uu.seUppsala University Publications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andrejev, Andrej
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Computing Science.
    Semantic Web Queries over Scientific Data2016Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Semantic Web and Linked Open Data provide a potential platform for interoperability of scientific data, offering a flexible model for providing machine-readable and queryable metadata. However, RDF and SPARQL gained limited adoption within the scientific community, mainly due to the lack of support for managing massive numeric data, along with certain other important features – such as extensibility with user-defined functions, query modularity, and integration with existing environments and workflows.

    We present the design, implementation and evaluation of Scientific SPARQL – a language for querying data and metadata combined, represented using the RDF graph model extended with numeric multidimensional arrays as node values – RDF with Arrays. The techniques used to store RDF with Arrays in a scalable way and process Scientific SPARQL queries and updates are implemented in our prototype software – Scientific SPARQL Database Manager, SSDM, and its integrations with data storage systems and computational frameworks. This includes scalable storage solutions for numeric multidimensional arrays and an efficient implementation of array operations. The arrays can be physically stored in a variety of external storage systems, including files, relational databases, and specialized array data stores, using our Array Storage Extensibility Interface. Whenever possible SSDM accumulates array operations and accesses array contents in a lazy fashion.

    In scientific applications numeric computations are often used for filtering or post-processing the retrieved data, which can be expressed in a functional way. Scientific SPARQL allows expressing common query sub-tasks with functions defined as parameterized queries. This becomes especially useful along with functional language abstractions such as lexical closures and second-order functions, e.g. array mappers.

    Existing computational libraries can be interfaced and invoked from Scientific SPARQL queries as foreign functions. Cost estimates and alternative evaluation directions may be specified, aiding the construction of better execution plans. Costly array processing, e.g. filtering and aggregation, is thus preformed on the server, saving the amount of communication. Furthermore, common supported operations are delegated to the array storage back-ends, according to their capabilities. Both expressivity and performance of Scientific SPARQL are evaluated on a real-world example, and further performance tests are run using our mini-benchmark for array queries.

  • 2.
    Andrejev, Andrej
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    He, Xueming
    Risch, Tore
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Scientific data as RDF with arrays: Tight integration of SciSPARQL queries into MATLAB2014In: Proc. ISWC 2014 Posters & Demonstrations Track, RWTH Aachen University , 2014, p. 221-224Conference paper (Refereed)
    Abstract [en]

    We present an integrated solution for storing and querying scientific data and metadata, using MATLAB envi ronment as client front-end and our prototype DBMS on the server. We use RDF for experiment metadata, and numeric arrays for the rest. Our extension of SPARQL supports array operations and extensibility with foreign functions.

  • 3.
    Andrejev, Andrej
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Risch, Tore
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Scientific SPARQL: Semantic web queries over scientific data2012In: Proc. 28th International Conference on Data Engineering Workshops, IEEE Computer Society, 2012, p. 5-10Conference paper (Refereed)
  • 4.
    Andrejev, Andrej
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Toor, Salman
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.
    Hellander, Andreas
    Holmgren, Sverker
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.
    Risch, Tore
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Scientific analysis by queries in extended SPARQL over a scalable e-Science data store2013In: Proc. 9th International Conference on e-Science, Los Alamitos, CA: IEEE Computer Society, 2013, p. 98-106Conference paper (Refereed)
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf