uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1 - 18 of 18
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Changqing, Ruan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Maria, Strømme
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Jonas, Lindh
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    A green and simple method for preparation of an efficient palladium adsorbent based on 2,3-dialdehyde cellulose2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    An efficient and green palladium adsorbent was prepared from 2,3-dialdehyde cellulose by reductive amination with a palladium chelating ligand in a facile one-pot procedure, and adsorption properties for palladium including adsorption isotherm, kinetics, desorption and recycling of the adsorbent obtained were studied. The successful reductive amination with the ligand and 2,3-dialdehyde cellulose was verified by FT-IR and XPS, and the adsorbent was characterized by SEM, XRD, gas adsorption and TGA. The adsorbent has a high adsorption capacity and enables fast adsorption of palladium from solution. Adsorbent materials suitable for both filters and column matrixes could be obtained.

  • 2.
    Lindh, Jonas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Hua, Kai
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Rocha, Igor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Carlsson, Daniel Otto
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Mihranyan, Albert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ferraz, Natalia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Chemical Modifications of Nanocellulose2014Inngår i: NFM conference, Prague 16-18th June 2014., 2014Konferansepaper (Fagfellevurdert)
  • 3.
    Lindh, Jonas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Maria, Strømme
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Mihranyan, Albert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Preparation of Porous Cellulose Beads via Introduction of Diamine Spacers2016Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, nr 22, s. 5600-5607Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The current work presents a synthesis route based on the reductive amination of 2,3-dialdehyde cellulose beads with diamines to render micrometer-sized beads with increased specific surface area (SSA) and porosity in the mesoporous range. Specifically, the influence of the reductive amination of 2,3-dialdehyde cellulose (DAC) using aliphatic and aromatic tethered mono- and diamines on bead microstructure was investigated. Aliphatic and aromatic tethered monoamines were found to have limited utility for producing porous beads whereas the introduction of diamines provided beads with a porous texture and an SSA increasing from <1 to >30 m(2)/g. Both aliphatic and aromatic diamines were found to be useful in producing porous beads having a pore size distribution range of 10 to 100 nm, as verified by N-2 gas adsorption and mercury intrusion porosimetry analyses. The true density of the functionalized DAC beads decreased to an average of about 1.36 g/cm(3) as compared to 1.48 g/cm(3) for the unfunctionalized, fully oxidized DAC beads. The total porosity of the beads was, according to mercury porosimetry, in the range of 54-64%. Reductive amination with 1,7-diaminoheptane provided beads that were stable under alkaline conditions (I M NaOH). It was concluded that the introduction of tethered diamines into DAC beads is a facile method for producing mesoporous beads.

  • 4.
    Ruan, Changqing
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Gustafsson, Simon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Mihranyan, Albert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Cellulose nanofibers prepared via pretreatment based on Oxone® oxidation2017Inngår i: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 22, nr 12, artikkel-id 2177Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [sv]

    Softwood sulfite bleached cellulose pulp was oxidized with Oxone (R) and cellulose nanofibers (CNF) were produced after mechanical treatment with a high-shear homogenizer. UV-vis transmittance of dispersions of oxidized cellulose with different degrees of mechanical treatment was recorded. Scanning electron microscopy (SEM) micrographs and atomic force microscopy (AFM) images of samples prepared from the translucent dispersions showed individualized cellulose nanofibers with a width of about 10 nm and lengths of a few hundred nm. All results demonstrated that more translucent CNF dispersions could be obtained after the pretreatment of cellulose pulp by Oxone (R) oxidation compared with the samples produced without pretreatment. The intrinsic viscosity of the cellulose decreased after oxidation and was further reduced after mechanical treatment. Almost translucent cellulose films were prepared from the dispersions of individualized cellulose nanofibers. The procedure described herein constitutes a green, novel, and efficient route to access CNF.

  • 5.
    Ruan, Changqing
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    A green and simple approach for one-pot preparation of an efficient palladium adsorbent based on functionalized 2,3-dialdehyde cellulose2016Konferansepaper (Fagfellevurdert)
  • 6.
    Ruan, Changqing
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    A green and simple method for preparation of an efficient palladium adsorbent based on 2,3-dialdehyde cellulose2015Inngår i: 4th EPNOE International Polysaccharide Conference 2015, 2015Konferansepaper (Fagfellevurdert)
  • 7.
    Ruan, Changqing
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Preparation of Porous 2,3-dialdehyde Cellulose Beads Crosslinked with Chitosan and their Application in Adsorption of Congo Red Dye2018Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 181, s. 200-207Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Micrometer sized 2,3-dialdehyde cellulose (DAC) beads were produced via a recently developed method relying on periodate oxidation of Cladophora nanocellulose. The produced dialdehyde groups and pristine hydroxyl groups provided the DAC beads with a vast potential for further functionalization. The sensitivity of the DAC beads to alkaline conditions, however, limits their possible functionalization and applications. Hence, alkaline-stable and porous cellulose beads were prepared via a reductive amination crosslinking reaction between 2,3-dialdehyde cellulose beads and chitosan. The produced materials were thoroughly characterized with different methods. The reaction conditions, including the amount of chitosan used, conditions for reductive amination, reaction temperature and time, were investigated and the maintained morphology of the beads after exposure to 1 M NaOH (aq.) was verified with SEM. Different washing and drying procedures were used and the results were studied by SEM and BET analysis. Furthermore, FTIR, TGA, EDX, XPS, DLS and elemental analysis were performed to characterize the properties of the prepared beads. Finally, the alkaline-stable porous chitosan cross-linked 2,3-dialdehyde cellulose beads were applied as adsorbent for the dye Congo red. The crosslinked beads displayed fast and high adsorption capacity at pH 2 and good desorption properties at pH 12, providing a promising sorption material.

  • 8.
    Ruan, Changqing
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Mihranyan, Albert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Favored Surface-limited Oxidation of Cellulose with Oxone® in Water2017Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, nr 64, s. 40600-40607Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A novel method for favored primary alcohol oxidation of cellulose was developed. Cellulose pulp andCladophora nanocellulose were oxidized in a one-pot procedure by Oxone® (2KHSO5$KHSO4$K2SO4)and efficient reaction conditions were identified. The effects of the reaction on the morphology,viscosity and chemical structure of the products obtained were studied. The primary alcohol groupswere oxidized to carboxyl groups and the content of carboxyl groups was determined byconductometric titration. SEM, capillary-type viscometry and XRD were applied to characterize theproducts and to investigate the influence of oxidation. For the first time, low-cost and stable Oxone®was used as a single oxidant to oxidize cellulose into carboxyl cellulose. The oxidation is an inexpensiveand convenient process to produce carboxylic groups on the surface of the cellulose fibers and to makethe cellulose fibers charged. Particularly, this method can avoid the use of halogens and potentially toxicradicals and constitute a green route to access carboxylated cellulose. Further, sodium bromide could beused as a co-oxidant to the Oxone® and increase the carboxylic acid content by 10–20%. The Oxone®oxidation is a promising method for oxidation of cellulose and might facilitate the production of CNC.

  • 9.
    Ruan, Changqing
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Wang, Zhaohui
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Carbonized cellulose beads for efficient capacitive energy storage2018Inngår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, nr 6, s. 3545-3556Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Natural biomaterials, including polysaccharides and amino acids, provide a sustainable source of functional carbon materials for electric energy storage applications. We present a one-pot reductive amination process to functionalize 2,3-dialdehyde cellulose (DAC) beads with chitosan and l-cysteine to provide single (N)- and dual (N/S)-doped materials. The functionalization enables the physicochemical properties of the materials to be tailored and can provide carbon precursors with heteroatom doping suitable for energy storage applications. Scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the changes to the beads after functionalization and carbonization. The results of X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy verified that the doping was effective, while the nitrogen sorption isotherms and pore-size distributions of the carbonized beads showed the effects of doping with different hierarchical porosities. In the electrochemical experiments, three kinds of carbon beads [pyrolyzed from DAC, chitosan-crosslinked DAC (CS-DAC) and l-cysteine-functionalized DAC] were used as electrode materials. Electrodes of carbonized CS-DAC beads had a specific capacitance of up to 242 F g(-1) at a current density of 1 A g(-1). These electrodes maintained a capacitance retention of 91.5% after 1000 charge/discharge cycles, suggesting excellent cycling stability. The results indicate that reductive amination of DAC is an effective route for heteroatom doping of carbon materials to be used as electrode active materials for energy storage.

  • 10.
    Wang, Zhaohui
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Li, Mingkai
    Hubei Univ, Sch Mat Sci & Engn, Youyi Rd 368, Wuhan 430062, Hubei, Peoples R China.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Southwest Univ, Coll Food Sci, Chongqing 400715, Peoples R China.
    Liu, Chenjuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Zhang, Chao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Xu, Chao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study2018Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 41, s. 23352-23363Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein, the manufacturing of a free-standing N-doped mesoporous carbon (CPPY) paper by straightforward carbonization of polypyrrole-coated nanocellulose paper is described. The deposition of Na and Li on these CPPY electrodes, which also serve as current collectors, is studied using a combination of experiments and theoretical calculations. The porous CPPY electrodes gave rise to decreased current densities, which helped to prolong the life-time of the Na electrodes. While the density functional theory calculations suggest that both Na and Li should be deposited uniformly on the CPPY electrodes, the experimental results clearly show that the sodium deposition was more well-defined on the surface of the CPPY electrodes. In contrast to Li, dendrite-free Na depositions could be carried out using deposition capacities up to 12 mAh cm(-2 )and a stable Na electrode cycling performance was found during 1000 h at 1 mA cm(-2). The results suggest that it was difficult to predict the Na or Li deposition behavior merely based on calculations of the metal adsorption energies, as kinetic effects should also be taken into account. Nevertheless, the experimental results clearly show that the use of the present type of porous electrodes provides new possibilities for the development of durable Na electrodes for high-performance sodium metal batteries.

  • 11.
    Wang, Zhaohui
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Pan, Ruijun
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Xu, Chao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Conducting polymer paper-derived separators for lithium metal batteries2018Inngår i: Energy Storage Materials, ISSN 2405-8297, Vol. 13, s. 283-292Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Overoxidised polypyrrole (PPy) paper has been employed as a mesoporous separator for lithium metal batteries (LMBs) based on its narrow pore size distribution, good thermal stability, high ionic conductivity (1.1 mS cm−1 with a LP40 electrolyte) and high electrolyte wettability. The overoxidised PPy paper was produced from a PPy/cellulose composite using a combined base and heat-treatment process, yielding a highly interrupted pyrrole molecular structure including N-containing polar groups maintaining the readily adaptable mesoporous structure of the pristine PPy paper. This well-defined pore structure gave rise to a homogeneous current distribution which significantly increased the performance of a LiFePO4|Li cell. With the overoxidised PPy separator, a symmetric Li|Li cell could be cycled reversibly for more than 600 h without any short-circuits in a LP40 electrolyte. This approach facilitates the manufacturing of well-defined separators for fundamental investigations of the influence of the separator structure on the performance of LMBs.

  • 12. Xu, Bo
    et al.
    Zhang, Jinbao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Hua, Yong
    Liu, Peng
    Wang, Linqin
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Li, Yuanyuan
    Boschloo, Gerrit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Johansson, Erik M.J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Kloo, Lars
    Hagfeldt, Anders
    Jen, Alex K.-Y.
    Sun, Licheng
    Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells2017Inngår i: Chem, ISSN 2451-9294, Vol. 2, nr 5, s. 676-687Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The power-conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased rapidly from about 4% to 22% during the past few years. One of the major challenges for further improvement of the efficiency of PSCs is the lack of sufficiently good hole transport materials (HTMs) to efficiently scavenge the photogenerated holes and aid the transport of the holes to the counter-electrode in the PSCs. In this study, we tailor-made two low-cost spiro[fluorene-9,9?-xanthene] (SFX)-based 3D oligomers, termed X54 and X55, by using a one-pot synthesis approach for PSCs. One of the HTMs, X55, gives a much deeper HOMO level and a higher hole mobility and conductivity than the state-of-the-art HTM, Spiro-OMeTAD. PSC devices based on X55 as the HTM show a very impressive PCE of 20.8% under 100 mW·cm?2 AM1.5G solar illumination, which is much higher than the PCE of the reference devices based on Spiro-OMeTAD (18.8%) and X54 (13.6%) under the same conditions.

  • 13.
    Xu, Chao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ruan, Chang-Qing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Li, Yunxiang
    Department of Materials and Environmental Chemistry,Stockholm University, Stockholm, Sweden.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compoundsInngår i: Advanced Sustainable Systems, E-ISSN 2366-7486Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A series of sustainable activated carbons (ACs) with large surface areas and tunable pore sizes is synthesized from Cladophora cellulose and its chemically modified derivatives in a one-step physical carbonization/activation process. The molecular structure of the cellulose precursors and the carbonization/activation atmosphere (N2 or CO2) significantly influence the pore structure of the ACs. When using oxidized cellulose and its further cross-linkages as the precursor, the ACs have a large volume of ultramicropores (pore diameter < 0.8 nm). Activation in CO2 results in ACs with surface areas up to 1241 m2 g−1. These ACs have a high CO2 uptake capacity (2.29 mmol g−1 at 0.15 bar, 5.52 mmol g−1 at 1 bar; 273 K) and a high CO2–over–N2 selectivity (42 at 273 K). In addition, the capacity of the ACs to adsorb vapors of volatile organic compounds (VOCs) is remarkable, with values up to 0.97 mmol g−1 at very low VOC concentrations (200 ppmv). The ACs have ultrahigh VOCs–over–N2 selectivity up to 9.35 × 103 at 293 K for 0.02 vol%/99.8 vol% of benzene/N2 mixture. It is anticipated that these ACs will be useful as sorbents for the postcombustion capture of CO2 and for indoor removal and direct air capture of various VOCs.

  • 14.
    Xu, Chao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ruan, Chang-Qing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Li, Yunxiang
    Department of Materials and Environmental Chemistry,Stockholm University, Stockholm, Sweden.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    High-performance activated carbons synthesized from nanocellulose for CO2 capture and extremely selective removal of volatile organic compounds2018Inngår i: Advanced Sustainable Systems, E-ISSN 2366-7486, Vol. 2, nr 2, artikkel-id 1700147Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A series of sustainable activated carbons (ACs) with large surface areas and tunable pore sizes is synthesized from Cladophora cellulose and its chemically modified derivatives in a one-step physical carbonization/activation process. The molecular structure of the cellulose precursors and the carbonization/activation atmosphere (N2 or CO2) significantly influence the pore structure of the ACs. When using oxidized cellulose and its further cross-linkages as the precursor, the ACs have a large volume of ultramicropores (pore diameter < 0.8 nm). Activation in CO2 results in ACs with surface areas up to 1241 m2 g−1. These ACs have a high CO2 uptake capacity (2.29 mmol g−1 at 0.15 bar, 5.52 mmol g−1 at 1 bar; 273 K) and a high CO2–over–N2 selectivity (42 at 273 K). In addition, the capacity of the ACs to adsorb vapors of volatile organic compounds (VOCs) is remarkable, with values up to 0.97 mmol g−1 at very low VOC concentrations (200 ppmv). The ACs have ultrahigh VOCs–over–N2 selectivity up to 9.35 × 103 at 293 K for 0.02 vol%/99.8 vol% of benzene/N2 mixture. It is anticipated that these ACs will be useful as sorbents for the postcombustion capture of CO2 and for indoor removal and direct air capture of various VOCs.

  • 15.
    Xu, Chao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Lindh, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Li, Yunxiang
    Stockholm University.
    Hedin, Niklas
    Stockholm University.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Porous Polymers and Porous Carbons for CO2 Capture and VOC Removal2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Porous materials have potential applications in gas capture and storage and heterogeneous catalysis.1 We have developed a series of porous polymers (PPs) and porous carbons (PCs) with high surface areas and tunable pore sizes. They were studied as potential sorbents for CO2 separation and volatile organic compounds (VOCs) removal.2

      The PPs were synthesized by Schiff base polycondensations. The sustainable PCs were synthesized from natural abundant celluloses by a physical carbonization/ activation process. All the PPs and PCs had ultramicropores and displayed relatively high CO2 uptakes (0.93-2.29 mmol/g at 0.15 bar, 2.20-5.52 mmol/g at 1 bar; 273 K) and CO2-over-N2 selectivities (31-90 for CO2/N2 mixtures with 15 vol%/85 vol% at 273 K). In addition, the ACs displayed remarkable adsorption capacity for vapors of VOCs with values up to 0.97 mmol/g at very low VOC concentrations (200 ppmv) and with ultrahigh VOC-over-N2 selectivity (9.35 × 103 at 293 K for 0.02 vol%/99.8 vol% of benzene/N2 mixture).

      The diverse synthesis routes and rich functionalities of PPs allowed further post-modification to improve their performance in CO2 capture. The PPs modified by alkyl amines induced chemisorption of CO2, which was confirmed by the study of in situ infrared (IR) and solid-state 13C NMR spectroscopy. As a result, the amine-modified PPs had a large CO2 capacity and very high CO2-over-N2 selectivity at the CO2 concentrations relevant for post-combustion capture of CO2.

  • 16.
    Zhang, Jinbao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
    Hultqvist, Adam
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zhang, Tian
    Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
    Jiang, Liangcong
    Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Cheng, Yibing
    Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Johansson, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Al2O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.2017Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, nr 19, s. 3810-3817Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al2 O3 underlayer for perovskite solar cells. The thickness of the Al2 O3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al2 O3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al2 O3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al2 O3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al2 O3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al2 O3 underlayers for flexible solar cells.

  • 17.
    Zhang, Jinbao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Xu, Bo
    KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Chem, Organ Chem,Ctr Mol Devices, SE-10044 Stockholm, Sweden..
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Mingorance, Alba
    CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain.;Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain..
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Hua, Yong
    KTH Royal Inst Technol, Dept Chem, Ctr Mol Devices, Appl Phys Chem, Teknikringen 30, SE-10044 Stockholm, Sweden..
    Wang, Linqin
    KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Chem, Organ Chem,Ctr Mol Devices, SE-10044 Stockholm, Sweden..
    Vlachopoulos, Nick
    EPFL FSB ISIC LSPM, Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, Chemin Alambics,Stn 6, CH-1015 Lausanne, Switzerland..
    Lira-Cantu, Monica
    CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain.;Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain..
    Boschloo, Gerrit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Hagfeldt, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. EPFL FSB ISIC LSPM, Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, Chemin Alambics,Stn 6, CH-1015 Lausanne, Switzerland..
    Sun, Licheng
    KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Chem, Organ Chem,Ctr Mol Devices, SE-10044 Stockholm, Sweden.;Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Johansson, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Incorporation of Counter Ions in Organic Molecules: New Strategy in Developing Dopant-Free Hole Transport Materials for Efficient Mixed-Ion Perovskite Solar Cells2017Inngår i: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 7, nr 14, artikkel-id 1602736Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hole transport matertial (HTM) as charge selective layer in perovskite solar cells (PSCs) plays an important role in achieving high power conversion efficiency (PCE). It is known that the dopants and additives are necessary in the HTM in order to improve the hole conductivity of the HTM as well as to obtain high efficiency in PSCs, but the additives can potentially induce device instability and poor device reproducibility. In this work a new strategy to design dopant-free HTMs has been presented by modifying the HTM to include charged moieties which are accompanied with counter ions. The device based on this ionic HTM X44 dos not need any additional doping and the device shows an impressive PCE of 16.2%. Detailed characterization suggests that the incorporated counter ions in X44 can significantly affect the hole conductivity and the homogeneity of the formed HTM thin film. The superior photovoltaic performance for X44 is attributed to both efficient hole transport and effective interfacial hole transfer in the solar cell device. This work provides important insights as regards the future design of new and efficient dopant free HTMs for photovotaics or other optoelectronic applications.

  • 18.
    Zhang, Jinbao
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Xu, Bo
    Yang, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ruan, Changqing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Wang, Linqin
    Liu, Peng
    Zhang, Wei
    Vlachopoulos, Nick
    Kloo, Lars
    Boschloo, Gerrit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Sun, Licheng
    Hagfeldt, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Ecole Polytech Fed Lausanne, Lab Photomol Sci, Inst Chem Sci & Engn, FSB ISIC LSPM,Stn 6, Chemin Alamb, CH-1015 Lausanne, Switzerland.
    Johansson, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency2018Inngår i: Advanced Energy Materials, ISSN 1614-6832, Vol. 18, nr 2, artikkel-id 1701209Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tremendous progress has recently been achieved in the field of perovskite solar cells (PSCs) as evidenced by impressive power conversion efficiencies (PCEs); but the high PCEs of >20% in PSCs has so far been mostly achieved by using the hole transport material (HTM) spiro-OMeTAD; however, the relatively low conductivity and high cost of spiro-OMeTAD significantly limit its potential use in large-scale applications. In this work, two new organic molecules with spiro[fluorene-9,9-xanthene] (SFX)-based pendant groups, X26 and X36, have been developed as HTMs. Both X26 and X36 present facile syntheses with high yields. It is found that the introduced SFX pendant groups in triphenylamine-based molecules show significant influence on the conductivity, energy levels, and thin-film surface morphology. The use of X26 as HTM in PSCs yields a remarkable PCE of 20.2%. In addition, the X26-based devices show impressive stability maintaining a high PCE of 18.8% after 5 months of aging in controlled (20%) humidity in the dark. We believe that X26 with high device PCEs of >20% and simple synthesis show a great promise for future application in PSCs, and that it represents a useful design platform for designing new charge transport materials for optoelectronic applications.

1 - 18 of 18
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf