uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 15 av 15
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Broqvist, Peter
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    van Duin, Adri C. T.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    ReaxFF Force-Field for Ceria Bulk, Surfaces, and Nanoparticles2015Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, nr 24, s. 13598-13609Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have developed a reactive force-field of the ReaxFF type for stoichiometric ceria (CeO2) and partially reduced ceria (CeO2-x). We describe the parametrization procedure and provide results validating the parameters in terms of their ability to accurately describe the oxygen chemistry of the bulk, extended surfaces, surface steps, and nanoparticles of the material. By comparison with our reference electronic structure method (PBE+U), we find that the stoichiometric bulk and surface systems are well reproduced in terms of bulk modulus, lattice parameters, and surface energies. For the surfaces, step energies on the (111) surface are also well described. Upon reduction, the force-field is able to capture the bulk and surface vacancy formation energies (E-vac), and in particular, it reproduces the E-vac variation with depth from the (110) and (111) surfaces. The force-field is also able to capture the energy hierarchy of differently shaped stoichiometric nanoparticles (tetrahedra, octahedra, and cubes), and of partially reduced octahedra. For these reasons, we believe that this force-field provides a significant addition to the method repertoire available for simulating redox properties at ceria surfaces.

  • 2.
    Du, Dou
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Screened hybrid functionals applied to ceria: Effect of Fock exchange2018Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, nr 23, artikel-id 235203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate how the redox properties of ceria are affected by the fraction of Fock exchange in screened HSE06-based hybrid density functionals, and we compare with PBE+U results, and with experiments when available. We find that using similar to 15% Fock exchange yields a good compromise with respect to structure, electronic structure, and calculated reduction energies, and represents a significant improvement over the PBE+U results. We also investigate the possibility to use a computationally cheaper HSE06//PBE+U protocol consisting of structure optimization with PBE+U, a subsequent lattice parameter rescaling step, and, finally, a single-point full hybrid calculation. We find that such a composite computational protocol works very well and yields results in close agreement with those where HSE06 was used also for the structure optimization.

  • 3.
    Kettner, Miroslav
    et al.
    Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, V Holesovickach 2, Prague 18000 8, Czech Republic;Friedrich Alexander Univ Erlangen Nurnberg, Chair Interface Res & Catalysis, Egerlandstr 3, D-91058 Erlangen, Germany.
    Duchon, Tomas
    Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, V Holesovickach 2, Prague 18000 8, Czech Republic;Forschungszentrum Julich, Peter Grunberg Inst 6, D-52425 Julich, Germany.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Senanayake, Sanjaya D.
    Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Veltruska, Katerina
    Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, V Holesovickach 2, Prague 18000 8, Czech Republic.
    Nehasil, Vaclav
    Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, V Holesovickach 2, Prague 18000 8, Czech Republic.
    Anion-mediated electronic effects in reducible oxides: Tuning the valence band of ceria via fluorine doping2019Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 151, nr 4, artikel-id 044701Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Combining experimental spectroscopy and hybrid density functional theory calculations, we show that the incorporation of fluoride ions into a prototypical reducible oxide surface, namely, ceria(111), can induce a variety of nontrivial changes to the local electronic structure, beyond the expected increase in the number of Ce3+ ions. Our resonant photoemission spectroscopy results reveal new states above, within, and below the valence band, which are unique to the presence of fluoride ions at the surface. With the help of hybrid density functional calculations, we show that the different states arise from fluoride ions in different atomic layers in the near surface region. In particular, we identify a structure in which a fluoride ion substitutes for an oxygen ion at the surface, with a second fluoride ion on top of a surface Ce4+ ion giving rise to F 2p states which overlap the top of the O 2p band. The nature of this adsorbate F--Ce4+ resonant enhancement feature suggests that this bond is at least partially covalent. Our results demonstrate the versatility of anion doping as a potential means of tuning the valence band electronic structure of ceria.

  • 4.
    Kettner, Miroslav
    et al.
    Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic..
    Duchon, Tomas
    Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic..
    Wolf, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kus, Peter
    Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic..
    Sevcikova, Klara
    Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic.;Elettra Sincrotrone Trieste, Trieste, Italy..
    Rafaj, Zdenek
    Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic..
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nehasil, Vaclav
    Charles Univ Prague, Dept Surface & Plasma Sci, Prague, Czech Republic..
    Modification of valence band of ceria via anion doping with fluorine2017Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 254Artikel i tidskrift (Övrigt vetenskapligt)
  • 5.
    Kim, Byung-Hyun
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Multiscale modelling of CeO2 nano-interfaces2017Konferensbidrag (Övrigt vetenskapligt)
  • 6.
    Kim, Byung-Hyun
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. Korea Inst Energy Res, Platform Technol Lab, Daejeon, South Korea.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Multiscale Modeling of Agglomerated Ceria Nanoparticles: Interface Stability and Oxygen Vacancy Formation2019Ingår i: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, artikel-id 203Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The interface formation and its effect on redox processes in agglomerated ceria nanoparticles (NPs) have been investigated using a multiscale simulation approach with standard density functional theory (DFT), the self-consistent-charge density functional tight binding (SCC-DFTB) method, and a DFT-parameterized reactive force-field (ReaxFF). In particular, we have modeled Ce40O80 NP pairs, using SCC-DFTB and DFT, and longer chains and networks formed by Ce40O80 or Ce132O264 NPs, using ReaxFF molecular dynamics simulations. We find that the most stable {111}/{111} interface structure is coherent whereas the stable {100}/{100} structures can be either coherent or incoherent. The formation of {111}/{111} interfaces is found to have only a very small effect on the oxygen vacancy formation energy, E-vac. The opposite holds true for {100}/{100} interfaces, which exhibit significantly lower E-vac values than the bare surfaces, despite the fact that the interface formation eliminates reactive {100} facets. Our results pave the way for an increased understanding of ceria NP agglomeration.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Kullgren, J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Castleton, C. W. M.
    Mitev, Pavlin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Briels, W. J.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Oxygen Vacancies versus Fluorine at CeO2(111): A Case of Mistaken Identity?2014Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, nr 15, s. 156102-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We propose a resolution to the puzzle presented by the surface defects observed with STM at the (111) surface facet of CeO2 single crystals. In the seminal paper of Esch et al. [Science 309, 752 (2005)] they were identified with oxygen vacancies, but the observed behavior of these defects is inconsistent with the results of density functional theory (DFT) studies of oxygen vacancies in the literature. We resolve these inconsistencies via DFT calculations of the properties of both oxygen vacancies and fluorine impurities at CeO2(111), the latter having recently been shown to exist in high concentrations in single crystals from a widely used commercial source of such samples. We find that the simulated filled-state STM images of surface-layer oxygen vacancies and fluorine impurities are essentially identical, which would render problematic their experimental distinction by such images alone. However, we find that our theoretical results for the most stable location, mobility, and tendency to cluster, of fluorine impurities are consistent with experimental observations, in contrast to those for oxygen vacancies. Based on these results, we propose that the surface defects observed in STM experiments on CeO2 single crystals reported heretofore were not oxygen vacancies, but fluorine impurities. Since the similarity of the simulated STM images of the two defects is due primarily to the relative energies of the 2p states of oxygen and fluorine ions, this confusion might also occur for other oxides which have been either doped or contaminated with fluorine.

  • 8.
    Kullgren, Jolla
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Koehler, Christof
    Univ Bremen, Bremen Ctr Computat Mat Sci, POB 330440, D-28334 Bremen, Germany..
    Aradi, Balint
    Univ Bremen, Bremen Ctr Computat Mat Sci, POB 330440, D-28334 Bremen, Germany..
    Frauenheim, Thomas
    Univ Bremen, Bremen Ctr Computat Mat Sci, POB 330440, D-28334 Bremen, Germany..
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Parameters for Ceria in 0D to 3D2017Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 8, s. 4593-4607Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reducible oxides such as CeO2 are challenging to describe with standard density-functional theory (DFT) due to the mixed valence states of the cations; they often require the use of non-standard correction schemes, and/or more computationally expensive methods. This adds a new layer of complexity when it comes to the generation of Slater-Koster tables and the corresponding repulsive potentials for self-consistent density-functional based tight-binding (SCC-DFTB) calculations of such materials. In this work, we provide guidelines for how to set up a parametrization scheme for mixed valence oxides within the SCC-DFTB framework, with a focus on reproducing structural and electronic properties as well as redox reaction energies calculated using a reference DFT method. This parametrization procedure was here used to generate parameters for Ce-O systems, with Ce in its +III or +IV formal oxidation states. The generated parameter set is validated by comparison with DFT calculations for various ceria (CeO2) and reduced ceria (CeO2-x) systems of different dimensionalities ranging from 0D (nanoparticles) to 3D (bulk). As oxygen vacancy defects in ceria are of crucial importance to many technological applications, special focus is directed toward the capability of describing such defects accurately.

  • 9.
    Kullgren, Jolla
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Mitev, Pavlin D.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Briels, Wim J.
    Computational Biophysics, University of Twente, Box 217, 7500 AE Enschede, The Netherlands, Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany.
    Defect cluster at the CeO2(111) surface: A combined DFT and Monte-Carlo study2017Konferensbidrag (Övrigt vetenskapligt)
    Ladda ner (pdf)
    sammanfattning
  • 10.
    Pazoki, Meysam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Röckert, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Imani, Roghayeh
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Electronic structure of organic–inorganic lanthanide iodide perovskite solar cell materials2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, s. 23131-23138Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The emergence of highly efficient lead halide perovskite solar cell materials makes the exploration and engineering of new lead free compounds very interesting both from a fundamental perspective as well as for potential use as new materials in solar cell devices. Herein we present the electronic structure of several lanthanide (La) based materials in the metalorganic halide perovskite family not explored before. Our estimated bandgaps for the lanthanide (Eu, Dy, Tm, Yb) perovskite compounds are in the range of 2.0–3.2 eV showing the possibility for implementation as photo-absorbers in tandem solar cell configurations or charge separating materials. We have estimated the typical effective masses of the electrons and holes for MALaI3 (La= Eu, Dy, Tm, Yb) to be in the range of 0.3–0.5 and 0.97–4.0 units of the free electron mass, respectively. We have shown that the localized f-electrons within our DFT+U approach, make the dominant electronic contribution to the states at the top of the valence band and thus have a strong impact on the photo-physical properties of the lanthanide perovskites. Therefore, the main valence to conduction band electronic transition for MAEuI3 is based on inner shell f-electron localized states within a periodic framework of perovskite crystal by which the optical absorption onset would be rather inert with respect to quantum confinement effects. The very similar crystal structure and lattice constant of the lanthanide perovskites to the widely studied CH3NH3PbI3 perovskite, are prominent advantages for implementation of these compounds in tandem or charge selective contacts in PV applications together with lead iodide perovskite devices

  • 11.
    Pazoki, Meysam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Wolf, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Vacancy dipole interactions and the correlation with monovalent cation dependent ion movement in lead halide perovskite solar cell materials2017Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 38, s. 537-543Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ion migration has recently been suggested to play critical roles in the operation of lead halide perovskite solar cells. However, so far there has been no systematic investigation of how the monovalent cation affects the vacancy formation, ion migration and the associated hysteresis effect. Here, we present density functional theory calculations on all possible ion migration barriers in the perovskite materials with different cations i.e. CH3NH3PbI3, CH(NH2)(2)PbI3 and CsPbI3 in the tetragonal phase and investigate vacancy monovalent-cation interactions within the framework of the possible ion migrations. The most relevant ion movement (iodide) is investigated in greater detail and corresponding local structural changes, the relationships with the local ionic dielectric response, Stark effect and current-voltage hysteresis are discussed. We observe a correlation between the energy barrier for iodine migration and the magnitude of the dipole of the monovalent cation. From the data, we suggest a vacancy-dipole interaction mechanism by which the larger dipole of the monovalent cation can respond to and screen the local electric fields more effectively. The stronger response of the high dipolar monovalent cation to the vacancy electrostatic potential in turn leads to a lower local structural changes within the neighbouring octahedra. The presented data reveal a detailed picture of the ion movement, vacancy dipole interactions and the consequent local structural changes, which contain fundamental information about the photo-physics, and dielectric response of the material.

  • 12.
    Wolf, Matthew J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Castleton, Christopher W. M.
    Nottingham Trent Univ, Sch Sci & Technol, Nottingham, England;Malardalen Univ, Div Phys & Math Nat Sci Didact, Vasteras, Sweden.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    STM Images of Anionic Defects at CeO2(111)-A Theoretical Perspective2019Ingår i: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, artikel-id 212Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a theoretically oriented analysis of the appearance and properties of plausible candidates for the anionic defects observed in scanning tunneling microscopy (STM) experiments on CeO2(111). The simulations are based on density functional theory (DFT) and cover oxygen vacancies, fluorine impurities and hydroxyl groups in the surface and sub-surface layers. In the surface layer, all three appear as missing spots in the oxygen sublattice in filled state simulated STM images, but they are distinguishable in empty state images, where surface oxygen vacancies and hydroxyls appear as, respectively, diffuse and sharp bright features at oxygen sites, while fluorine defects appear as triangles of darkened Ce ions. In the sub-surface layer, all three defects present more complex patterns, with different combinations of brightened oxygen ion triangles and/or darkened Ce ion triangles, so we provide image maps to support experimental identification. We also discuss other properties that could be used to distinguish the defects, namely their diffusion rates and distributions.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 13.
    Wolf, Matthew J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Mitev, Pavlin D.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Briels, Wim
    Computational Biophysics, University of Twente, The Netherlands 3.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Fluorine clusters at CeO2(111) - A DFT+U and Monte Carlostudy2017Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    STM experiments on CeO2(111) reveal depressions in the surface oxygen sub-lattice which are observed to form clusters of various shapes and sizes [1].While these depressions were assumed to be oxygen vacancies, subsequent DFTcalculations have indicated that clusters of oxygen vacancies are energeticallyunstable [2-4]. Recently, we showed theoretically that fluorine impurities shouldappear almost identical to oxygen vacancies in STM experiments, but that theirproperties are more in line with those of the defects observed in experiments [5].Here, I will present the results of a further investigation into the distribution ofF impurity clusters at CeO2(111), using a combination of DFT+U calculations,and Monte Carlo sampling based on a simple but accurate pair potential whichwas fitted to the DFT results. The distribution is characterised in terms of thenumber of clusters of a certain size, and also on their topology, i.e. whetherthey are compact or open/linea r. Our results compare favourably with theexperiments, and also exhibit some interesting physics in their own right.

    [1] F. Esch et al., Science 309, 752 (2005).[2] J. Conesa, Cat. Today 143, 315 (2009).[3] C. Zhang et al., Phys. Rev. B 79, 075433 (2009).[4] X.-P. Wu & X.-Q. Gong, Phys. Rev. Lett. 116, 086102 (2016).[5] J. Kullgren, M. J. Wolf et al., Phys. Rev. Lett. 112, 156102 (2014).

  • 14.
    Wolf, Matthew J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Fluorine impurities at CeO2(111): Effects on oxygen vacancy formation, molecular adsorption, and surface re-oxidation2017Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 146, nr 4, artikel-id 044703Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the effects of anion doping with fluorine impurities on the chemistry of the CeO2 (111) facet, using the results of DFT+U calculations. We consider three prototypical processes: the formation of oxygen vacancies, the adsorption of O-2 and H2O molecules, and the re-oxidation of the surface with fragments of the two molecules. We find that the first two of these processes are not strongly affected, but that the presence of F lowers the energy gained in the re-oxidation of the surface in comparison to the healing of an oxygen vacancy, by 1.47 eV in the case of O-2 (provided that the F is part of a cluster) and by 0.92 eV in the case of H2O. Based on these results, we suggest that F could enhance the redox chemistry of ceria by toggling between being in the surface and on the surface, effectively facilitating the release of lattice O by acting as a "place holder" for it. Finally, we find that the desorption of F as either 1/2 F-2 or HF is energetically unfavourable, suggesting that F doped ceria should be stable in the presence of O-2 and H2O.

  • 15.
    Wolf, Matthew J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Comment on: "Clustering of Oxygen Vacancies at CeO2(111): Critical Role of Hydroxyls"2016Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, nr 27, artikel-id 279601Artikel i tidskrift (Refereegranskat)
1 - 15 av 15
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf