uu.seUppsala University Publications
Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cravens, T. E.
    et al.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Renzaglia, A.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
    Moore, L.
    Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.
    Waite, J. H., Jr.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA.
    Perryman, R.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA.
    Perry, M.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Persoon, A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Hadid, Lina Z
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Plasma Transport in Saturn's Low-Latitude Ionosphere: Cassini Data2019In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 6, p. 4881-4888Article in journal (Refereed)
    Abstract [en]

    In 2017 the Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn. The Ion and Neutral Mass Spectrometer in its ion mode measured densities of light ion species (H+, H-2(+), H-3(+), and He+), and the Radio and Plasma Wave Science instrument measured electron densities. During proximal orbit 287 (denoted P287), Cassini reached down to an altitude of about 3,000 km above the 1 bar atmospheric pressure level. The topside ionosphere plasma densities measured for P287 were consistent with ionospheric measurements during other proximal orbits. Spacecraft potentials were measured by the Radio and Plasma Wave Science Langmuir probe and are typically about negative 0.3 V. Also, for this one orbit, Ion and Neutral Mass Spectrometer was operated in an instrument mode allowing the energies of incident H+ ions to be measured. H+ is the major ion species in the topside ionosphere. Ion flow speeds relative to Saturn's atmosphere were determined. In the southern hemisphere, including near closest approach, the measured ion speeds were close to zero relative to Saturn's corotating atmosphere, but for northern latitudes, southward ion flow of about 3 km/s was observed. One possible interpretation is that the ring shadowing of the southern hemisphere sets up an interhemispheric plasma pressure gradient driving this flow.

  • 2.
    Farrell, W. M.
    et al.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Hadid, Lina Z
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    MacDowall, R. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Sulaiman, A. H.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Saturn's Plasma Density Depletions Along Magnetic Field Lines Connected to the Main Rings2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 16, p. 8104-8110Article in journal (Refereed)
    Abstract [en]

    We report on a set of clear and abrupt decreases in the high-frequency boundary of whistler mode emissions detected by Cassini at high latitudes (about +/- 40 degrees) during the low-altitude proximal flybys of Saturn. These abrupt decreases or dropouts have start and stop locations that correspond to L shells at the edges of the A and B rings. Langmuir probe measurements can confirm, in some cases, that the abrupt decrease in the high-frequency whistler mode boundary is associated with a corresponding abrupt electron density dropout over evacuated field lines connected to the A and B rings. Wideband data also reveal electron plasma oscillations and whistler mode cutoffs consistent with a low-density plasma in the region. The observation of the electron density dropout along ring-connecting field lines suggests that strong ambipolar forces are operating, drawing cold ionospheric ions outward to fill the flux tubes. There is an analog with the refilling of flux tubes in the terrestrial plasmasphere. We suggest that the ring-connected electron density dropouts observed between 1.1 and 1.3 R-s are connected to the low-density ring plasma cavity observed overtop the A and B rings during the 2004 Saturn orbital insertion pass.

    Plain Language Summary We present Cassini observations during the close passes by the planet Saturn indicating that plasma on magnetic field lines that pass through the A and B rings is of anomalously low density. These observations are consistent with the Saturn orbit insertion observations of a plasma cavity located at equatorial regions overtop the dense B ring. Using a terrestrial analogy, we suggest that the low-density conditions overtop the rings create an electrical force, called an ambipolar electric field that draws plasma out of the ionosphere in an attempt to replenish the plasma void found at equatorial regions.

  • 3. Farrell, W. M.
    et al.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gurnett, D. A.
    Kurth, W. S.
    MacDowall, R. J.
    An estimate of the dust pickup current at Enceladus2014In: Icarus (New York, N.Y. 1962), ISSN 0019-1035, E-ISSN 1090-2643, Vol. 239, p. 217-221Article in journal (Refereed)
    Abstract [en]

    We demonstrate that the acceleration of submicron dust originating at Enceladus by a reduced co-rotating E-field is capable of creating a dust pickup current perpendicular to the magnetic field with values ranging from 3 to 15 kA (depending upon the effective grain charge). Such a current represents a new contribution to the total pickup current in the region. As such, we suggest that dust pickup currents, along with ion and electron pickup currents, are all active within the plume.

  • 4.
    Farrell, W. M.
    et al.
    NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA..
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    MacDowall, R. J.
    NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA..
    Ion trapping by dust grains: Simulation applications to the Enceladus plume2017In: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 122, no 4, p. 729-743Article in journal (Refereed)
    Abstract [en]

    Using a particle-in-cell electrostatic simulation, we examine the conditions that allow low-energy ions, like those produced in the Enceladus plume, to be attracted and trapped within the sheaths of negatively charged dust grains. The conventional wisdom is that all new ions produced in the Enceladus plume are free to get picked up (i.e., accelerated by the local E field to then undergo vB acceleration). However, we suggest herein that the presence of submicron-charged dust in the plume impedes this pickup process since the local grain electric field greatly exceeds the corotation E fields. The simulations demonstrate that cold ions will tend to accelerate toward the negatively charged grains and become part of the ion plasma sheath. These trapped ions will move with the grains, exiting the plume region at the dust speed. We suggest that Cassini's Langmuir probe is measuring the entire ion population (free and trapped ions), while the Cassini magnetometer detects the magnetic perturbations associated with pickup currents from the smaller population of free ions, with this distinction possibly reconciling the ongoing debate in the literature on the ion density in the plume.

  • 5.
    Hadid, Lina Z
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko W.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Moore, L.
    Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.
    Cravens, T. E.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
    Hedman, M. M.
    Univ Idaho, Dept Phys, Moscow, ID USA.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Waite, J. H., Jr.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA.
    Perryman, R.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Farrell, W. M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Ring Shadowing Effects on Saturn's Ionosphere: Implications for Ring Opacity and Plasma Transport2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 19, p. 10084-10092Article in journal (Refereed)
    Abstract [en]

    We present new results obtained by the Radio and Plasma Wave Science Langmuir probe on board Cassini during the Grand Finale. The total direct current sampled by the Langmuir probe at negative bias voltage is used to study the effect of the ring shadows on the structure of the Kronian topside ionosphere. The D and C rings and the Cassini Division are confirmed to be optically thin to extreme ultraviolet solar radiation. However, different responses from the opaque A and B rings are observed. The edges of the A ring shadow are shown to match the A ring boundaries, unlike the B ring, which indicates variable responses to the B ring shadow. We show that the variable responses are due to the ionospheric plasma, more precisely to the longer chemical lifetime of H+ compared to H-2(+) and H-3(+), suggesting that the plasma is transported from the sunlit region to the shadowed one in the ionosphere. Plain Language Summary As Saturn's northern hemisphere experienced summer during the Grand Finale, the planet's northern dayside hemisphere and its rings were fully illuminated by the Sun. However, the southern hemisphere was partly obscured because of the shadows cast by the A and B rings. Using the in situ measurements of the Langmuir probe part of the Radio and Plasma Wave Science investigation on board the Cassini spacecraft, we study for the first time the effect of the ring shadows on Saturn's ionosphere. From the ring shadows signatures on the total ion current collected by the Langmuir probe, we show that the A and B rings are optically thicker (to the solar extreme ultraviolet radiation) than the inner C and D rings and the Cassini Division to the solar extreme ultraviolet radiation. Moreover, we reproduce the boundaries of the A ring and the outer edge of the B ring. Furthermore, observed variations with respect to the inner edge of the B ring imply a delayed response of the ionospheric H+ because of its long lifetime and suggest that the ionospheric plasma is transported from an unshadowed region to a shadowed one in the ionosphere.

  • 6.
    Hadid, Lina Z
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko W
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Shebanits, O.
    Imperial Coll London, Blackett Lab, Space & Atmospher Phys, London, England.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Nagy, A. F.
    Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
    Eriksson, Anders I
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Saturn's Ionosphere: Electron Density Altitude Profiles and D-Ring Interaction From The Cassini Grand Finale2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 16, p. 9362-9369Article in journal (Refereed)
    Abstract [en]

    We present the electron density (n(e)) altitude profiles of Saturn's ionosphere at near-equatorial latitudes from all 23 orbits of Cassini's Grand Finale. The data are collected by the Langmuir probe part of the Radio and Plasma Wave Science investigation. A high degree of variability in the electron density profiles is observed. However, organizing them by consecutive altitude ranges revealed clear differences between the southern and northern hemispheres. The n(e) profiles are shown to be more variable and connected to the D-ring below 5,000 km in the southern hemisphere compared to the northern hemisphere. This observed variability is explained to be a consequence of an electrodynamic interaction with the D-ring. Moreover, a density altitude profile is constructed for the northern hemisphere indicating the presence of three different ionospheric layers. Similar properties were observed during Cassini's final plunge, where the main ionospheric peak is crossed at similar to 1,550-km altitude. Plain Language Summary The Cassini Langmuir probe measured directly the uppermost layer of Saturn's atmosphere, the ionosphere, during its Grand Finale. The observations revealed a layered electron density altitude profile with evidence in the southern hemisphere of an electrodynamic type of interaction with the planet innermost D-ring. Moreover, the main peak of the ionosphere is observed for the first time in the final plunge around 1,550 km.

  • 7.
    Holmberg, M. K. G.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Shebanits, Oleg
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Swedish Inst Space Phys, Uppsala, Sweden..
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andre, N.
    Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Garnier, P.
    Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Genot, V.
    Univ Toulouse, CNES, UPS, IRAP,CNRS, Toulouse, France..
    Gilbert, L. K.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England..
    Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 12, p. 12258-12273Article in journal (Refereed)
    Abstract [en]

    We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS = 60, 268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, n(max), is shown to be located at similar to 4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of n(max) is due to that the hot electron impact ionization rate peaks at similar to 4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.

  • 8.
    Holmberg, Mika
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dayside/nightside asymmetry of ion densities and velocities in Saturn's inner magnetosphere2014In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 41, no 11, p. 3717-3723Article in journal (Refereed)
    Abstract [en]

    We present Radio and Plasma Wave Science Langmuir probe measurements from 129 Cassini orbits, which show a day/night asymmetry in both ion density and ion velocity in the radial region 4–6 RS (1 RS = 60,268 km) from the center of Saturn. The ion densities ni vary from an average of ∼35 cm−3 around noon up to ∼70 cm−3 around midnight. The ion velocities vi,θ vary from ∼28–32 km/s at the lowest dayside values to ∼36–40 km/s at the highest nightside values. The day/night asymmetry is suggested to be due to the radiation pressure force acting on negatively charged nanometer-sized dust of the E ring. This force will introduce an extra grain and ion drift component equivalent to the force of an additional electric field of 0.1–2 mV/m for 10–50 nm sized grains.

  • 9.
    Lamy, L.
    et al.
    Univ Paris Diderot, Univ Paris Sci & Lettres, Lab Etud Spatiales & Instrumentat Astrophys, Observ Paris,Sorbonne Univ,Sorbonne Paris Cite,CN, 5 Pl Jules Janssen, F-92195 Meudon, France.
    Zarka, P.
    Univ Paris Diderot, Univ Paris Sci & Lettres, Lab Etud Spatiales & Instrumentat Astrophys, Observ Paris,Sorbonne Univ,Sorbonne Paris Cite,CN, 5 Pl Jules Janssen, F-92195 Meudon, France.
    Cecconi, B.
    Univ Paris Diderot, Univ Paris Sci & Lettres, Lab Etud Spatiales & Instrumentat Astrophys, Observ Paris,Sorbonne Univ,Sorbonne Paris Cite,CN, 5 Pl Jules Janssen, F-92195 Meudon, France.
    Prange, R.
    Univ Paris Diderot, Univ Paris Sci & Lettres, Lab Etud Spatiales & Instrumentat Astrophys, Observ Paris,Sorbonne Univ,Sorbonne Paris Cite,CN, 5 Pl Jules Janssen, F-92195 Meudon, France.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Hospodarsky, G.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Persoon, A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hunt, G. J.
    Imperial Coll London, Blackett Lab, London SW7 2BW, England.
    The low-frequency source of Saturn's kilometric radiation2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 362, no 6410, article id eaat2027Article in journal (Refereed)
    Abstract [en]

    Understanding how auroral radio emissions are produced by magnetized bodies requires in situ measurements within their source region. Saturn's kilometric radiation (SKR) has been widely used as a remote proxy of Saturn's magnetosphere. We present wave and plasma measurements from the Cassini spacecraft during its ring-grazing high-inclination orbits, which passed three times through the high-altitude SKR emission region. Northern dawn-side, narrow-banded radio sources were encountered at frequencies of 10 to 20 kilohertz, within regions of upward currents mapping to the ultraviolet auroral oval. The kilometric waves were produced on the extraordinary mode by the cyclotron maser instability from 6- to 12-kiloelectron volt electron beams and radiated quasi-perpendicularly to the auroral magnetic field lines. The SKR low-frequency sources appear to be strongly controlled by time-variable magnetospheric electron densities.

  • 10.
    Menietti, J. D.
    et al.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Averkamp, T. F.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Ye, S. -Y
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Groene, J. B.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Extended Survey of Saturn Z-Mode Wave Intensity Through Cassini's Final Orbits2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 15, p. 7330-7336Article in journal (Refereed)
    Abstract [en]

    Similar to whistler mode chorus, Z-mode emission is an efficient diffusive scatterer of electrons possibly resulting in resonant acceleration. We present results of a survey of both the low-band (5 kHz) and for the first time the high-band (20 kHz) intensity of these emissions, based on over 11 years of Cassini Radio and Plasma Wave Science instrument data including nine ring-grazing orbits and two proximal orbits, which occurred at the end of the mission. We distinguish these emissions using density and polarization measurements and calculate the mean intensity as a function of frequency and spatial coordinates. We find that the average low-band Z-mode intensity peak is P-0 similar to 7 x 10(-8) nT(2), while the high-band peak is much lower at P-0 similar to 10(-9) nT(2). The spatial distribution of intensity differs for each emission band implying different source regions and perhaps different source mechanisms.

    Plain Language Summary

    Intense narrow band waves (Z-mode) are observed at Saturn when the spacecraft is located in regions of relatively low density and high magnetic field. These waves are of special importance because they are not seen at such high intensity or over as large a spatial range at Earth. In addition, these waves are known to be very efficient at accelerating electrons under certain conditions and could be responsible for a portion of the observed radiation belts at Saturn. We present an extensive survey of the observations of Z-mode extending over more than 11 years. The survey includes for the first time both the low and high-frequency emissions and orbits from the Cassini final mission, where these waves were seen at a high rate of occurrence. Contour plots and graphs of wave intensity as a function of radius, latitude, and longitude are shown, which will be of value to scientists who model the dynamic processes controlling the electron population at Saturn.

  • 11.
    Menietti, J. D.
    et al.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Averkamp, T. F.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Ye, S. -Y
    Sulaiman, A. H.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Hospodarsky, G. B.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Analysis of Intense Z-Mode Emission Observed During the Cassini Proximal Orbits2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 14, p. 6766-6772Article in journal (Refereed)
    Abstract [en]

    The role of Z-mode emission in the diffusive scattering and resonant acceleration of electrons is believed to be important at Saturn. A survey of the 5kHz component of this emission at Saturn earlier reported strong intensity in the lower density regions where the ratio of plasma frequency to cyclotron frequency, f(p)/f(c)<1. At Saturn this occurs along the inner edge of the Enceladus torus near the equator and at higher latitudes. Using the Cassini Radio and Plasma Wave Science instrument observations during the Cassini proximal orbits, we have now identified these emissions extending down to and within the ionosphere. Wave polarization measurements and unique frequency cutoffs are used to positively identify the wave mode. Analogous to the role of whistler mode chorus at Earth, Saturn Z-mode emissions may interact with electrons contributing to the filling or depleting of Saturn's inner radiation belts.

  • 12.
    Moore, L.
    et al.
    Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.
    Cravens, T. E.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
    Mueller-Wodarg, I.
    Imperial Coll London, Blackett Lab, London, England.
    Perry, M. E.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Waite, J. H., Jr.
    Southwest Res Inst, San Antonio, TX USA.
    Perryman, R.
    Southwest Res Inst, San Antonio, TX USA.
    Nagy, A.
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
    Mitchell, D.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Persoon, A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Wahlund, J. -E
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Models of Saturn's Equatorial Ionosphere Based on In Situ Data From Cassini's Grand Finale2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 18, p. 9398-9407Article in journal (Refereed)
    Abstract [en]

    We present new models of Saturn's equatorial ionosphere based on the first in situ measurements of its upper atmosphere. The neutral spectrum measured by Cassini's Ion and Neutral Mass Spectrometer, which includes substantial methane, ammonia, and organics in addition to the anticipated molecular hydrogen, helium, and water, serves as input for unexpectedly complex ionospheric chemistry. Heavy molecular ions are found to dominate Saturn's equatorial low-altitude ionosphere, with a mean ion mass of 11Da. Key molecular ions include H3O+ and HCO+; other abundant heavy ions depend upon the makeup of the mass 28 neutral species, which cannot be uniquely determined. Ion and Neutral Mass Spectrometer neutral species lead to generally good agreement between modeled and observed plasma densities, though poor reproduction of measured H+ and H-3(+) variability and an overabundance of modeled H-3(+) potentially hint at missing physical processes in the model, including a loss process that affects H-3(+) but not H+. Plain Language Summary Cassini's Grand Finale enabled the first-ever direct measurements of Saturn's upper atmosphere. Here we use Cassini's unique measurements to construct new models of the plasma in this important boundary region that separates the dense lower atmosphere from space. Based on the complex array of observed gases, we find that heavy molecular ions are dominant near Saturn's equator. This surprising result demonstrates that the chemistry in Saturn's equatorial upper atmosphere is substantially more complex than anticipated. The presence of these unexpected ions potentially represents a new method of monitoring Saturn's ionosphere remotely. Furthermore, as other Cassini measurements indicate that the complex chemistry is likely driven by an influx of ring-derived material, such observations may even help to track the evolution of Saturn's rings as they lose mass to its atmosphere.

  • 13.
    Morooka, Michiko W.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Ye, S. -Y
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Farrell, W. M.
    NASA, GSFC, Greenbelt, MD USA.
    The Dusty Plasma Disk Around the Janus/Epimetheus Ring2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 6, p. 4668-4678Article in journal (Refereed)
    Abstract [en]

    We report on the electron, ion, and dust number densities and the electron temperatures obtained by the Radio and Plasma Wave Science instruments onboard Cassini during the Ring-Grazing orbits. The numerous ring passage observations show a consistent picture as follows: (1) Beyond 0.1 R-S above and below the equator the electron and ion densities are quasi-neutral with a distribution similar to the one obtained in the plasma disk. (2) A sharp ion density enhancement occurs at vertical bar Z vertical bar < 0.1 R-S, to more than 200 cm(-3) at the equator, while the electron density remains low only to values of 50cm(-3). The electron/ion density ratio is <= 0.1 at the equator. (3) Micrometer-sized dust has also been observed at the equator. However, the region of intense dust signals is significantly narrower (vertical bar Z vertical bar<0.02 R-S) than the enhanced ion density regions. (4) The electron temperature (T-e) generally decreases with decreasing Z with small T-e enhancements near the equator. We show that the dust size characteristics are different depending on the distance from the equator, and the large micrometer-sized grains are more perceptible in a narrow region near the equator where the power law slope of the dust size distribution becomes less steep. As a result, different scale heights are obtained for nanometer and micrometer grains. Throughout the ring, the dominant part of the negative charges is carried by the small nanometer-sized grains. The electron/ion density ratio is variable from orbit to orbit, suggesting changes in the dust charging over time scales of weeks. Plain Language Summary The Radio and Plasma Wave Science instrument onboard Cassini observed a dusty plasma during the Ring-Grazing orbits. Dusty plasma is composed of, in addition to the electrons and ions, charged dust grains, and those grains play an important role in the plasma dynamics. The observed electron, ion, and dust number densities and the electron temperatures showed the layered structure of the faint Janus/Epimetheus rings. The core of the dusty ring composed of micron-sized dust is surrounded by a dusty plasma consisting of the ions and the negatively charged nanometer grains and further surrounded by the pristine plasma. The electron/ion density ratio of the dusty plasma varies from orbit to orbit, implying that the dust charging characteristics of the dusty ring change over time scales of weeks.

  • 14.
    Morooka, Michiko
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hadid, Lina Z.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Farrell, W. M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Waite, J. H.
    Southwest Res Inst, San Antonio, TX USA.
    Perryman, R. S.
    Southwest Res Inst, San Antonio, TX USA.
    Perry, M.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Saturn's Dusty Ionosphere2019In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 3, p. 1679-1697Article in journal (Refereed)
    Abstract [en]

    Measurements of electrons and ions in Saturn's ionosphere down to 1,500-km altitudes as well as the ring crossing region above the ionosphere obtained by the Langmuir probe onboard the Cassini spacecraft are presented. Five nearly identical deep ionosphere flybys during the Grand Finale orbits and the Final plunge orbit revealed a rapid increase in the plasma densities and discrepancies between the electrons and ions densities (N-e and N-i) near the closest approach. The small N-e/N-i ratio indicates the presence of a dusty plasma, a plasma which charge carrier is dominated by negatively charged heavy particles. Comparison of the Langmuir probe obtained density with the light ion density obtained by the Ion and Neutral Mass Spectrometer confirmed the presence of heavy ions. An unexpected positive floating potential of the probe was also observed when N-e/N-i << 1. This suggests that Saturn's ionosphere near the density peak is in a dusty plasma state consisting of negatively and positively charged heavy cluster ions. The electron temperature (T-e) characteristics in the ionosphere are also investigated and unexpectedly high electron temperature value, up to 5000 K, has been observed below 2,500-km altitude in a region where electron-neutral collisions should be prominent. A well-defined relationship between T-e and N-e/N-i ratio was found, implying that the electron heating at low altitudes is related to the dusty plasma state of the ionosphere.

  • 15.
    Shebanits, Oleg
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Holmberg, Mika
    Université de Toulouse, UPS-OMP, IRAP, Toulouse, France.; CNRS, IRAP, Toulouse, France.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Mandt, Kathleen
    Waite, Hunter
    Titan’s ionosphere: A survey of solar EUV influences2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 7, p. 7491-7503Article in journal (Refereed)
    Abstract [en]

    Effects of solar EUV on positive ions and heavy negative charge carriers (molecular ions, aerosol, and/or dust) in Titan’s ionosphere are studied over the course of almost 12 years, including 78 flybys below 1400 km altitude between TA (October 2004) and T120 (June 2016). The Radio and Plasma Wave Science/Langmuir Probe-measured ion charge densities (normalized by the solar zenith angle) show statistically significant variations with respect to the solar EUV flux. Dayside charge densities increase by a factor of ≈2 from solar minimum to maximum, while nightside charge densities are found to anticorrelate with the EUV flux and decrease by a factor of ≈3–4. The overall EUV dependence of the ion charge densities suggest inapplicability of the idealized Chapman theory below 1200 km in Titan’s ionosphere. Nightside charge densities are also found to vary along Titan’s orbit, with higher values in the sunward magnetosphere of Saturn compared to the magnetotail.

  • 16.
    Taylor, S. A.
    et al.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England; UCL Birkbeck, Ctr Planetary Sci, London, England.
    Coates, A. J.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England; UCL Birkbeck, Ctr Planetary Sci, London, England.
    Jones, G. H.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England; UCL Birkbeck, Ctr Planetary Sci, London, England.
    Wellbrock, A.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England; UCL Birkbeck, Ctr Planetary Sci, London, England.
    Fazakerley, A. N.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England.
    Desai, R. T.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England; UCL Birkbeck, Ctr Planetary Sci, London, England.
    Caro-Carretero, R.
    Univ Coll London, Mullard Space Sci Lab, Dorking, Surrey, England; Univ Pontificia Comillas, Escuela Tecn Super Ingn ICAI, Madrid, Spain.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Schippers, P.
    Observ Paris, LESIA, Meudon, France.
    Waite, J. H.
    Southwest Res Inst, San Antonio, TX USA.
    Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 287-296Article in journal (Refereed)
    Abstract [en]

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6–10 eV and 10–16 eV. We estimate that the proportion of “hot” (>15 eV) to “cold” (<15 eV) electrons during the Enceladus flybys is ≈ 0.1–0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.

  • 17.
    Wahlund, Jan-Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko W
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hadid, Lina Z
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Farrell, W. M.
    NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA..
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Hospodarsky, G.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA..
    Ye, S. -Y
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    In situ measurements of Saturn's ionosphere show that it is dynamic and interacts with the rings2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 359, no 6371, p. 66-68Article in journal (Refereed)
    Abstract [en]

    The ionized upper layer of Saturn's atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet's rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn's A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry.

  • 18.
    Waite, J. H., Jr.
    et al.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Perryman, R. S.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Perry, M. E.
    Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
    Miller, K. E.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Bell, J.
    Natl Inst Aerosp, Hampton, VA 23666 USA;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Cravens, T. E.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
    Glein, C. R.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Grimes, J.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Hedman, M.
    Univ Idaho, Dept Phys, Moscow, ID 83844 USA.
    Cuzzi, J.
    NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.
    Brockwell, T.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Teolis, B.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Moore, L.
    Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.
    Mitchell, D. G.
    Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA.
    Persoon, A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hadid, Lina Z
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Chocron, S.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Walker, J.
    Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.
    Nagy, A.
    Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA.
    Yelle, R.
    Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA.
    Ledvina, S.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
    Johnson, R.
    Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA.
    Tseng, W.
    Natl Taiwan Normal Univ, Dept Earth Sci, Taipei 11677, Taiwan.
    Tucker, O. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Ip, W. -H
    Chemical interactions between Saturn's atmosphere and its rings2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 362, no 6410, article id eaat2382Article in journal (Refereed)
    Abstract [en]

    The Pioneer and Voyager spacecraft made close-up measurements of Saturn's ionosphere and upper atmosphere in the 1970s and 1980s that suggested a chemical interaction between the rings and atmosphere. Exploring this interaction provides information on ring composition and the influence on Saturn's atmosphere from infalling material. The Cassini Ion Neutral Mass Spectrometer sampled in situ the region between the D ring and Saturn during the spacecraft's Grand Finale phase. We used these measurements to characterize the atmospheric structure and material influx from the rings. The atmospheric He/H-2 ratio is 10 to 16%. Volatile compounds from the rings (methane; carbon monoxide and/or molecular nitrogen), as well as larger organic-bearing grains, are flowing inward at a rate of 4800 to 45,000 kilograms per second.

  • 19. Ye, S. -Y
    et al.
    Kurth, W. S.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Hospodarsky, G. B.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Persoon, A. M.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Sulaiman, A. H.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Gurnett, D. A.
    Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hsu, H. -W
    Sternovsky, Z.
    Univ Colorado, LASP, Boulder, CO 80309 USA.
    Wang, X.
    Univ Colorado, LASP, Boulder, CO 80309 USA.
    Horanyi, M.
    Univ Colorado, LASP, Boulder, CO 80309 USA.
    Seiss, M.
    Univ Potsdam, Inst Phys & Astron, Potsdam, Germany.
    Srama, R.
    Univ Stuttgart, Inst Space Syst IRS, Stuttgart, Germany.
    Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 19, p. 10101-10109Article in journal (Refereed)
    Abstract [en]

    Dust particles in the Saturn system can be detected by the Radio and Plasma Wave Science (RPWS) instrument on board Cassini via antenna voltage signals induced by dust impacts. These impact signals have been simulated in the laboratory by accelerating dust particles onto a Cassini model with electric field antennas. RPWS dust measurements have been shown to be consistent with the Cosmic Dust Analyzer. During the Grand Finale orbits, Cassini flew through the gap between the D ring and Saturn's atmosphere 22 times. In situ measurements by RPWS helped quantify the hazards posed to the spacecraft and instruments on board, which showed a micron-sized dust density orders of magnitude lower than that observed during the Ring Grazing orbits. Close inspection of the waveforms indicated a possible dependence of the impact signal decay time on ambient plasma density. Plain Language Summary Cassini flew through the gap between Saturn and its rings for 22 times before plunging into the atmosphere of Saturn, ending its 20-year mission. The radio and plasma waves instrument on board Cassini helped quantify the dust hazard in this previously unexplored region. The measured density of large dust particles was much lower than expected, allowing high-value science observations during the subsequent Grand Finale orbits.

1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf