uu.seUppsala University Publications
Change search
Refine search result
1 - 40 of 40
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hao, Huang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Based Polypyrroles for Energy Storage Materials2015Conference paper (Refereed)
  • 2.
    Hao, Huang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Functionalized Polypyrroles: Organic Materials for Energy Storage2015Conference paper (Refereed)
    Abstract [en]

    Quinones, which are naturally occurring redox active organic compounds,have been proposed as cathode materials in lithium ionbatteries for their high theoretical specific capacities and more environmentallyfriendly manufacturing compared to conventional inorganiccathode materials (see figure on the right). However,many of them suffer from poor kinetics as well as capacity lossdue to dissolution.¹ In our work, by attaching quinones as pendantmoieties onto conducting polmers, e.g. polypyrroles, we havecomposed conducting redox polymers, which are expected to decreaseproblems with resistance and dissolution while retainingcapacity and cyclability² (see figure on the left). A series of monomericcompounds incorporating pyrrole and quinone units weresynthesized and polymerized electrochemically. The resultingpolymers were studied by in-situ spectro-electrochemical techniquesas well as by EQCM to elucidate the redox chemistry ofthe quinone units as well as the kinetics ofpolymer redox performance.

  • 3.
    Hao, Huang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Functionalized Pyrroles: Polymeric Materials for Energy Storage2015Conference paper (Refereed)
  • 4.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Monomers And Polymers Of Quinone Functionalized Pyrrole For Organic Energy Storage2014Conference paper (Refereed)
  • 5.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Synthesis and Characterization of Poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on Backbone/Pendant Interactions in a Conducting Redox Polymer2017In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 16, p. 10427-10435Article in journal (Refereed)
    Abstract [en]

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an InterDigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  • 6.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Hydroquinone–pyrrole dyads with varied linkers2016In: Beilstein Journal of Organic Chemistry, ISSN 2195-951X, E-ISSN 1860-5397, Vol. 12, p. 89-96Article in journal (Refereed)
    Abstract [en]

    A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C) has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

  • 7.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Quinone Functionalized Pyrrole For Organic Energy Storage2014Conference paper (Refereed)
  • 8.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Conducting Redox Polymers for Electrical Energy Storage: Backbone - Substituent Interactions in Quinone Polypyrrole Model Systems2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Organic electrical energy storage (EES) is a growing field of research that is expected to play an important role in the future, as the need for sustainable EES increases. Conducting redox polymers (CRPs), i.e. conducting polymers with incorporated redox active moieties e.g. as pendant groups (PGs), are proposed as a promising class of compounds for this purpose. Redox cycling of the PGs can be utilized for high charge storage capacity, while the conducting polymer backbone provides fast charge transport through the material. Some of the major challenges with small-molecule systems for EES could be solved by using CRPs, e.g. capacity fading due to dissolution of the active compound, and high resistance due to slow charge transport between molecules. The latter issue is often solved by adding large amounts of conducting additives to the active material, drastically lowering the specific capacity. In this project, CRPs are shown to be able to function in battery cells without any additives, making both high capacity and high power possible. Although several CRPs have been reported in the literature, very few detailed studies have been conducted on the electrochemical processes of the two systems (i.e. the conducting polymer backbone and the redox active PGs). An important factor to consider in CRP design is the possibility for interaction between the two redox systems, which could be either beneficial or detrimental to the function as EES material. In this thesis, CRP model systems composed of hydroquinone functionalized polypyrrole have been studied, and they exhibit separate redox reactions for the PGs and the backbone, overlapping in potential. Significant interaction between them was observed, as oxidation of the PGs has severe impact on the backbone: When the oxidized and hydrophobic p-benzoquinone PGs are formed, they pack and force the polymer backbone to twist, localizing the bipolarons, and decreasing the conductivity. This is accompanied by a contraction of the polymer film and expulsion of electrolyte. Overall, the interaction in these polymers is destructive for their EES function, and it could be eliminated by introduction of a long linker unit between the PGs and the backbone.

    List of papers
    1. Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials
    Open this publication in new window or tab >>Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials
    2012 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 5, p. 3793-3801Article in journal (Refereed) Published
    Abstract [en]

    Prediction of the redox behavior of electroactive molecules enables screening of a variety of compounds and can serve as a guideline in the search for organic molecules for use as cathode materials in, for example, Li ion batteries. In this study, we present a computational strategy, based on density functional theory, to calculate redox potentials and acid dissociation constants for a series of 16 isoindole-4,7-dione (IID) derivatives. The calculations take all possible electron and proton transfers into account, and the results were found to correlate very well with electrochemical and spectroscopic measurements. The possibility of polymerizing the IID derivatives was also assessed computationally, as polymerization serves as a straightforward route to immobilize the active material. Three of the considered IIDs (5,6-dicyano-2-methyl-isoindole-4,7-dione, 5,6-dihydroxy-2-methyl-isoindole-4,7-dione, and 2-methyl-5-(trifluoromethyl)-isoindole-4,7-dione) are predicted to be particularly interesting for making polymers for organic cathodes because these are calculated to have high redox potentials and high specific capacities and to be readily polymerizable. The presented strategy is general and can be applied in the prediction of the electrochemical behavior of quinones as well as other systems involving proton and electron transfers.

    Place, publisher, year, edition, pages
    American Chemical Society, 2012
    National Category
    Other Chemistry Topics Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-168889 (URN)10.1021/jp211851f (DOI)000299985300073 ()
    Available from: 2012-02-17 Created: 2012-02-17 Last updated: 2018-11-05Bibliographically approved
    2. Investigation of the Redox Chemistry of Isoindole-4,7-diones
    Open this publication in new window or tab >>Investigation of the Redox Chemistry of Isoindole-4,7-diones
    2013 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 2, p. 894-901Article in journal (Refereed) Published
    Abstract [en]

    Quinone derivatives have been proposed as active components in lithium ion battery (LIB) electrode materials. In this work the electrochemistry of a series of substituted isoindole-4,7-diones (IIDs) was investigated. Three new IID derivatives were synthesized and characterized by various electrochemical and spectroscopic techniques. Polymerization was attempted to achieve a conducting polymer with redox active quinone side groups, which would be advantageous in a LIB application. A combination of in situ spectroelectrochemical measurements and density functional theory (DFT) calculations was used to investigate the proton coupled redox reactions of the IIDs. Results from a previous computational study of the IIDs were compared with experimental data here, and the agreement was very good. The energy of the spectroscopic transitions in the UV and in the visible region showed different correlation with redox potential and quinone substituent in the series of IIDs. This behavior was rationalized by examination of the involved molecular orbitals. The results indicated that the properties of the quinone unit, such as the redox potential, could be selectively varied by substitution.

    National Category
    Physical Chemistry Engineering and Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-192605 (URN)10.1021/jp311009z (DOI)000313932800017 ()
    Available from: 2013-01-23 Created: 2013-01-23 Last updated: 2017-12-06Bibliographically approved
    3. Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions
    Open this publication in new window or tab >>Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions
    Show others...
    2013 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 45, p. 23558-23567Article in journal (Refereed) Published
    Abstract [en]

    While various organic molecules have been suggested as environmentally friendly alternatives to inorganic electrode materials for lithium ion batteries, most of them suffer from slow kinetics as well as capacity fading due to dissolution. Herein we present the synthesis of poly(pyrrol-3-ylhydroquinone) (PPyQ), a polypyrrole (PPy) derivative with pending hydroquinone groups, for investigation of the use of a conducting polymer to immobilize redox active quinone units. This strategy eliminates dissolution of the active material while also increasing the conductivity. The quinone pending groups in PPyQ cycle reversibly in the potential region where the polymer backbone is conducting and chemically stable. In situ spectroelectrochemistry on PPyQ films reveals UV/vis transitions inherent to PPy, as well as quinone centered transitions, allowing detailed investigation of the interplay between the polymer doping process and the quinone redox conversion. Intriguingly, it is found that the charging of the PPy backbone halts during the redox reaction of the quinone pending groups. This opens up for the possibility of using PPy at low and constant doping levels while utilizing the charge storage capacity of the quinone pending groups when creating electric energy storage materials based on sustainable and renewable components.

    National Category
    Physical Chemistry Engineering and Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-210983 (URN)10.1021/jp408567h (DOI)000327110500015 ()
    Available from: 2013-11-18 Created: 2013-11-18 Last updated: 2017-12-06Bibliographically approved
    4. Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)
    Open this publication in new window or tab >>Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)
    Show others...
    2014 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 41, p. 23499-23508Article in journal (Refereed) Published
    Abstract [en]

    Conducting polymers with redox active pendant groups show properties typical of both conducting polymers (i.e., capacitive charging and intrinsic conductivity) and redox polymers (i.e., electrochemical surface response at the formal potential of the pendant groups). The two components can also exert significant interaction on each other during their separate electrochemical reactions. In poly(pyrrol-3-ylhydroquinone), a polypyrrole derivative functionalized with hydroquinone units, the redox conversion of the pendant groups has a large impact on the polymer backbone. This interaction is manifested by a loss of bipolaron states during the hydroquinone oxidation, leading to a decreasing p-doping level with increasing potential, something which, to the best of our knowledge, has never been observed for a conducting polymer. Another effect is a contraction of the polymer film, and subsequent mass loss due to solvent expulsion upon hydroquinone oxidation, which counteracts the normal swelling of polypyrrole with increased potential. The conducting redox polymer under investigation has been synthesized via two routes, leading to different fractions of subunits bearing redox active hydroquinone groups. While the redox potentials are unaffected by the synthesis route, the backbone/pendant group interaction varies notably depending on the degree of quinone functionalization. This type of polymers could find use in, e.g., organic energy storage materials, since the polymer backbone both increases the electronic conductivity and prevents dissolution of the active material, as well as in actuator application, due to polymer contraction over the relatively narrow potential region where the pendant group redox chemistry occurs.

    National Category
    Physical Chemistry Engineering and Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-230486 (URN)10.1021/jp506821z (DOI)000343333600007 ()
    Available from: 2014-09-10 Created: 2014-08-26 Last updated: 2017-12-05Bibliographically approved
    5. Quinone Pendant Group Kinetics in Poly(pyrrol-3-ylhydroquinone)
    Open this publication in new window or tab >>Quinone Pendant Group Kinetics in Poly(pyrrol-3-ylhydroquinone)
    Show others...
    2014 (English)In: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 735, p. 95-98Article in journal (Refereed) Published
    Abstract [en]

    Herein, we investigate the kinetics of the redox processes occurring in acidic aqueous electrolyte in electropolymerized poly(pyrrol-3-ylhydroquinone), which has been proposed for electrical energy storage applications. The redox conversion of the pendant groups is found to be limited by the quinone redox kinetics in thin films, rather than by the conduction through the polypyrrole backbone. Rate constants for the elementary steps involved in this 2e, 2H+ process are reported. As the films are made thicker, a gradual transition to a diffusion limited reaction is observed. The origin of the diffusion process, as well as the elementary reaction steps limiting the pendant group redox conversion is analyzed using DFT computations. The fact that the electron transport through the thin film conducting polymer backbone is not limiting the quinone reaction kinetics should allow for design of battery electrodes with high rate capabilities based on the studied material.

    National Category
    Physical Chemistry Engineering and Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-230487 (URN)10.1016/j.jelechem.2014.10.013 (DOI)000346214800015 ()
    Available from: 2014-09-10 Created: 2014-08-26 Last updated: 2017-12-05Bibliographically approved
    6. Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers
    Open this publication in new window or tab >>Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers
    Show others...
    2015 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 15, p. 11309-11316Article in journal (Refereed) Published
    Abstract [en]

    Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.

    National Category
    Physical Chemistry Engineering and Technology Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-230488 (URN)10.1039/c4ra15708g (DOI)000348986900057 ()
    Available from: 2014-09-10 Created: 2014-08-26 Last updated: 2017-12-05
  • 9.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Investigation of the Redox Chemistry of Isoindole-4,7-diones2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 2, p. 894-901Article in journal (Refereed)
    Abstract [en]

    Quinone derivatives have been proposed as active components in lithium ion battery (LIB) electrode materials. In this work the electrochemistry of a series of substituted isoindole-4,7-diones (IIDs) was investigated. Three new IID derivatives were synthesized and characterized by various electrochemical and spectroscopic techniques. Polymerization was attempted to achieve a conducting polymer with redox active quinone side groups, which would be advantageous in a LIB application. A combination of in situ spectroelectrochemical measurements and density functional theory (DFT) calculations was used to investigate the proton coupled redox reactions of the IIDs. Results from a previous computational study of the IIDs were compared with experimental data here, and the agreement was very good. The energy of the spectroscopic transitions in the UV and in the visible region showed different correlation with redox potential and quinone substituent in the series of IIDs. This behavior was rationalized by examination of the involved molecular orbitals. The results indicated that the properties of the quinone unit, such as the redox potential, could be selectively varied by substitution.

  • 10.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Kinetics of conducting polymers with side chain quinone units2013Conference paper (Refereed)
    Abstract [en]

    Quinones have been suggested as active material in organic lithium ion battery (LIB) cathodes. They are expected to have higher specific capacities and to be cheaper and more environmentally friendly than the inorganic lithium intercalation compounds used in LIBs today. However, quinone compounds suggested for this purpose often suffer from slow kinetics and low cyclability due to dissolution. In this work, conducting polymers containing pending quinone moieties were synthesized. Immobilizing the redox active quinone units on a conducting polymer matrix decreases both resistance and solubility, which improves the speed and the cyclability of the system, while maintaining a high specific capacity. The two-electron redox reaction of the quinone units in these polymers yields a theoretical capacity of ~300 mAh/g. The polymers were studied electrochemically and spectroscopically to elucidate the kinetics of the polymer charging and the redox cycling of the quinone units.

  • 11.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Poly(pyrrol-3-ylhydroquinone) – A Conducting Redox Polymer for Electric Energy Storage2013Conference paper (Refereed)
  • 12.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Poly(pyrrol-3-ylhydroquinone) – A Conducting Redox Polymer for Electric Energy Storage2013Conference paper (Refereed)
  • 13.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods2015In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 179, p. 336-342Article in journal (Refereed)
    Abstract [en]

    Polypyrrole functionalized with redox active pendant groups constitutes a so called conducting redox polymer, and functions both as a conducting polymer and as a redox polymer. The electrochemical response reveals capacitive charging of the conducting backbone as well as redox cycling of the pendant groups. While the backbone provides an electrically conducting matrix for fast electron transport through the material, the pendant groups offer a large charge storage capacity, much greater than that of polypyrrole itself. We have investigated such polypyrrole-hydroquinone conducting redox polymers, with focus on their in situ conductivity during electrochemical cycling, in order to understand the charge transport mechanisms in this type of system. The most notable feature is that oxidation of the pendant groups leads to a large decrease in the polymer conductivity. The causes of this phenomenon are discussed, as well as the rate limitations of fast redox cycling of the polymer, which are investigated through a combination of bipotentiostat cyclic voltammetry and potential steps of polymer films on interdigitated array electrodes.

  • 14.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Charge transport in pyrrole/quinone conducting redox polymers2014Conference paper (Refereed)
  • 15.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Conducting Redox Polymers – New Candidates for Organic Electrode Materials2013Conference paper (Refereed)
  • 16.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Conducting Redox Polymers – New Candidates for Organic Electrode Materials2014Conference paper (Refereed)
  • 17.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers2015In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 15, p. 11309-11316Article in journal (Refereed)
    Abstract [en]

    Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.

  • 18.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 45, p. 23558-23567Article in journal (Refereed)
    Abstract [en]

    While various organic molecules have been suggested as environmentally friendly alternatives to inorganic electrode materials for lithium ion batteries, most of them suffer from slow kinetics as well as capacity fading due to dissolution. Herein we present the synthesis of poly(pyrrol-3-ylhydroquinone) (PPyQ), a polypyrrole (PPy) derivative with pending hydroquinone groups, for investigation of the use of a conducting polymer to immobilize redox active quinone units. This strategy eliminates dissolution of the active material while also increasing the conductivity. The quinone pending groups in PPyQ cycle reversibly in the potential region where the polymer backbone is conducting and chemically stable. In situ spectroelectrochemistry on PPyQ films reveals UV/vis transitions inherent to PPy, as well as quinone centered transitions, allowing detailed investigation of the interplay between the polymer doping process and the quinone redox conversion. Intriguingly, it is found that the charging of the PPy backbone halts during the redox reaction of the quinone pending groups. This opens up for the possibility of using PPy at low and constant doping levels while utilizing the charge storage capacity of the quinone pending groups when creating electric energy storage materials based on sustainable and renewable components.

  • 19.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)2014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 41, p. 23499-23508Article in journal (Refereed)
    Abstract [en]

    Conducting polymers with redox active pendant groups show properties typical of both conducting polymers (i.e., capacitive charging and intrinsic conductivity) and redox polymers (i.e., electrochemical surface response at the formal potential of the pendant groups). The two components can also exert significant interaction on each other during their separate electrochemical reactions. In poly(pyrrol-3-ylhydroquinone), a polypyrrole derivative functionalized with hydroquinone units, the redox conversion of the pendant groups has a large impact on the polymer backbone. This interaction is manifested by a loss of bipolaron states during the hydroquinone oxidation, leading to a decreasing p-doping level with increasing potential, something which, to the best of our knowledge, has never been observed for a conducting polymer. Another effect is a contraction of the polymer film, and subsequent mass loss due to solvent expulsion upon hydroquinone oxidation, which counteracts the normal swelling of polypyrrole with increased potential. The conducting redox polymer under investigation has been synthesized via two routes, leading to different fractions of subunits bearing redox active hydroquinone groups. While the redox potentials are unaffected by the synthesis route, the backbone/pendant group interaction varies notably depending on the degree of quinone functionalization. This type of polymers could find use in, e.g., organic energy storage materials, since the polymer backbone both increases the electronic conductivity and prevents dissolution of the active material, as well as in actuator application, due to polymer contraction over the relatively narrow potential region where the pendant group redox chemistry occurs.

  • 20.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Pendant Group Kinetics in Poly(pyrrol-3-ylhydroquinone)2014In: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 735, p. 95-98Article in journal (Refereed)
    Abstract [en]

    Herein, we investigate the kinetics of the redox processes occurring in acidic aqueous electrolyte in electropolymerized poly(pyrrol-3-ylhydroquinone), which has been proposed for electrical energy storage applications. The redox conversion of the pendant groups is found to be limited by the quinone redox kinetics in thin films, rather than by the conduction through the polypyrrole backbone. Rate constants for the elementary steps involved in this 2e, 2H+ process are reported. As the films are made thicker, a gradual transition to a diffusion limited reaction is observed. The origin of the diffusion process, as well as the elementary reaction steps limiting the pendant group redox conversion is analyzed using DFT computations. The fact that the electron transport through the thin film conducting polymer backbone is not limiting the quinone reaction kinetics should allow for design of battery electrodes with high rate capabilities based on the studied material.

  • 21.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone pending groups on polypyrrole affect the backbone doping behavior2014Conference paper (Refereed)
  • 22.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Jämstorp, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials2012In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 5, p. 3793-3801Article in journal (Refereed)
    Abstract [en]

    Prediction of the redox behavior of electroactive molecules enables screening of a variety of compounds and can serve as a guideline in the search for organic molecules for use as cathode materials in, for example, Li ion batteries. In this study, we present a computational strategy, based on density functional theory, to calculate redox potentials and acid dissociation constants for a series of 16 isoindole-4,7-dione (IID) derivatives. The calculations take all possible electron and proton transfers into account, and the results were found to correlate very well with electrochemical and spectroscopic measurements. The possibility of polymerizing the IID derivatives was also assessed computationally, as polymerization serves as a straightforward route to immobilize the active material. Three of the considered IIDs (5,6-dicyano-2-methyl-isoindole-4,7-dione, 5,6-dihydroxy-2-methyl-isoindole-4,7-dione, and 2-methyl-5-(trifluoromethyl)-isoindole-4,7-dione) are predicted to be particularly interesting for making polymers for organic cathodes because these are calculated to have high redox potentials and high specific capacities and to be readily polymerizable. The presented strategy is general and can be applied in the prediction of the electrochemical behavior of quinones as well as other systems involving proton and electron transfers.

  • 23.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Jämstorp, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Isoindole-4,7-diones as Candidates for Organic Lithium Ion Battery Polymer Cathodes2012In: GRADuate School in Advanced Materials for the 21st century: Workshop 2012, February 8, 2012, Uppsala, 2012Conference paper (Refereed)
  • 24.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nicholas, James
    Univ South Australia, Future Ind Inst, Thin Film Coatings Grp, Adelaide, SA 5001, Australia.; Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England.
    Evans, Drew
    Univ South Australia, Future Ind Inst, Thin Film Coatings Grp, Adelaide, SA 5001, Australia.
    Forsyth, Maria
    Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood 3125, Australia.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Howlett, Patrick C
    Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood 3125, Australia.
    Pozo-Gonzalo, Cristina
    Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood 3125, Australia.
    Stable Deep Doping of Vapor-Phase Polymerized Poly(3,4-ethylenedioxythiophene)/Ionic Liquid Supercapacitors.2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 16, p. 2112-2121Article in journal (Refereed)
    Abstract [en]

    Liquid-solution polymerization and vapor-phase polymerization (VPP) have been used to manufacture a series of chloride- and tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT) carbon paper electrodes. The electrochemistry, specific capacitance, and specific charge were determined for single electrodes in 1-ethyl-3-methylimidazolium dicyanamide (emim dca) ionic liquid electrolyte. VPP-PEDOT exhibits outstanding properties with a specific capacitance higher than 300 F g(-1) , the highest value reported for a PEDOT-based conducting polymer, and doping levels as high as 0.7 charges per monomer were achieved. Furthermore, symmetric PEDOT supercapacitor cells with the emim dca electrolyte exhibited a high specific capacitance (76.4 F g(-1) ) and high specific energy (19.8 Wh kg(-1) ). A Ragone plot shows that the VPP-PEDOT cells combine the high specific power of conventional ("pure") capacitors with the high specific energy of batteries, a highly sought-after target for energy storage.

  • 25.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Maria, Strømme
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Isoindole-4,7-dione Polymers As Candidates For Organic Lithium Ion Battery Cathodes2012In: 63rd Annual meeting of the International Society of Electrochemistry, August 19-24, 2012, Prague, Czech, 2012Conference paper (Refereed)
  • 26.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Electric Energy Storage: Conducting Redox Polymers2013Conference paper (Refereed)
  • 27.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Faculty of Science and Technology.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Faculty of Science and Technology.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Faculty of Science and Technology.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Faculty of Science and Technology.
    Isoindole-4,7-dione Polymers As Candidates For Organic Lithium Ion Battery Cathodes2012Conference paper (Refereed)
  • 28.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Organic Matter Based Batteries2012Conference paper (Other academic)
  • 29.
    Karlsson, Christoffer
    et al.
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University.
    Strietzel, Christian
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Jannasch, Patric
    Centre for Analysis and Synthesis, Department of Chemistry, Lund University.
    Nonstoichiometric Triazolium Protic Ionic Liquids for All-Organic Batteries2018In: ACS Applied Energy Materials, ISSN 2574-0962, no 11, p. 6451-6462Article in journal (Refereed)
    Abstract [en]

    Nonstoichiometric protic ionic liquids (NSPILs) are efficient electrolytes for protic electrochemical devices such as the all-organic proton battery, which has been suggested as a sustainable approach to energy storage. NSPILs contain a mixture of proton donors and acceptors and are ideal for this purpose due to their high proton conductivity, high electrochemical stability, low cost, and ease of synthesis. However, the electrolyte proton activity must be controlled carefully in these devices since it greatly influences the kinetics and energetics of the electrode redox reactions and, hence, also impacts battery device performance. In this study, specific NSPILs were designed and evaluated as electrolytes for the all-organic proton battery. The NSPILs were based on either 1,2,4-triazole or 1-methyl-1,2,4-triazole partially protonated with bis(trifluoromethylsulfonyl)imide (TFSI) to produce a range of NSPILs with different degrees of protonation. Both types of NSPIL investigated here exhibited a maximum conductivity of 1.2 S/cm (at 120 and 70 °C, respectively), and the eutectic composition of 1-methyl-1,2,4-triazolium TFSI also had high conductivity at 25 °C (24.9 mS/cm), superior to, e.g., imidazolium TFSI NSPILs. Pulsed field gradient NMR in conjunction with electrochemical impedance spectroscopy showed that the conductivity originated mainly from vehicle diffusion and proton hopping. Quinone functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes exhibited reversible, fast, and stable redox conversion in these electrolytes, and a model is suggested to determine proton activities of NSPILs based on the quinone formal potential. An all-organic proton battery cell was assembled to demonstrate the usefulness of these electrolytes in devices. Fast and complete redox conversion with a cell potential of 0.45 V was demonstrated, even up to scan rates corresponding to 140 C. Compared to the pyridine based electrolytes used for the all-organic proton battery up until now, the present electrolytes display several advantages including lower melting point, lower toxicity, and compatibility with plastic materials.

  • 30.
    Norrehed, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Light, Mark E.
    University of Southampton: Southampton.
    Thapper, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Huang, Ping
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Gogoll, A
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry. Uppsala University.
    Formation of persistent organic diradicals from N,N'-diphenyl-3,7- diazacyclooctanes2019In: Monatshefte fuer Chemie, ISSN 0026-9247, E-ISSN 1434-4475, Vol. 150, no 1, p. 77-84Article in journal (Refereed)
    Abstract [en]

    N,N'-Diphenyl-3,7-diazacyclooctane and structurally related N,N'-diphenylbispidine derivatives react with silver(I) ions in a high-yielding C–C coupling reaction to produce dication–diradical species, with the silver ions serving a double function both as template and as an oxidant. The resulting bis(benzidino)phane derivatives are persistent organic radicals, stable for several months in solution as well as in the solid state, at room temperature and above, as well as being exposed to the atmosphere. The molecular structure features a double-decker cyclophane motif, stabilized by intramolecular π-dimerization of two delocalized benzidinium radical segments. Intermolecular π-dimers are formed in the solid state.

  • 31.
    Olsson, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone-Pyrrole-Polymer Materials for Organic Matter Based Energy Storage2012Conference paper (Other academic)
  • 32.
    Olsson, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone-Pyrrole-Polymer Materials for Organic Matter Based Energy Storage2012In: 63rd Annual meeting of the International Society of Electrochemistry, 2012, Prague, 2012Conference paper (Refereed)
  • 33.
    Olsson, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Study of the Self-Discharge Mechanism in Polypyrrole2013Conference paper (Other academic)
  • 34.
    Olsson, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Organic Energy Storage: The Algae Battery2013Conference paper (Other academic)
  • 35.
    Olsson, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Study of the Self-Discharge Mechanism in Polypyrrole2014Conference paper (Other (popular science, discussion, etc.))
  • 36.
    Sjödin, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Organic Battery Materials based on Conducting Polymer Backbones with High Capacity Pending Groups2014Conference paper (Refereed)
    Abstract [en]

    Organic matter based battery materials have attracted large interest due to their inherent ability to provide an environmentally benign alternative to inorganic batteries because such materials can be produced from renewable resources via eco-efficient processes. The development of organic battery materials rely on several key factors that need to be resolved, the most important being dissolution problems, limited electronic conductivity, degradation of active material and slow redox kinetics. Conducting polymers are insoluble in most electrolytes, they are electronically conducting and show fast redox conversion but are, to some extent, unstable and have insufficient charge capacities for battery applications.

                To understand the instability of conducting polymers we have measured self discharge rates in polypyrrole at different temperatures. From these experiments it is clear that the self-discharge originates from an activated redox reaction with an activation barrier of around 0.4 eV. Although the exact nature of the redox reaction has not been identified we have been able to link the self discharge to, what is commonly referred to as, over-oxidation. Over-oxidation is common to polyacetylene, polyparaphenylene, polypyrrole and polythiophene and this mechanism of self discharge is thus a general feature of conducting polymers. This self-discharge mechanism is suppressed by low polymer doping levels, low potentials and low temperatures.     

    By attaching high capacity redox active groups onto the conducting polymer backbone the charge capacity can be increased while retaining electronic conductivity and insolubility. We have attached quinone groups to each repeat unit of polypyrrole for this purpose. Interestingly, in-situ spectroscopic measurements show that during quinone redox conversion the polymer doping level is in-fact reduced. Since the doping level of the polymer affects the rate of self-discharge the attachment of quinone units to the polypyrrole chain not only increases the charge capacity but also provides a conceptual strategy to control self discharge. 

  • 37.
    Sjödin, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sterby, Mia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Based Conducting Redox Polymers for Electrical Energy Storage2015Conference paper (Refereed)
  • 38.
    Sjödin, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Xiao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanielsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Rational design of conducting redox polymers for electrical energy storage2015Conference paper (Refereed)
  • 39.
    Sjödin, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Xiao, Huang
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Design principles for constructing conducting redox polymer based battery materials2015Conference paper (Refereed)
  • 40.
    Yang, Li
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mihali, Viorica-Alina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Conjugated polymers as anodes in organic matter based batteries2014Conference paper (Other academic)
1 - 40 of 40
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf