uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
12 1 - 50 of 81
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Amato, Letizia
    et al.
    Technical University of Denmark.
    Heiskanen, Arto
    Technical University of Denmark.
    Hansen, Rasmus
    Technical University of Denmark.
    Gammelgaard, Lauge
    Capres A/S.
    Rindzevicius, Tomas
    Technical University of Denmark.
    Tenje, Maria
    Lunds universitet.
    Emnéus, Jenny
    Technical University of Denmark.
    Keller, Stephan
    Technical University of Denmark.
    Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays2015Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 94, s. 792-803Artikkel i tidsskrift (Fagfellevurdert)
  • 2.
    Andersson, Marlene
    et al.
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden..
    Jia, Qiupin
    Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China..
    Abella, Ana
    ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain..
    Lee, Xiau-Yeen
    ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain..
    Landreh, Michael
    Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK..
    Purhonen, Pasi
    Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.; School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden..
    Hebert, Hans
    Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.; School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden..
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Department of Biomedical Engineering, Lund University, Lund, Sweden..
    Robinson, Carol V.
    Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK..
    Meng, Qing
    Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China..
    Plaza, Gustavo R.
    ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain..
    Johansson, Jan
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.; Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.; Karolinska Institutet.
    Rising, Anna
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.;Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.; Karolinska Institutet.
    Biomimetic spinning of artificial spider silk from a chimeric minispidroin2017Inngår i: Nature Chemical Biology, ISSN 1552-4450, E-ISSN 1552-4469, Vol. 13, nr 3, s. 262-264Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.

  • 3.
    Atif, Abdul Raouf
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Carter, Sarah-Sophia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Pujari-Palmer, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Bone Cement Embedded in a Microfluidic Device2018Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Calcium phosphate cements (CPCs) have a great potential in the treatment of bone disorders due to their excellent biocompatibility. Although CPCs are promising when implanted in vivo, there is poor correlation between in vitro and in vivo studies. This could be because most conventional in vitro systems lack a 3D architecture, or dynamic conditions (i.e. a continuous refreshment stream). The aim of this work is to embed CPCs into a microfluidic system and evaluate ion and protein exchange at different flow rates.

  • 4.
    Atif, Abdul Raouf
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Pujari-Palmer, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Evaluation of Ionic Interactions of Bone Cement-on-Chip2019Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    INTRODUCTION: Biomaterials are synthetic materials that can be incorporated into the body to replace an impaired physiological function. Apatite calcium phosphate cements (CPCs), used for bone regeneration, give calcium-deficient hydroxyapatite (CDHA) as an end-product after a dissolution-precipitation reaction during fabrication. CDHA has a tendency to uptake calcium and release phosphate into cell culture medium. Potentially, this leads to depletion of calcium ions in solution, which can be detrimental to cell survival. The aim of this work is to embed CDHA in a microfluidic system and evaluate ion exchange at different flow rates.

    METHODS: CPC paste was cast into a 0.8mm pocket within a Polydimethylsiloxane (PDMS, cured at 60°C for 2h) mould. CPCs were set in 0.9% w/v NaCl at 37°C for 10 days resulting in CDHA. The PDMS containing the CDHA was then bonded to glass, leaving a 0.5mm channel gap. Minimum Essential Media (MEM, 1ml) was pumped through the channel at low (2µl/min), medium (8µl/min) and high (14µl/min) flow rates. A CDHA disc (ø=15mm, h=2mm) was immersed in MEM (1ml) at static conditions (0µl/min) for 24h. Stock Media was taken as control. Calcium and phosphorus concentrations were analysed using Inductively Coupled Plasma Optical Emission Spectroscopy.

    RESULTS & CONCLUSIONS: CDHA was successfully embedded in a microfluidic chip (Fig. 1A). Observed [Ca] and [P] levels were closer to levels in stock MEM at higher flow rates (Fig. 1B). We anticipate that osteoblast viability will improve when grown under flow, as opposed to static conditions, due to continuous replenishment of cell medium.

  • 5.
    Blasi Romero, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nguyen, Hugo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Barbe, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Development and validation of a reusable microfluidic system for the evaluation of biomaterials’ biological properties2019Konferansepaper (Annet vitenskapelig)
  • 6.
    Cantoni, Federico
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Hilborn, Jöns
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Johansson, Sofia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Pohlit, Hannah
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Porras, Ana Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Samanta, Ayan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    2D and 3D patterning of biological hydrogels for organ-on-chip applications2018Konferansepaper (Annet vitenskapelig)
  • 7.
    Carter, Sarah-Sophia
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Atif, Abdul
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Lanekoff, Ingela
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tailoring the biocompatibility of the elastomer PDMS for on-chip applications2018Konferansepaper (Fagfellevurdert)
  • 8.
    Carter, Sarah-Sophia
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Atif, Abdul Raouf M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Lanekoff, Ingela
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Improving the biocompatibility of PDMS by improving its curing time and temperature2018Konferansepaper (Annet vitenskapelig)
  • 9.
    Carter, Sarah-Sophia
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Cruz, Javier
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Towards the development of a microfluidic tool to assess the biological properties of biomaterials for bone regeneration2018Konferansepaper (Fagfellevurdert)
  • 10.
    Carter, Sarah-Sophia
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nguyen, Hugo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Moreira, Milena
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Medical grade titanium on-chip: assessing the biological properties of biomaterials for bone regeneration2019Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Medical grade titanium on-chip: assessing the biological properties of biomaterials for bone regeneration

     

    Sarah-Sophia D. Carter1, Hugo Nguyen2, Milena Moreira1, Maria Tenje1, and Gemma Mestres1

    1Department of Engineering Sciences, Science for Life Laboratory, Uppsala University, Sweden

    2Department of Engineering Sciences, Uppsala University, Sweden

     

    Introduction

    Before entering the clinic, biomaterials need to be thoroughly evaluated, which requires accurate in vitro models. In this work, we have developed a microfluidic device that could be used to assess the biological properties of biomaterials, in a more in vivo-like environment than what is currently possible.

     

    Methods

    Our device consists of a polydimethylsiloxane (PDMS, Sylgard 184) microfluidic channel (l= 6 mm, w= 2 mm, h= 200 µm) and a titanium disc (Ti6Al4V, at bottom), held together by an additively manufactured fixture (Fig. 1A). PDMS was cured overnight at 65°C on a silicon wafer master. Once the microchannel and titanium disc were positioned, MC3T3-E1 pre-osteoblast-like cells were seeded (50,000 cells/cm2). After 5 hours incubation under standard culture conditions, flow was started (2 μl/min). As a control, MC3T3-E1 cells were seeded onto plain titanium discs off-chip. Cell viability and morphology were assessed after 20 hours by calcein-AM/propidium iodide (PI), staining live and dead cells respectively.

     

    Results and discussion

    Figure 1B and 1C show calcein-AM/PI stained MC3T3-E1 cells cultured on-chip and figure 1D shows the control, MC3T3-E1 cells cultured off-chip. The potential to culture cells in our chip was confirmed by the presence of a majority of viable cells (green) with a similar morphology as the control sample. The reason for the increased amount of dead cells (red) on-chip compared to the control needs to be further examined, which requires longer-term experiments.

    Conclusion

    We have set the first steps towards a microfluidic tool for the assessment of biological properties of biomaterials.

  • 11.
    Evander, Mikael
    et al.
    Lund University.
    Tenje, Maria
    Lund University.
    Microfluidic PMMA interfaces for rectangular glass capillaries2014Inngår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 24, nr 2, s. 027003-Artikkel i tidsskrift (Fagfellevurdert)
  • 12.
    Fornell, Anna
    et al.
    Department of Biomedical Engineering, Lund University, Sweden.
    Cushing, Kevin
    Department of Biomedical Engineering, Lund University, Lund, Sweden.
    Nilsson, Johan
    Department of Biomedical Engineering, Lund University, Lund, Sweden.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Intra-droplet acoustic separation of two particle species in a droplet microfluidic system2017Konferansepaper (Fagfellevurdert)
  • 13.
    Fornell, Anna
    et al.
    Lund University.
    Garofalo, Fabio
    Lund University.
    Nilsson, Johan
    Lund University.
    Bruus, Henrik
    Technical University of Denmark.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund University.
    Intra-droplet acoustic particle focusing: simulations and experimental observations2018Inngår i: Microfluidics and Nanofluidics, ISSN 1613-4982, E-ISSN 1613-4990, Vol. 22, nr 75Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aim of this paper is to study resonance conditions for acoustic particle focusing inside droplets in two-phase microfluidic systems. A bulk acoustic wave microfluidic chip was designed and fabricated for focusing microparticles inside aqueous droplets (plugs) surrounded by a continuous oil phase in a 380-μm-wide channel. The quality of the acoustic particle focusing was investigated by considering the influence of the acoustic properties of the continuous phase in relation to the dispersed phase. To simulate the system and study the acoustic radiation force on the particles inside droplets, a simplified 3D model was used. The resonance conditions and focusing quality were studied for two different cases: (1) the dispersed and continuous phases were acoustically mismatched (water droplets in fluorinated oil) and (2) the dispersed and continuous phases were acoustically matched (water droplets in olive oil). Experimentally, we observed poor acoustic particle focusing inside droplets surrounded by fluorinated oil while good focusing was observed in droplets surrounded by olive oil. The experimental results are supported qualitatively by our simulations. These show that the acoustic properties (density and compressibility) of the dispersed and continuous phases must be matched to generate a strong and homogeneous acoustic field inside the droplet that is suitable for high-quality intra-droplet acoustic particle focusing.

  • 14.
    Fornell, Anna
    et al.
    Lund University.
    Garofalo, Fabio
    Lund University.
    Nilsson, Johan
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund University.
    Acoustophoretic particle manipulation in droplet microfluidics at higher resonance modes2016Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper we investigate focusing of microparticles in the presence of multiple pressure nodes inside aqueous droplets by using bulk acoustic waves. The microfluidic chip s for droplet generation and particle encapsulation (within the droplets) were fabricated using anisotropic wet - etching of a silicon wafer. Subsequently, piezoelectric transducers featuring different thicknesses were glued on the chips to build the final devices. The transducer thicknesses were chosen as to match the acoustic resonances of the embedded micro channel at the fundamental frequency, the first and the second harmonics. The actuation of the devices at the first three resonance modes enabled the positioning of the microparticles in one, two or three bands, in accordance with the presence of pressure nodes within the droplet contained in the microchannel. This acoustic particle manipulation technique opens up for new possibilities to perform biological assays using droplet microfluidic platforms.

  • 15.
    Fornell, Anna
    et al.
    Lund University.
    Garofalo, Fabio
    Lund University.
    Nilsson, Johan
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund University.
    Experimental investigation of resonance conditions for particle focusing in droplet acoustofluidics2016Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We have experimentally studied the conditions for acoustic particle focusing inside aqueous droplets in two-phase-systems, and confirmed our findings by theoretical analysis. The results show that the acoustic properties of the two fluids have to be matched to achieve strong acoustic resonance and focusing in the system.

  • 16. Fornell, Anna
    et al.
    Joensson, Haakan
    Antfolk, Maria
    Nilsson, Johan
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Focusing microparticles inside droplets using acoustics2015Konferansepaper (Fagfellevurdert)
  • 17.
    Fornell, Anna
    et al.
    Lund University.
    Joensson, Haakan
    Royal Institute of Technology (KTH).
    Nilsson, Johan
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Acoustic focusing of microparticles in two-phase systems: Towards cell enrichment or medium exchange in droplets2015Inngår i: 19th International Conference on Miniaturised Systems for Chemistry and Life Sciences (µTAS 2015), Gyeongju, Korea, October 25-29 2015, 2015Konferansepaper (Fagfellevurdert)
  • 18.
    Fornell, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Johannesson, Carl
    Lund University.
    Searle, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. National University of Singapore.
    Happstadius, Axel
    Lund University.
    Nilsson, Johan
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Acoustic trapping: a non-contact method to handle cell-laden hydrogel droplets in a microchannel2019Konferansepaper (Annet vitenskapelig)
  • 19.
    Fornell, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Johannesson, Carl
    Lund University, Lund, Sweden.
    Searle, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. National University of Singapore, Singapore.
    Happstadius, Axel
    Lund University, Lund, Sweden.
    Nilsson, Johan
    Lund University, Lund, Sweden.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Trapping of cell-laden hyaluronic acid-acrylamide hydrogel droplets using bulk acoustic waves2019Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper an acoustofluidic system to trap hydrogel droplets is shown. The presented trapping method is label-free, biocompatible and operated in non-contact mode. The results show that the droplets can be trapped at flow rates up to 76 µL/min which corresponds to an average flow speed of 3.2 mm/s. Moreover, it is shown that the droplets can be trapped for several hours, thus allowing for studies of the encapsulated cells over time. An application of the system is shown by performing on-chip cell nuclei staining. 

  • 20.
    Fornell, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Johannesson, Carl
    Lund University.
    Searle, Sean S.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Natl Univ Singapore, Dept Biomed Engn, Fac Engn,.
    Happstadius, Axel
    Lund University.
    Nilsson, Johan
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    An acoustofluidic platform for non-contact trapping of cell-laden hydrogel droplets compatible with optical microscopy2019Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 13, artikkel-id 044101Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Production of cell-laden hydrogel droplets as miniaturized niches for 3D cell culture provides a new route for cell-based assays. Such production can be enabled by droplet microfluidics and here we present a droplet trapping system based on bulk acoustic waves for handling hydrogel droplets in a continuous flow format. The droplet trapping system consists of a glass capillary equipped with a small piezoelectric transducer. By applying ultrasound (4 MHz), a localized acoustic standing wave field is generated in the capillary, trapping the droplets in a well-defined cluster above the transducer area. The results show that the droplet cluster can be retained at flow rates of up to 76 mu l/min, corresponding to an average flow speed of 3.2 mm/s. The system allows for important operations such as continuous perfusion and/or addition of chemical reagents to the encapsulated cells with in situ optical access. This feature is demonstrated by performing on-chip staining of the cell nuclei. The key advantages of this trapping method are that it is label-free and gentle and thus well-suited for biological applications. Moreover, the droplets can easily be released on-demand, which facilitates downstream analysis. It is envisioned that the presented droplet trapping system will be a valuable tool for a wide range of multistep assays as well as long-term monitoring of cells encapsulated in gel-based droplets.

  • 21.
    Fornell, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Liu, Zhenhua
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Improved acoustic particle enrichment in droplets by optimising the droplet split design2019Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Droplet microfluidics has emerged as a valuable platform for miniaturisation of biological experiments on-chip. In droplet microfluidic chips monodisperse droplets containing cells or other bioparticles can be generated at high throughput, and each droplet can be used as an isolated reaction chamber for individual measurements. A general trend in droplet microfluidics is reducing the size of the droplets, but the challenge is maintaining the particles in the droplets after splitting. We have previously reported on an acoustofluidic chip where bulk acoustic waves were used to control particle positioning in a trident-shaped droplet split. However, the reported particle enrichment was modest (3-fold), and the aim of this study is to increase the particle enrichment by optimising the droplet split design. With our new optimised droplet split we show up to 16.7-fold particle enrichment with high particle recovery.

  • 22. Fornell, Anna
    et al.
    Nilsson, Johan
    Jonsson, Linus
    Periyannan Rajeswari, Prem
    Joensson, Haakan
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Controlled lateral positioning of microparticles inside droplets using acoustophoresis2015Inngår i: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 87, nr 20, s. 10521-10526Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, we utilize bulk acoustic waves to control the position of microparticles inside droplets in two-phase microfluidic systems and demonstrate a method to enrich the microparticles. In droplet microfluidics, different unit operations are combined and integrated on-chip to miniaturize complex biochemical assays. We present a droplet unit operation capable of controlling the position of microparticles during a trident shaped droplet split. An acoustic standing wave field is generated in the microchannel, and the acoustic forces direct the encapsulated microparticles to the center of the droplets. The method is generic, requires no labeling of the microparticles, and is operated in a noncontact fashion. It was possible to achieve 2+-fold enrichment of polystyrene beads (5 μm in diameter) in the center daughter droplet with an average recovery of 89% of the beads. Red blood cells were also successfully manipulated inside droplets. These results show the possibility to use acoustophoresis in two-phase systems to enrich microparticles and open up the possibility for new droplet-based assays that are not performed today.

  • 23.
    Fornell, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Nilsson, Johan
    Jonsson, Linus
    Periyannan Rajeswari, Prem
    Joensson, Haakan
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Particle enrichment in droplet acoustofluidics2016Konferansepaper (Fagfellevurdert)
  • 24.
    Fornell, Anna
    et al.
    Lund University.
    Nilsson, Johan
    Lund University.
    Jonsson, Linus
    Lund University.
    Periyannan Rajeswari, Prem
    KTH, Science for Life Laboratory.
    Joensson, Haakan
    KTH, Science for Life Laboratory.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund University.
    Particle enrichment in two-phase microfluidic systems using acoustophoresis2016Konferansepaper (Fagfellevurdert)
  • 25.
    Fornell, Anna
    et al.
    Lund University.
    Ohlin, Mathias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Garofalo, Fabio
    Department Biomedical Engineering, Lund University.
    Nilsson, Johan
    Department Biomedical Engineering, Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Department Biomedical Engineering, Lund University.
    An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves2017Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 11, artikkel-id 031101Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To transfer cell- and bead-assays into droplet-based platforms typically requires the use of complex microfluidic circuits, which calls for methods to switch the direction of the encapsulated particles. We present a microfluidic chip where the combination of acoustic manipulation at two different harmonics and a trident-shaped droplet-splitter enables direction-switching of microbeads and yeast cells in droplet microfluidic circuits. At the first harmonic, the encapsulated particles exit the splitter in the center daughter droplets, while at the second harmonic, the particles exit in the side daughter droplets. This method holds promises for droplet-based assays where particle-positioning needs to be selectively controlled.

  • 26.
    Fornell, Anna
    et al.
    Department of Biomedical Engineering, Lund University, Sweden.
    Ohlin, Mathias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Nilsson, Johan
    Department Biomedical Engineering, Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    A droplet unit operator for controlled particle switching and enrichment2017Konferansepaper (Fagfellevurdert)
  • 27.
    Fornell, Anna
    et al.
    Department of Biomedical Engineering, Lund University, Sweden.
    Ohlin, Mathias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Nilsson, Johan
    Department of Biomedical Engineering, Lund University, Sweden.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    An optimized droplet split designed for acoustic intra-droplet particle enrichment2017Konferansepaper (Fagfellevurdert)
  • 28.
    Fornell, Anna
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Söderbäck, Per
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Liu, Zhenhua
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Moreira, Milena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing2020Inngår i: Micromachines, ISSN 2072-666X, E-ISSN 2072-666X, Vol. 11, nr 2, artikkel-id 113Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have developed a fast and simple method for fabricating microfluidic channels in silicon using direct laser writing. The laser microfabrication process was optimised to generate microfluidic channels with vertical walls suitable for acoustic particle focusing by bulk acoustic waves. The width of the acoustic resonance channel was designed to be 380 µm, branching into a trifurcation with 127 µm wide side outlet channels. The optimised settings used to make the microfluidic channels were 50% laser radiation power, 10 kHz pulse frequency and 35 passes. With these settings, six chips could be ablated in 5 h. The microfluidic channels were sealed with a glass wafer using adhesive bonding, diced into individual chips, and a piezoelectric transducer was glued to each chip. With acoustic actuation at 2.03 MHz a half wavelength resonance mode was generated in the microfluidic channel, and polystyrene microparticles (10 µm diameter) were focused along the centre-line of the channel. The presented fabrication process is especially interesting for research purposes as it opens up for rapid prototyping of silicon-glass microfluidic chips for acoustofluidic applications.

  • 29.
    Fornell, Anna
    et al.
    Lund Univ, Dept Biomed Engn, Lund, Sweden..
    Cushing, Kevin
    Lund Univ, Dept Biomed Engn, Lund, Sweden..
    Nilsson, Johan
    Lund Univ, Dept Biomed Engn, Lund, Sweden..
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund Univ, Dept Biomed Engn, Lund, Sweden.
    Binary particle separation in droplet microfluidics using acoustophoresis2018Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 112, nr 6, artikkel-id 063701Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 mu m wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  • 30.
    Gonska, Nathalie
    et al.
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Barbe, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper.
    Johansson, Jan
    Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
    Rising, Anna
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Biomimetic spider silk production on a microfluidic chip2019Konferansepaper (Annet vitenskapelig)
  • 31.
    Gonska, Nathalie
    et al.
    Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Robinson, Nathaniel
    Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
    Barbe, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Johansson, Jan
    Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
    Artificial spider silk production on a microfluidic chip2018Konferansepaper (Annet vitenskapelig)
  • 32.
    Jocic, Simonne
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Cross-linked gelatin/agarose conjugate as a thermostable and biocompatible microfluidic material2016Konferansepaper (Fagfellevurdert)
  • 33.
    Jocic, Simonne
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund University, Dept. Biomedical Engineering, Lund 221 00, Sweden.
    Fabrication of user-friendly and biomimetic 1,1′-carbonyldiimidazole cross-linked gelatin/agar microfluidic devices2017Inngår i: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 76, s. 1175-1180Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have developed a straightforward technique for fabricating user-friendly and biomimetic microfluidic devices out of a gelatin/agar gel cross-linked with 1,1′-carbonyldiimidazole. The fabrication procedure requires only inexpensive starting materials such as glass capillaries and wires to mold 3D cylindrical channels into the gel with the possibility of achieving channel diameters of 375 μm and 1000 μm. We demonstrate that the channel absent of gel injury can retain fluid within its dimensions for at least 7 h. We also show that the device material does not autofluoresce nor provide hindrances with fluorescent imaging. A discussion of the chemical linkage identities of cross-linked gelatin/agar is included via ATR-FTIR studies. Crosslinking of the gelatin/agar is further confirmed by the lack of a gel to sol transition at physiological temperature as assessed by DSC measurements. SEM micrographs that demonstrate the 100 nm mean pore width of the cross-linked gelatin/agar are provided. This device is considered biomimetic because it represents components present in the natural extracellular matrix such as collagen and proteoglycans in the form of cross-linked gelatin/agar.

  • 34.
    Johansson, Sofia
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Porras, Ana Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Searle, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Barbe, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Kubart, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Organs-on-Chip System with Integrated Transparent Conductive Oxide Electrodes2018Konferansepaper (Fagfellevurdert)
  • 35.
    Johansson, Sofia
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Porras, Ana Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Searle, Sean
    Dept. Biomedical Engineering, National University of Singapore.
    Barbe, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Integrated transparent electrodes in an organs-on-chip system2018Konferansepaper (Fagfellevurdert)
  • 36.
    Jonsson, Linus
    et al.
    Lund University.
    Fornell, Anna
    Lund University.
    Joensson, Haakan
    Royal Institute of Technology.
    Nilsson, Johan
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Development of a droplet generator towards applications using acoustophoretic sorting2014Konferansepaper (Annet vitenskapelig)
  • 37.
    Lenshof, Andreas
    et al.
    Lund University.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Lundgren, Maria
    Skåne University Hospital.
    Svärd-Nilsson, Ann-Margret
    Skåne University Hospital.
    Kjeldsen-Kragh, Jens
    Skåne University Hospital.
    Åberg, Lena
    Skåne University Hospital.
    Laurell, Thomas
    Lund University.
    Removal of proteins from blood using acoustophoresis2014Konferansepaper (Fagfellevurdert)
  • 38.
    Liu, Zhenhua
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fornell, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Barbe, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hjort, Klas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    On-chip background dilution in droplets with high particle recovery using acoustophoresis2019Inngår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 13, artikkel-id 064123Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Droplet microfluidics has shown great potential for on-chip biological and chemical assays. However, fluid exchange in droplet microfluidics with high particle recovery is still a major bottleneck. Here, using acoustophoresis, we present for the first time a label-free method to achieve continuous background dilution in droplets containing cells with high sample recovery. The system comprises droplet generation, acoustic focusing, droplet splitting, picoinjection, and serpentine mixing on the same chip. The capacities of the picoinjection and the droplet split to dilute the background fluorescent signal in the droplets have been characterized. The sample recovery at different droplet split ratios has also been characterized. The results show a maximum of 4.3-fold background dilution with 87.7% particle recovery. We also demonstrated that the system can be used to dilute background fluorescent signal in droplets containing either polystyrene particles or endothelial cells.

  • 39.
    Liu, Zhenhua
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fornell, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    A continuous on-chip droplet washing platform with high bead recovery by acoustofluidics2019Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Acoustofluidics is a promising technology for manipulation of fluids and particles in microchannels, and the technology has the ability to sort beads and cells in continuous flow with very high efficiency. Recently acoustofluidics has also been applied in segmental flow for positioning beads inside droplets. Compared with single-phase systems, droplet microfluidics has the advantages of faster reactions, lower cross-contamination and higher throughput. Moreover, the small size of the droplets makes them ideal as cultivation and reaction vials for single cell analysis. However, as the droplets are so small one challenge is to wash the droplets before image analysis. P. Mary et al. developed a microfluidic platform for droplet wash, whichis based on electrocoalescence and droplet break-ups with equal volume. The background noise was decreased significantly, however the recovery of the encapsulated cells was low. Alternative solutions have been presented by H. Lee et al. and S.R. Doonan et al. but as the bead recovery is controlled via magnetophoresis, the technology is only applicable to magnetic samples. Here we present a droplet microfluidic platform that enables background dilution with high bead recovery in a label-free manner using acoustophoresis.

  • 40.
    Liu, Zhenhua
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fornell, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Droplet Dilution Unit Operation Including Bead Washing Using Integrated Acoustophoresis2019Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    This paper presents a microfluidic platform for on-chip droplet dilution where the bead recovery also can be controlled. The droplets containing 10 µm polystyrene beads can be diluted with high bead recovery. This platform involves 5 steps for on-chip dilution of the droplets: droplet generation, bead focusing, droplet splitting, pico-injection and serpentine mixing. Background signal in the droplets is significantly reduced with maintained bead recovery by this on-chip dilution method. The technology is applicable to many types of samples and does not require any labelling of the bioparticles.

  • 41.
    Mestres, Gemma
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Espanol, Montserrat
    Department of Engineering Sciences and Metallurgy, Technical University of Catalonia, Diagonal 647, 08028 Barcelona, Spain.
    Xia, Wei
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Tenje, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
    Ott, Marjam
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Evaluation of Biocompatibility and Release of Reactive Oxygen Species of Aluminum Oxide-Coated Materials2016Inngår i: ACS Omega, ISSN 2470-1343, Vol. 1, nr 4, s. 706-713Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface properties of biomaterials can strongly influence biomaterial−host interactions. For this reason, coating processes open a wide range of possibilities to modulate the fate of a biomaterial in the body. This study evaluates the effect of a coating material intended for drug delivery capsules on biocompatibility and the release of reactive oxygen species (ROS), that is, respiratory burst in macrophages that indicates acute inflammation. In parallel with a new approach to develop drug-delivery capsules by directly coating solid-state drug particles, in this study, glass slides and silicon nanoparticles (NPs) were coated with aluminum oxide (Al2O3) using atomic layer deposition. Different sizes of NPs (20 and 310 nm) were suspended at different concentrations (10, 100, and 1000 μg/mL) and were evaluated. The homogeneous coating of slides was proved using X-ray photoelectron spectroscopy, and the coating on NP was observed using transmission electron microscopy. Human dermal fibroblasts and human osteoblasts were able to proliferate on the coated slides and in the presence of a suspension of coated NPs (20 and 310 nm) at a low concentration (10 μg/mL). The macrophages released ROS only when in contact with NPs at a concentration of 1000 μg/mL, where the 20 nm NPs caused a higher release of ROS than the 310 nm NPs. This study shows that Al2O3 coatings do not affect the cells negatively and that the cell viability was compromised only when in contact with a high concentration (1000 μg/mL) of smaller (20 nm) NPs. 

  • 42.
    Mestres, Gemma
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Sjögren, Frida
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Thumula, Venkata
    Wolff, Anette
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Microstructured 3D cell culture scaffolds2016Konferansepaper (Fagfellevurdert)
  • 43.
    Mestres, Gemma
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Wolff, Anette
    Hilborn, Jöns
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Microfluidic system with integrated 3D cell culture matrix: towards more in vivo-like organ-on-chip models2016Konferansepaper (Fagfellevurdert)
  • 44.
    Montazerolghaem, Maryam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Ning, Yi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Engqvist, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Karlsson Ott, Marjam
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mestres, Gemma
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Simvastatin and zinc synergistically enhance osteoblasts activityand decrease the acute response of inflammatory cells2016Inngår i: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 27, nr 2, artikkel-id 23Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Several ceramic biomaterials have been suggested as promising alternatives to autologous bone to replace or restore bone after trauma or disease. The osteoinductive potential of most scaffolds is often rather low by themselves and for this reason growth factors or drugs have been supplemented to these synthetic materials. Although some growth factors show good osteoinductive potential their drawback is their high cost and potential severe side effects. In this work the combination of the well-known drug simvastatin (SVA) and the inorganic element Zinc (Zn) is suggested as a potential additive to bone grafts in order to increase their bone regeneration/ formation. MC3T3-E1 cells were cultured with Zn (10 and 25 mu M) and SVA (0.25 and 0.4 mu M) for 10 days to evaluate proliferation and differentiation, and for 22 days to evaluate secretion of calcium deposits. The combination of Zn (10 mu M) and SVA (0.25 mu M) significantly enhanced cell differentiation and mineralization in a synergetic manner. In addition, the release of reactive oxygen species (ROS) from primary human monocytes in contact with the same concentrations of Zn and SVA was evaluated by chemiluminescence. The combination of the additives decreased the release of ROS, although Zn and SVA separately caused opposite effects. This work shows that a new combination of additives can be used to increase the osteoinductive capacity of porous bioceramics.

  • 45.
    Ohlin, Mathias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Andersson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Klintberg, Lena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Hjort, Klas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    In situ temperature monitoring during acoustophoresis using integrated thin film Pt temperature sensors2017Konferansepaper (Fagfellevurdert)
  • 46.
    Ohlin, Mathias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Andersson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Klintberg, Lena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Hjort, Klas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Internal temperature sensing in an acoustophoretic glass chip2017Konferansepaper (Fagfellevurdert)
  • 47.
    Ohlin, Mathias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Fornell, Anna
    Lund University, Lund, Sweden.
    Bruus, Henrik
    Tech Univ Denmark, Lyngby, Denmark.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lund University, Lund, Sweden.
    Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis2017Inngår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 27, nr 8, artikkel-id 084002Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have fabricated a silicon-glass two-phase droplet microfluidic system capable of generating sub 100 µm-sized,   =  (74  ±  2) µm, spherical droplets at rates of up to hundreds of hertz. By implementing a two-dimensional (2D) acoustophoresis particle-positioning method, we show a fourfold improvement in both vertical and lateral particle positioning inside the droplets compared to unactuated operation. The efficiency of the system has been optimized by incorporating aluminum matching layers in the transducer design permitting biocompatible operational temperatures (<37 °C). Furthermore, by using acoustic actuation, (99.8  ±  0.4)% of all encapsulated microparticles can be detected compared to only (79.0  ±  5.1)% for unactuated operation. In our experiments we observed a strong ordering of the microparticles in distinct patterns within the droplet when using 2D acoustophoresis; to explain the origin of these patterns we simulated numerically the fluid flow inside the droplets and compared with the experimental findings.

  • 48.
    Ohlin, Mathias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Fornell, Anna
    Department of Biomedical Engineering, Lund University, Sweden.
    Bruus, Henrik
    Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Using two-dimensional acoustophoresis for improved particle positioning in droplet microfluidics2017Konferansepaper (Fagfellevurdert)
  • 49.
    Ohlin, Mathias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Fornell, Anna
    Department of Biomedical Engineering, Lund University, Sweden .
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Department of Biomedical Engineering, Lund University, Sweden .
    2D acoustophoretic positioning of microparticles inside droplets2016Konferansepaper (Fagfellevurdert)
  • 50.
    Ohlin, Mathias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Fornell, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Tenje, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fabrication of a silicon-glass microfluidic device for generation of sub 100-micrometer-sized droplets2016Konferansepaper (Fagfellevurdert)
12 1 - 50 of 81
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf