uu.seUppsala University Publications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Galli, Joakim
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Oelrich, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Taussig, Michael J
    Andreasson, Ulrika
    Ortega-Paino, Eva
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    The Biobanking Analysis Resource Catalogue (BARCdb): a new research tool for the analysis of biobank samples.2015In: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 43, no D1, p. D1158-D1162Article in journal (Refereed)
    Abstract [en]

    We report the development of a new database of technology services and products for analysis of biobank samples in biomedical research. BARCdb, the Biobanking Analysis Resource Catalogue (http://www.barcdb.org), is a freely available web resource, listing expertise and molecular resource capabilities of research centres and biotechnology companies. The database is designed for researchers who require information on how to make best use of valuable biospecimens from biobanks and other sample collections, focusing on the choice of analytical techniques and the demands they make on the type of samples, pre-analytical sample preparation and amounts needed. BARCdb has been developed as part of the Swedish biobanking infrastructure (BBMRI.se), but now welcomes submissions from service providers throughout Europe. BARCdb can help match resource providers with potential users, stimulating transnational collaborations and ensuring compatibility of results from different labs. It can promote a more optimal use of European resources in general, both with respect to standard and more experimental technologies, as well as for valuable biobank samples. This article describes how information on service and reagent providers of relevant technologies is made available on BARCdb, and how this resource may contribute to strengthening biomedical research in academia and in the biotechnology and pharmaceutical industries.

  • 2.
    Klaesson, Axel
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Grannas, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ebai, Tonge
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Heldin, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Koos, Björn
    Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
    Leino, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Raykova, Doroteya
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Oelrich, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Arngården, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Söderberg, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Landegren, Ulf
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 5400Article in journal (Refereed)
    Abstract [en]

    We have redesigned probes for in situ proximity ligation assay (PLA), resulting in more efficient localized detection of target proteins. In situ PLA depends on recognition of target proteins by pairs of antibody-oligonucleotide conjugates (PLA probes), which jointly give rise to DNA circles that template localized rolling circle amplification reactions. The requirement for dual recognition of the target proteins improves selectivity by ignoring any cross-reactivity not shared by the antibodies, and it allows detection of protein-protein interactions and post-translational modifications. We herein describe an improved design of the PLA probes -UnFold probes - where all elements required for formation of circular DNA strands are incorporated in the probes. Premature interactions between the UnFold probes are prevented by including an enzymatic "unfolding" step in the detection reactions. This allows DNA circles to form by pairs of reagents only after excess reagents have been removed. We demonstrate the performance of UnFold probes for detection of protein-protein interactions and post-translational modifications in fixed cells and tissues, revealing considerably more efficient signal generation. We also apply the UnFold probes to detect IL-6 in solution phase after capture on solid supports, demonstrating increased sensitivity over both normal sandwich enzyme-linked immunosorbent assays and conventional PLA assays.

  • 3. Larssen, Pia
    et al.
    Wik, Lotta
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Czarnewski, Paulo
    Eldh, Maria
    Löf, Liza
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ronquist, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Dubois, Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Freyhult, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Gallant, Caroline
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Oelrich, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Ronquist, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
    Villablanca, Eduardo
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Gabrielsson, Susanne
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tracing Cellular Origin of Human Exosomes Using Multiplex Proximity Extension Assay2017In: Molecular & cellular proteomics (online), ISSN 1535-9476, E-ISSN 1535-9484, Vol. 16, no 3, p. 502-511Article in journal (Refereed)
    Abstract [en]

    Extracellular vesicles (EVs) are membrane-coated objects such as exosomes and microvesicles, released by many cell-types. Their presence in body fluids and the variable surface composition and content render them attractive potential biomarkers. The ability to determine their cellular origin could greatly move the field forward. We used multiplex proximity extension assays (PEA) to identify with high specificity and sensitivity the protein profiles of exosomes of different origins, including seven cell lines and two different body fluids. By comparing cells and exosomes, we successfully identified the cells originating the exosomes. Furthermore, by principal component analysis of protein patterns human milk EVs and prostasomes released from prostate acinar cells clustered with cell lines from breast and prostate tissues, respectively. Milk exosomes uniquely expressed CXCL5, MIA and KLK6, while prostasomes carried NKX31, GSTP1 and SRC, highlighting that EVs originating from different origins express distinct proteins. In conclusion, PEA provides a powerful protein screening tool in exosome research, for purposes of identifying the cell source of exosomes, or new biomarkers in diseases such as cancer and inflammation.

  • 4.
    Lönn, Peter
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Science for Life Laboratory, SciLifeLab, Science for Life Laboratory, SciLifeLab.
    Al-Amin, Rasel A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Science for Life Laboratory, SciLifeLab, Science for Life Laboratory, SciLifeLab.
    Heldin, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Gallini, Radiosa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Science for Life Laboratory, SciLifeLab, Science for Life Laboratory, SciLifeLab.
    Björkesten, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Oelrich, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Science for Life Laboratory, SciLifeLab, Science for Life Laboratory, SciLifeLab.
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    High-throughput in situ mapping of phosphorylated protein complexes across the cell cycle and in response to drugsManuscript (preprint) (Other academic)
    Abstract [en]

    Interactions and posttranslational modifications (PTMs) of proteins orchestrate cellular responses to cytokines, drugs or other agents, but it has been difficult to monitor and characterize these dynamic events at high-throughput. Here, we have established a semi-automated system for large-scale in situ proximity ligation assays (isPLA). The protocol combines isPLA in microtiter wells with automated microscopy and computer-based image analysis whereby specific protein phosphorylations and interactions are digitally recorded in cells, along with measurements of morphological features. We demonstrate how this platform can improve analysis of cellular signaling by investigating TGF-b responsive Smad2 linker phosphorylations and complex formations over time and across millions of individual cells. We depict single cell responses in relation to e.g. local cell crowding and cell cycle progression via measurements of DNA content and nuclear size. Finally, we illustrate the application of the protocol for demonstrating drug effects by screening a library of phosphatase inhibitors. In summary, our approach expands the scope for image-based single cell analyses by combining observations of protein interactions and modifications with morphological details of individual cells at high throughput.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf