage.

    Download full text (pdf)
    fulltext
  • 5.
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Gene regulation by different proteins of TGFβ superfamily2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present thesis discusses how gene regulation by transforming growth factor β (TGFβ) family cytokines is affected by post-translational modifications of different transcription factors. The thesis also focuses on gene regulation by transcription factors involved in TGFβ signaling.

    The importance of the poly ADP-ribose polymerase (PARP) family in controlling gene expression in response to TGFβ and bone morphogenetic protein (BMP) is analyzed first. PARP2, along with PARP1, ADP-ribosylates Smad2 and Smad3, the signaling mediators of TGFβ. On the other hand, poly ADP-ribose glycohydrolase (PARG) removes the ADP-ribose from Smad2/3 and antagonizes PARP1 and PARP2. ADP-ribosylation of Smads in turn affects their DNA binding capacity. We then illustrate how PARP1 and PARG can regulate gene expression in response to BMP that signals via Smad1, 5. Over-expression of PARP1 suppressed the transcriptional activity of Smad1/5. Knockdown of PARP1 or over-expression of PARG enhanced the transcriptional activity of BMP-Smads on target genes. Hence our data suggest that ADP-ribosylation of Smad proteins controls both TGFβ and BMP signaling. 

    I then focus on elucidating novel genes that are regulated by ZEB1 and Snail1, two key transcriptional factors in TGFβ signaling, known for their ability to induce EMT and cancer metastasis. Chromatin immunoprecipitation-sequencing (ChIP-seq) and targeted whole genome transcriptomics in triple negative breast cancer cells were used, to find binding regions and the functional impact of ZEB1 and Snail1 throughout the genome. ZEB1 binds to the regulatory sequences of a wide range of genes, not only related to cell invasion, pointing to new functions of ZEB1. On the other hand, Snail1 regulated only a few genes, especially related to signal transduction and cellular movement. Further functional analysis revealed that ZEB1 could regulate the anchorage-independent growth of the triple negative breast cancer cells, whereas Snail1 could regulate the expression of BMP6 in these cells. We have therefore elucidated novel functional roles of the two transcription factors, Snail1 and ZEB1 in triple negative breast cancer cells.

    List of papers
    1. Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling
    Open this publication in new window or tab >>Fine-Tuning of Smad Protein Function by Poly(ADP-Ribose) Polymerases and Poly(ADP-Ribose) Glycohydrolase during Transforming Growth Factor β Signaling
    Show others...
    2014 (English)In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 8, p. e103651-Article in journal (Refereed) Published
    Abstract [en]

    BACKGROUND:

    Initiation, amplitude, duration and termination of transforming growth factor β (TGFβ) signaling via Smad proteins is regulated by post-translational modifications, including phosphorylation, ubiquitination and acetylation. We previously reported that ADP-ribosylation of Smads by poly(ADP-ribose) polymerase 1 (PARP-1) negatively influences Smad-mediated transcription. PARP-1 is known to functionally interact with PARP-2 in the nucleus and the enzyme poly(ADP-ribose) glycohydrolase (PARG) can remove poly(ADP-ribose) chains from target proteins. Here we aimed at analyzing possible cooperation between PARP-1, PARP-2 and PARG in regulation of TGFβ signaling.

    METHODS:

    A robust cell model of TGFβ signaling, i.e. human HaCaT keratinocytes, was used. Endogenous Smad3 ADP-ribosylation and protein complexes between Smads and PARPs were studied using proximity ligation assays and co-immunoprecipitation assays, which were complemented by in vitro ADP-ribosylation assays using recombinant proteins. Real-time RT-PCR analysis of mRNA levels and promoter-reporter assays provided quantitative analysis of gene expression in response to TGFβ stimulation and after genetic perturbations of PARP-1/-2 and PARG based on RNA interference.

    RESULTS:

    TGFβ signaling rapidly induces nuclear ADP-ribosylation of Smad3 that coincides with a relative enhancement of nuclear complexes of Smads with PARP-1 and PARP-2. Inversely, PARG interacts with Smads and can de-ADP-ribosylate Smad3 in vitro. PARP-1 and PARP-2 also form complexes with each other, and Smads interact and activate auto-ADP-ribosylation of both PARP-1 and PARP-2. PARP-2, similar to PARP-1, negatively regulates specific TGFβ target genes (fibronectin, Smad7) and Smad transcriptional responses, and PARG positively regulates these genes. Accordingly, inhibition of TGFβ-mediated transcription caused by silencing endogenous PARG expression could be relieved after simultaneous depletion of PARP-1.

    CONCLUSION:

    Nuclear Smad function is negatively regulated by PARP-1 that is assisted by PARP-2 and positively regulated by PARG during the course of TGFβ signaling.

    National Category
    Clinical Medicine
    Identifiers
    urn:nbn:se:uu:diva-231920 (URN)10.1371/journal.pone.0103651 (DOI)000341302700014 ()25133494 (PubMedID)
    Available from: 2014-09-11 Created: 2014-09-11 Last updated: 2018-10-23Bibliographically approved
    2. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation
    Open this publication in new window or tab >>Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation
    Show others...
    2016 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 24, p. 12706-12723Article in journal (Refereed) Published
    Abstract [en]

    We previously established a mechanism of negative regulation of transforming growth factor beta signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation.

    National Category
    Cell and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-299724 (URN)10.1074/jbc.M116.729699 (DOI)000378119900024 ()27129221 (PubMedID)
    Funder
    Swedish Research Council, K2010-67X-14936-07-3 K2013-66X-14936-10-5
    Available from: 2016-07-26 Created: 2016-07-26 Last updated: 2018-10-23Bibliographically approved
    3. Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells
    Open this publication in new window or tab >>Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells
    2018 (English)In: Journal of Cellular Physiology, ISSN 0021-9541, E-ISSN 1097-4652, Vol. 233, no 10, p. 7113-7127Article in journal (Refereed) Published
    Abstract [en]

    Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT.

    Keywords
    ZEB1, EMT, ChIP-seq, CRISPR-Cas9
    National Category
    Cell Biology
    Research subject
    Biochemistry; Biology with specialization in Molecular Cell Biology
    Identifiers
    urn:nbn:se:uu:diva-334438 (URN)10.1002/jcp.26634 (DOI)000438352300071 ()29744893 (PubMedID)
    Funder
    Swedish Research Council, 2015-02757Swedish Research Council, K2013-66X-14936-10-5Swedish Cancer Society, CAN 2012/438Swedish Cancer Society, CAN 2015/438Swedish Cancer Society, CAN 2016/445
    Available from: 2017-11-23 Created: 2017-11-23 Last updated: 2018-09-24Bibliographically approved
    4. Genome-wide binding of transcription factor Snail1 in triple-negative breast cancer cells
    Open this publication in new window or tab >>Genome-wide binding of transcription factor Snail1 in triple-negative breast cancer cells
    (English)Manuscript (preprint) (Other academic)
    Keywords
    ChIP-Seq, Snail1, Ampliseq, EMtT, BMP6
    National Category
    Cell Biology
    Research subject
    Biochemistry; Biology with specialization in Molecular Cell Biology
    Identifiers
    urn:nbn:se:uu:diva-334433 (URN)
    Available from: 2017-11-23 Created: 2017-11-23 Last updated: 2017-11-30
    Download full text (pdf)
    fulltext
    Download (jpg)
    presentationsbild
  • 6.
    Maturi, Varun
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Enroth, Stefan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Heldin, Carl-Henrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Moustakas, Aristidis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells2018In: Journal of Cellular Physiology, ISSN 0021-9541, E-ISSN 1097-4652, Vol. 233, no 10, p. 7113-7127Article in journal (Refereed)
    Abstract [en]

    Zinc finger E-box binding homeobox 1 (ZEB1) is a transcriptional regulator involved in embryonic development and cancer progression. ZEB1 induces epithelial-mesenchymal transition (EMT). Triple-negative human breast cancers express high ZEB1 mRNA levels and exhibit features of EMT. In the human triple-negative breast cancer cell model Hs578T, ZEB1 associates with almost 2,000 genes, representing many cellular functions, including cell polarity regulation (DLG2 and FAT3). By introducing a CRISPR-Cas9-mediated 30bp deletion into the ZEB1 second exon, we observed reduced migratory and anchorage-independent growth capacity of these tumor cells. Transcriptomic analysis of control and ZEB1 knockout cells, revealed 1,372 differentially expressed genes. The TIMP metallopeptidase inhibitor 3 and the teneurin transmembrane protein 2 genes showed increased expression upon loss of ZEB1, possibly mediating pro-tumorigenic actions of ZEB1. This work provides a resource for regulators of cancer progression that function under the transcriptional control of ZEB1. The data confirm that removing a single EMT transcription factor, such as ZEB1, is not sufficient for reverting the triple-negative mesenchymal breast cancer cells into more differentiated, epithelial-like clones, but can reduce tumorigenic potential, suggesting that not all pro-tumorigenic actions of ZEB1 are linked to the EMT.

    Download full text (pdf)
    fulltext
  • 7.
    Maturi, Varun
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Morén, Anita
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Enroth, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Heldin, Carl-Henrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Moustakas, Aristidis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells2018In: Molecular Oncology, ISSN 1574-7891, E-ISSN 1878-0261, Vol. 12, no 7, p. 1153-1174Article in journal (Refereed)
    Abstract [en]

    Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial-mesenchymal transition (EMT). The EMT generates stem-like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple-negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple-negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10bp each was engineered into the first exon and into the second exon-intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss-of-function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms.

    Download full text (pdf)
    fulltext
  • 8.
    Singh, Umashankar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Jones, Rhiannon E
    Department of Pathology; School of Medicine; Cardiff University; Cardiff, UK.
    Paulsson, Ylva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Baird, Duncan M
    Department of Pathology; School of Medicine; Cardiff University; Cardiff, UK.
    Westermark, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    CGGBP1 phosphorylation constitutes a telomere-protection signal2014In: Cell Cycle, ISSN 1538-4101, E-ISSN 1551-4005, Vol. 13, no 1, p. 96-105Article in journal (Refereed)
    Abstract [en]

    The shelterin proteins are required for telomere integrity. Shelterin dysfunction can lead to initiation of unwarranted DNA damage and repair pathways at chromosomal termini. Interestingly, many shelterin accessory proteins are involved in DNA damage signaling and repair. We demonstrate here that in normal human fibroblasts, telomeric ends are protected by phosphorylation of CGG triplet repeat-binding protein 1 (CGGBP1) at serine 164 (S164). We show that serine 164 is a major phosphorylation site on CGGBP1 with important functions. We provide evidence that one of the kinases that can phosphorylate S164 CGGBP1 is ATR. Overexpression of S164A phospho-deficient CGGBP1 exerted a dominant-negative effect, causing telomeric dysfunction, accelerated telomere shortening, enhanced fusion of telomeres, and crisis. However, overexpression of wild-type or phospho-mimicking S164E CGGBP1 did not cause these effects. This telomere damage was associated with reduced binding of the shelterin protein POT1 to telomeric DNA. Our results suggest that CGGBP1 phosphorylation at S164 is a novel telomere protection signal, which can affect telomere-protective function of the shelterin complex.

  • 9.
    Singh, Umashankar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Westermark, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Evidence for multiple forms and modifications of human POT12013In: DNA Repair, ISSN 1568-7864, E-ISSN 1568-7856, Vol. 12, no 11, p. 876-877Article in journal (Refereed)
    Abstract [en]

    Human POT1, a widely studied telomere protector protein is perceived to be expressed as a single 70 kDa form. A survey of the literature as well as different commercially available antibodies against POT1 suggests occurrence of multiple forms of POT1. Knowledge about possible various forms of an important protein like POT1 is necessary for our understanding about its function. We have discovered that POT1 exists in at least three consistently occurring forms; 90,70 and 45 kDa. The unexpected molecular weights of POT1 seem to be associated with SUMO1 and ubiquitin conjugation; the latter occurring at a double lysine residue at 289-KK-290. We also present evidence that the relative abundance of the different POT1 forms can be altered by experimental modulation of POT1 nuclear localization. We thus present strong evidence that there are post-translational modifications of POT1 that can affect its molecular weight as well as intracellular localization and function.

  • 10.
    Watanabe, Yukihide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. Univ Tsukuba, Fac Med, Dept Expt Pathol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan..
    Papoutsoglou, Panagiotis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Maturi, Varun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Tsubakihara, Yutaro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Hottiger, Michael O.
    Univ Zurich, Dept Mol Mech Dis, CH-8057 Zurich, Switzerland..
    Heldin, Carl-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Moustakas, Aristidis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation2016In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 24, p. 12706-12723Article in journal (Refereed)
    Abstract [en]

    We previously established a mechanism of negative regulation of transforming growth factor beta signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf