uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
123 1 - 50 of 113
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Astruc, Marine
    et al.
    Malm, Patrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Kumar, Rajesh
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Cluster detection and field-of-view quality rating: Applied to automated Pap-smear analysis2013Inngår i: Proc. 2nd International Conference on Pattern Recognition Applications and Methods, SciTePress, 2013, s. 355-364Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Automated cervical cancer screening systems require high resolution analysis of a large number of epithelial cells, involving complex algorithms, mainly analysing the shape and texture of cell nuclei. This can be a very time consuming process. An initial selection of relevant fields-of-view in low resolution images could limit the number of fields to be further analysed at a high resolution. In particular, the detection of cell clusters is of interest for nuclei segmentation improvement, and for diagnostic purpose, malignant and endometrial cells being more prone to stick together in clusters than other cells. In this paper, we propose methods aiming at evaluating the quality of fields-of-view in bright-field microscope images of cervical cells. The approach consists in the construction of neighbourhood graphs using the nuclei as the set of vertices. Transformations are then applied on such graphs in order to highlight the main structures in the image. The methods result in the delineation of regions with varying cell density and the identification of cell clusters. Clustering methods are evaluated using a dataset of manually delineated clusters and compared to a related work.

  • 2.
    Azar, Jimmy C.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Simonsson, Martin
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Hast, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Image segmentation and identification of paired antibodies in breast tissue2014Inngår i: Computational & Mathematical Methods in Medicine, ISSN 1748-670X, E-ISSN 1748-6718, s. 647273:1-11Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Comparing staining patterns of paired antibodies designed towards a specific protein but toward different epitopes of the protein provides quality control over the binding and the antibodies' ability to identify the target protein correctly and exclusively. We present a method for automated quantification of immunostaining patterns for antibodies in breast tissue using the Human Protein Atlas database. In such tissue, dark brown dye 3,3'-diaminobenzidine is used as an antibody-specific stain whereas the blue dye hematoxylin is used as a counterstain. The proposed method is based on clustering and relative scaling of features following principal component analysis. Our method is able (1) to accurately segment and identify staining patterns and quantify the amount of staining and (2) to detect paired antibodies by correlating the segmentation results among different cases. Moreover, the method is simple, operating in a low-dimensional feature space, and computationally efficient which makes it suitable for high-throughput processing of tissue microarrays.

  • 3.
    Azar, Jimmy
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Simonsson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Hast, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Automated Classification of Glandular Tissue by Statistical Proximity Sampling2015Inngår i: International Journal of Biomedical Imaging, ISSN 1687-4188, E-ISSN 1687-4196, artikkel-id 943104Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Due to the complexity of biological tissue and variations in staining procedures, features that are based on the explicit extraction of properties from subglandular structures in tissue images may have difficulty generalizing well over an unrestricted set of images and staining variations. We circumvent this problem by an implicit representation that is both robust and highly descriptive, especially when combined with a multiple instance learning approach to image classification. The new feature method is able to describe tissue architecture based on glandular structure. It is based on statistically representing the relative distribution of tissue components around lumen regions, while preserving spatial and quantitative information, as a basis for diagnosing and analyzing different areas within an image. We demonstrate the efficacy of the method in extracting discriminative features for obtaining high classification rates for tubular formation in both healthy and cancerous tissue, which is an important component in Gleason and tubule-based Elston grading. The proposed method may be used for glandular classification, also in other tissue types, in addition to general applicability as a region-based feature descriptor in image analysis where the image represents a bag with a certain label (or grade) and the region-based feature vectors represent instances.

  • 4.
    Barrera, Tony
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Hast, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    A chronological and mathematical overview of digital circle generation algorithms: Introducing efficient 4- and 8-connected circles2016Inngår i: International Journal of Computer Mathematics, ISSN 0020-7160, E-ISSN 1029-0265, Vol. 93, nr 8, s. 1241-1253Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Circles are one of the basic drawing primitives for computers and while the naive way of setting up an equation for drawing circles is simple, implementing it in an efficient way using integer arithmetic has resulted in quite a few different algorithms. We present a short chronological overview of the most important publications of such digital circle generation algorithms. Bresenham is often assumed to have invented the first all integer circle algorithm. However, there were other algorithms published before his first official publication, which did not use floating point operations. Furthermore, we present both a 4- and an 8-connected all integer algorithm. Both of them proceed without any multiplication, using just one addition per iteration to compute the decision variable, which makes them more efficient than previously published algorithms.

  • 5. Barrera, Tony
    et al.
    Hast, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    An Algorithm for Parallel Calculation of Trigonometric and Exponential Functions2013Inngår i: ACM International Conference on Computing Frontiers, 2013Konferansepaper (Fagfellevurdert)
  • 6.
    Barrera, Tony
    et al.
    Barrera-Kristiansen AB.
    Hast, Anders
    University of Gävle.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Connected Minimal Acceleration Trigonometric Curves2005Inngår i: SIGRAD 2005 The Annual SIGRAD Conference Special Theme – Mobile Graphics November 23-24, 2005 Lund, Sweden, 2005Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present a technique that can be used to obtain a series of connected minimal bending trigonometric splines that will intersect any number of predefined points in space. The minimal bending property is obtained by a least square minimization of the acceleration. Each curve segment between two consecutive points will be a trigonometric Hermite spline obtained from a Fourier series and its four first terms. The proposed method can be used for a number of points and predefined tangents. The tangent length will then be optimized to yield a minimal bending curve. We also show how both the tangent direction and length can be optimized to give as smooth curves as possible. It is also possible to obtain a closed loop of minimal bending curves. These types of curves can be useful tools for 3D modelling, etc.

  • 7.
    Barrera, Tony
    et al.
    Barrera-Kristiansen AB.
    Hast, Anders
    University of Gävle.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Minimal Acceleration Hermite Curves2005Inngår i: Game Programming Gems 5, Charles River Media, Hingham, Massachusetts , 2005, s. 225-231Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    This gem shows how a curve with minimal acceleration can be obtained using Hermite splines [Hearn04]. Acceleration is higher in the bends and therefore this type of curve is a minimal bending curve. This type of curve can be useful for subdivision surfaces when it is required that the surface has this property, which assures that the surface is as smooth as possible. A similar approach for Bézier curves and subdivision can be found in [Overveld97]. It could also be very useful for camera movements [Vlachos01] since it allows that both the position and the direction of the camera can be set for the curve. Moreover, we show how several such curves can be connected in order to achieve continuity between the curve segments.

  • 8. Barrera, Tony
    et al.
    Spångberg, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Strukturkemi.
    Hast, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Vectorized table driven algorithms for double precision elementary functions using taylor expansions2009Inngår i: Aplimat: journal of applied mathematics, ISSN 1337-6365, Vol. 2, nr 3, s. 171-187Artikkel i tidsskrift (Fagfellevurdert)
  • 9.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Computerized Cell Image Analysis: Past, Present and Future2003Konferansepaper (Fagfellevurdert)
  • 10.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Computerized Cell Image Processing in Healthcare2005Inngår i: Proceedings of Healthcomm2005, 2005, s. 11-17Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The visual interpretation of images is at the core of most medical diagnostic procedures and the final decision for many diseases, including cancer, is based on microscopic examination of cells and tissues. Through screening of cell samples the incidence and mortality of cervical cancer have been reduced significantly. The visual interpretation is, however, tedious and in many cases error-prone. Therefore many attempts have been made at using the computer to supplement or replace the human visual inspection by computer analysis and to automate some of the more tedious visual screening tasks. The computers and computer networks have also been used to manage, store, transmit and display images of cells and tissues making it possible to visually analyze cells from remote locations. In this presentation these developments are traced from their very beginning through the present situation and into the future.

  • 11.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Image processing and its hardware support: Analysis vs synthesis - historical trends2017Inngår i: Image Analysis, SCIA 2017, Pt I / [ed] P Sharma, F M Bianchi, Switzerland, 2017, s. 3-14Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Computers can be used to handle images in two fundamen-tally dierent ways. They can be used to analyse images to obtain quan-titative data or some image understanding. And they can be used tocreate images that can be displayed through computer graphics and vi-sualization. For both of these purposes it is of interest to develop ecientways of representing, compressing and storing the images. While SCIA,the Scandinavia Conference of Image Analysis, according to its name ismainly concerned with the former aspect of images, it is interesting tonote that image analysis throughout its history has been strongly in u-enced also by developments on the visualization side. When the confer-ence series now has reached its 20th milestone it may be worth re ectingon what factors have been important in forming the development of theeld. To understand where you are it is good to know where you comefrom and it may even help you understand where you are going.

  • 12.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Quantitative and automated microscopy: Where do we stand after 80 years of research?2014Inngår i: Proc. 11th International Symposium on Biomedical Imaging, Piscataway, NJ: IEEE Press, 2014, s. 274-277Konferansepaper (Fagfellevurdert)
  • 13.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Recognizing signs of malignancy: The quest for computer assisted cancer screening and diagnosis systems2010Inngår i: International Conference on Computational Intelligence and Computing Research (ICCIC), 2010 IEEE, Coimbatore, India: IEEE Digital Library , 2010, s. 1-6Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Almost all cancers are diagnosed through visual examination of microscopic tissue samples. Visual screening of cell samples, so called PAP-smears, has drastically reduced the incidence of cervical cancers in countries that have implemented population wide screening programs. But the visual examination is tedious, subjective and expensive. There has therefore been much research aiming for computer assisted or automated cell image analysis systems for cancer detection and diagnosis. Progress has been made but still most of cytology and pathology is done visually. In this presentation I will discuss some of the major issues involved, examine some of the proposed solutions and give some comments about the state of the art.

  • 14.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    The biotech industry in the Uppsala region - result of academic research and private entrepreneurship2007Inngår i: Global Human Resources Forum 2007, 2007Konferansepaper (Annet (populærvitenskap, debatt, mm))
  • 15.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Dahlqvist, Bengt
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Jarkrans, Torsten
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Nordin, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Stenkvist, Björn
    Cervical Pre-screening Using Computerized Image Analysis1983Inngår i: Proceedings of the 3rd Scandinavian Conference on Image Analysis, Köpenhamn, 1983, s. 404-411Konferansepaper (Fagfellevurdert)
  • 16.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Dahlqvist, Bengt
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Jarkrans, Torsten
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Nordin, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Stenkvist, Björn
    Studie av reproducerbarheten av mikroskopiska cellbilder med TV-kamera1982Rapport (Annet vitenskapelig)
  • 17.
    Bengtsson, Ewert
    et al.
    Uppsala universitet.
    Dahlqvist, Bengt
    Uppsala universitet.
    Eriksson, Olle
    Uppsala universitet.
    Nordin, Bo
    Uppsala universitet.
    Jarkrans, Torsten
    Uppsala universitet.
    Stenkvist, Björn
    Computer-assisted Scanning Microscopy in Cytology1982Inngår i: Proceedings of the IEEE International Symposium on Medical Imaging and Image Interpretation, 1982, s. 497-503Konferansepaper (Fagfellevurdert)
  • 18.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Danielsen, Håvard
    Treanor, Darren
    Gurcan, Metin N.
    MacAulay, Calum
    Molnár, Béla
    Computer-aided diagnostics in digital pathology2017Inngår i: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 91, nr 6, s. 551-554Artikkel i tidsskrift (Annet vitenskapelig)
  • 19.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Malm, Patrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Screening for Cervical Cancer Using Automated Analysis of PAP-Smears2014Inngår i: Computational & Mathematical Methods in Medicine, ISSN 1748-670X, E-ISSN 1748-6718, Vol. 2014, s. 842037:1-12Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Cervical cancer is one of the most deadly and common forms of cancer among women if no action is taken to prevent it, yet it is preventable through a simple screening test, the so-called PAP-smear. This is the most effective cancer prevention measure developed so far. But the visual examination of the smears is time consuming and expensive and there have been numerous attempts at automating the analysis ever since the test was introduced more than 60 years ago. The first commercial systems for automated analysis of the cell samples appeared around the turn of the millennium but they have had limited impact on the screening costs. In this paper we examine the key issues that need to be addressed when an automated analysis system is developed and discuss how these challenges have been met over the years. The lessons learned may be useful in the efforts to create a cost-effective screening system that could make affordable screening for cervical cancer available for all women globally, thus preventing most of the quarter million annual unnecessary deaths still caused by this disease.

  • 20.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Norell, Kristin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Nyström, Ingela
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Strand, Robin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Wadelius, Lena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Annual Report 20072008Rapport (Annet (populærvitenskap, debatt, mm))
  • 21.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Image analysis in digital pathology: Combining automated assessment of Ki67 staining quality with calculation of Ki67 cell proliferation index2019Inngår i: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 95, nr 7, s. 714-716Artikkel i tidsskrift (Annet vitenskapelig)
  • 22.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Rodenacker, Karsten
    A feature set for cytometry on digitized microscopic images2003Inngår i: Analytical Cellular Pathology, Vol. 24, nr 1, s. 1-36Artikkel i tidsskrift (Fagfellevurdert)
  • 23.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Tárnok, Attila
    Special Section on Image Cytometry2019Inngår i: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 95A, nr 4, s. 363-365Artikkel i tidsskrift (Annet vitenskapelig)
  • 24.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Uppsala university.
    Wieslander, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Forslid, Gustav
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Hirsch, Jan-Michael
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Käkkirurgi.
    Runow Stark, Christina
    Kecheril Sadanandan, Sajith
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Detection of Malignancy-Associated Changes Due to Precancerous and Oral Cancer Lesions: A Pilot Study Using Deep Learning2018Inngår i: CYTO2018 / [ed] Andrea Cossarizza, 2018Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Background: The incidence of oral cancer is increasing and it is effecting younger individuals. PAP smear-based screening, visual, and automated, have been used for decades, to successfully decrease the incidence of cervical cancer. Can similar methods be used for oral cancer screening? We have carried out a pilot study using neural networks for classifying cells, both from cervical cancer and oral cancer patients. The results which were reported from a technical point of view at the 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), were particularly interesting for the oral cancer cases, and we are currently collecting and analyzing samples from more patients. Methods: Samples were collected with a brush in the oral cavity and smeared on glass slides, stained, and prepared, according to standard PAP procedures. Images from the slides were digitized with a 0.35 micron pixel size, using focus stacks with 15 levels 0.4 micron apart. Between 245 and 2,123 cell nuclei were manually selected for analysis for each of 14 datasets, usually 2 datasets for each of the 6 cases, in total around 15,000 cells. A small region was cropped around each nucleus, and the best 2 adjacent focus layers in each direction were automatically found, thus creating images of 100x100x5 pixels. Nuclei were chosen with an aim to select well preserved free-lying cells, with no effort to specifically select diagnostic cells. We therefore had no ground truth on the cellular level, only on the patient level. Subsets of these images were used for training 2 sets of neural networks, created according to the ResNet and VGG architectures described in literature, to distinguish between cells from healthy persons, and those with precancerous lesions. The datasets were augmented through mirroring and 90 degrees rotations. The resulting networks were used to classify subsets of cells from different persons, than those in the training sets. This was repeated for a total of 5 folds. Results: The results were expressed as the percentage of cell nuclei that the neural networks indicated as positive. The percentage of positive cells from healthy persons was in the range 8% to 38%. The percentage of positive cells collected near the lesions was in the range 31% to 96%. The percentages from the healthy side of the oral cavity of patients with lesions ranged 37% to 89%. For each fold, it was possible to find a threshold for the number of positive cells that would correctly classify all patients as normal or positive, even for the samples taken from the healthy side of the oral cavity. The network based on the ResNet architecture showed slightly better performance than the VGG-based one. Conclusion: Our small pilot study indicates that malignancyassociated changes that can be detected by neural networks may exist among cells in the oral cavity of patients with precancerous lesions. We are currently collecting samples from more patients, and will present those results as well, with our poster at CYTO 2018.

  • 25.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Robust cell image segmentation methods2004Inngår i: Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications, ISSN 1054-6618, Vol. 14, nr 2, s. 157-167Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biomedical cell image analysis is one of the main application fields of computerized image analysis. This paper outlines the field and the different analysis steps related to it. Relative advantages of different approaches to the crucial step of image segmentation are discussed. Cell image segmentation can be seen as a modeling problem where different approaches are more or less explicitly based on cell models. For example, thresholding methods can be seen as being based on a model stating that cells have an intensity that is different from the surroundings. More robust segmentation can be obtained if a combination of features, such as intensity, edge gradients, and cellular shape, is used. The seeded watershed transform is proposed as the most useful tool for incorporating such features into the cell model. These concepts are illustrated by three real-world problems.

  • 26. Chandran, P. S.
    et al.
    Byju, N. B.
    Deepak, R. U.
    Rajesh Kumar, R.
    Sudhamony, S.
    Malm, Patrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Cluster detection in cytology images using the cellgraph method2012Inngår i: Information Technology in Medicine and Education (ITME), 2012 International Symposium, 2012, s. 923-927Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Automated cervical cancer detection system is primarily based on delineating the cell nuclei and analyzing their textural and morphometric features for malignant characteristics. The presence of cell clusters in the slides have diagnostic value, since malignant cells have a greater tendency to stick together forming clusters than normal cells. However, cell clusters pose difficulty in delineating nucleus and extracting features reliably for malignancy detection in comparison to free lying cells. LBC slide preparation techniques remove biological artifacts and clustering to some extent but not completely. Hence cluster detection in automated cervical cancer screening becomes significant. In this work, a graph theoretical technique is adopted which can identify and compute quantitative metrics for this purpose. This method constructs a cell graph of the image in accordance with the Waxman model, using the positional coordinates of cells. The computed graph metrics from the cell graphs are used as the feature set for the classifier to deal with cell clusters. It is a preliminary exploration of using the topological analysis of the cellgraph to cytological images and the accuracy of classification using SVM showed that the results are well suited for cluster detection.

  • 27.
    Chunming, Tang
    et al.
    Harbin Engineering University, China.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Automatic Tracking of Neural Stem Cells2005Inngår i: WDIC 2005: Workshop Proceedings, 2005, s. 61-66Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In order to understand the development of stem-cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. The system is automatic as far as possible but in order to get as complete and correct tracking results as possible the user can interactively verify and correct the crucial starting segmentation of the first frame and inspect the final result and correct errors if nec-

    essary. All cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  • 28.
    Cristea, Alexander
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
    Karlsson Edlund, Patrick
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Qaisar, Rizwan
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Larsson, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Effects of ageing and gender on the spatial organisation of nuclei in single human skeletal muscle cells2009Inngår i: Neuromuscular Disorders, ISSN 0960-8966, E-ISSN 1873-2364, Vol. 19, nr 8, s. 605-606Artikkel i tidsskrift (Fagfellevurdert)
  • 29.
    Cristea, Alexander
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Karlsson Edlund, Patrick
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Qaisar, Rizwan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Larsson, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Effects of ageing and gender on the spatial organization of nuclei in single human skeletal muscle cells2009Inngår i: Neuromuscular Disorders, ISSN 0960-8966, E-ISSN 1873-2364, Vol. 19, s. 605-606Artikkel i tidsskrift (Fagfellevurdert)
  • 30.
    Cristea, Alexander
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Qaisar, Rizwan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Karlsson Edlund, Patrick
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Larsson, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells2010Inngår i: Aging Cell, ISSN 1474-9718, E-ISSN 1474-9726, Vol. 9, nr 5, s. 685-697Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging- and gender-related effects on myonuclei organization and the MND size in single muscle fibres from six young (21–31 years) and nine old men (72–96 years), and from six young (24–32 years) and nine old women (65–96 years), using a novel image analysis algorithm applied to confocal images. Muscle fibres were classified according to myosin heavy chain (MyHC) isoform expression. Our image analysis algorithm was effective in determining the spatial organization of myonuclei and the distribution of individual MNDs along the single fibre segments. Significant linear relations were observed between MND size and fibre size, irrespective age, gender and MyHC isoform expression. The spatial organization of individual myonuclei, calculated as the distribution of nearest neighbour distances in 3D, and MND size were affected in old age, but changes were dependent on MyHC isoform expression. In type I muscle fibres, average NN-values were lower and showed an increased variability in old age, reflecting an aggregation of myonuclei in old age. Average MND size did not change in old age, but there was an increased MND size variability. In type IIa fibres, average NN-values and MND sizes were lower in old age, reflecting the smaller size of these muscle fibres in old age. It is suggested that these changes have a significant impact on protein synthesis and degradation during the aging process.

  • 31.
    Dahlqvist, Bengt
    et al.
    Uppsala universitet.
    Bengtsson, Ewert
    Uppsala universitet.
    Eriksson, Olle
    Uppsala universitet.
    Jarkrans, Torsten
    Uppsala universitet.
    Nordin, Bo
    Uppsala universitet.
    Stenkvist, Björn
    A Computer Program for Logistic Prediction Modelling1985Inngår i: Computer Programs in Biomedicine, ISSN 0010-468X, nr 19, s. 235-238Artikkel i tidsskrift (Fagfellevurdert)
  • 32.
    Dahlqvist, Bengt
    et al.
    Uppsala universitet.
    Bengtsson, Ewert
    Uppsala universitet.
    Eriksson, Olle
    Uppsala universitet.
    Jarkrans, Torsten
    Uppsala universitet.
    Nordin, Bo
    Uppsala universitet.
    Stenkvist, Björn
    Algorithms for Cluster Analysis1983Inngår i: Proceedings of the 3rd Scandinavian Conference on Image Analysis, 1983, s. 134-139Konferansepaper (Fagfellevurdert)
  • 33.
    Dahlqvist, Bengt
    et al.
    Uppsala universitet.
    Bengtsson, Ewert
    Uppsala universitet.
    Eriksson, Olle
    Uppsala universitet.
    Jarkrans, Torsten
    Uppsala universitet.
    Nordin, Bo
    Uppsala universitet.
    Stenkvist, Björn
    Segmentation of Cell Images by Minimum Error Thresholding1981Inngår i: Proceedings of the 2nd Scandinavian Conference on Image Analysis, 1981Konferansepaper (Fagfellevurdert)
  • 34. Deepak, Rajasekharan Usha
    et al.
    Kumar, Ramakrishnan Rajesh
    Byju, Neendoorthalackal Balakrishnan
    Sharathkumar, Pundluvalu Nataraju
    Pournami, Chandran
    Sibi, Salam
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Sujathan, Kunjuraman
    Computer Assisted Pap Smear Analyser for Cervical Cancer Screening using Quantitative Microscopy2015Inngår i: Journal of Cytology & Histology, ISSN 2157-7099, Vol. 6, nr S3, artikkel-id 010Artikkel i tidsskrift (Fagfellevurdert)
  • 35. Degerman, Johan
    et al.
    Althoff, Karin
    Thorlin, Thorleif
    Wählby, Carolina
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Karlsson, Patrick
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Gustavsson, Tomas
    Modeling stem cell migration by Hidden Markov2004Inngår i: Proceedings of the Swedish Symposium on Image Analysis, SSBA 2004, 2004, s. 122-125Konferansepaper (Annet vitenskapelig)
  • 36.
    Egevad, Lars
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Frimmel, Hans
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Mattson, Stefan
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för informationsvetenskap, Statistik.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Busch, Christer
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Biopsy protocol stability in a three-dimensional model of prostate cancer: Changes in cancer yield after adjustment of biopsy positions1999Inngår i: Urology, ISSN 0090-4295, E-ISSN 1527-9995, Vol. 54, s. 862-868Artikkel i tidsskrift (Fagfellevurdert)
  • 37.
    Egevad, Lars
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Frimmel, Hans
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Norberg, Mona
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för radiologi.
    Mattson, Stefan
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för informationsvetenskap, Statistik.
    Carlbom, Ingrid
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Busch, Christer
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Three-dimensional computer reconstruction of prostate cancer from radical prostatectomy specimens: Evaluation of the model by core biopsy simulation1999Inngår i: Urology, ISSN 0090-4295, E-ISSN 1527-9995, Vol. 53, s. 192-198Artikkel i tidsskrift (Fagfellevurdert)
  • 38. Erlandsson, Fredrik
    et al.
    Wählby, Carolina
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zetterberg, Anders
    Universitetsförvaltningen. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Detection of large numbers of antigens using sequential immunofluorescence staining2001Inngår i: 7th European Society for Analytical Cellular Pathology Congress (ESACP 2001), Caen, France, 2001, s. 56-57Konferansepaper (Annet vitenskapelig)
  • 39.
    Erlandsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Ekholm-Reed, Susanna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Hellström, Ann-Cathrin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zetterberg, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Abnormal expression pattern of cyclin E in tumour cells2003Inngår i: Int J Cancer, ISSN 0020-7136, Vol. 104, s. 369-375Artikkel i tidsskrift (Fagfellevurdert)
  • 40.
    Erlandsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby (nee Linnman), Carolina
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Ekholm, Susanna
    Bengtsson, Ewert
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zetterberg, Anders
    A detailed analysis of cyclin A accumulation at the G1/S border in normal and transformed cells.2000Inngår i: Experimental Cell Research, ISSN 0014-4827/00, Vol. 256, s. 86-95Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Automatic cell segmentation has various applications in cytometry, and while the

    nucleus is often very distinct and easy to identify, the cytoplasm provides a lot

    more challenge. A new combination of image analysis algorithms for

    segmentation of cells imaged by fluorescence microscopy is presented. The

    algorithm consists of an image pre-processing step, a general segmentation

    and merging step followed by a segmentation quality measurement. The quality

    measurement consists of a statistical analysis of a number of shape descriptive

    features. Objects that have features that differ to that of correctly segmented

    single cells can be further processed by a splitting step. By statistical analysis

    we therefore get a feedback system for separation of clustered cells. After the

    segmentation is completed, the quality of the final segmentation is evaluated. By

    training the algorithm on a representative set of training images, the algorithm

    is made fully automatic for subsequent images created under similar conditions.

    Automatic cytoplasm segmentation was tested on CHO-cells stained with

    calcein. The fully automatic method showed between 89% and 97% correct

    segmentation as compared to manual segmentation.

  • 41.
    Frimmel, Hans
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Egevad, Lars
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Busch, Christer
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Modeling prostate cancer distributions1999Inngår i: Urology, ISSN 0090-4295, E-ISSN 1527-9995, Vol. 54, s. 1028-1034Artikkel i tidsskrift (Fagfellevurdert)
  • 42.
    Frimmel, Hans
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Egevad, Lars
    Busch, Christer
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Automatic registration and error detection of multiple slices using landmarks2001Inngår i: Analytical Cellular Pathology, ISSN 0921-8912, E-ISSN 1878-3651, Vol. 23, s. 159-165Artikkel i tidsskrift (Fagfellevurdert)
  • 43. García-Olalla, Oscar
    et al.
    Alegre, Enrique
    Fernández-Robles, Laura
    Malm, Patrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Acrosome integrity assessment of boar spermatozoa images using an early fusion of texture and contour descriptors2015Inngår i: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 120, nr 1, s. 49-64Artikkel i tidsskrift (Fagfellevurdert)
  • 44.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Azar, Jimmy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Busch, Christer
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi.
    Carlbom, Ingrid
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Blind Color Decomposition of Histological Images2013Inngår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 32, nr 6, s. 983-994Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cancer diagnosis is based on visual examination under a microscope of tissue sections from biopsies. But whereas pathologists rely on tissue stains to identify morphological features, automated tissue recognition using color is fraught with problems that stem from image intensity variations due to variations in tissue preparation, variations in spectral signatures of the stained tissue, spectral overlap and spatial aliasing in acquisition, and noise at image acquisition. We present a blind method for color decomposition of histological images. The method decouples intensity from color information and bases the decomposition only on the tissue absorption characteristics of each stain. By modeling the charge-coupled device sensor noise, we improve the method accuracy. We extend current linear decomposition methods to include stained tissues where one spectral signature cannot be separated from all combinations of the other tissues' spectral signatures. We demonstrate both qualitatively and quantitatively that our method results in more accurate decompositions than methods based on non-negative matrix factorization and independent component analysis. The result is one density map for each stained tissue type that classifies portions of pixels into the correct stained tissue allowing accurate identification of morphological features that may be linked to cancer.

  • 45.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Algorithms for cross-talk suppression in fluorescence microscopy2008Inngår i: Medicinteknikdagarna 2008, 2008, s. 64-64Konferansepaper (Annet vitenskapelig)
    Abstract [en]

     

     

     

  • 46.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Spectral Angle Histogram: a Novel Image Analysis Tool for Quantification of Colocalization and Cross-talk2009Inngår i: 9th International ELMI Meeting on Advanced Light Microscopy / [ed] Kurt Anderson, Gail McConnell, Glasgow, UK, 2009, s. 66-67Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    In fluorescence microscopy, when analyzing spectral components, it is common to record two (or more) greyscale images. Each greyscale image, referred to as a channel, corresponds to intensities in different wavelength intervals. If each pixel of a two-channel image is plotted in a space spanned by the two intensity channels a conventional scatter-plot is obtained. Single-coloured pixels are distributed along the axes, while colocalized pixels are distributed closer to the diagonal of the scatter-plot, and cross-talk (as well as noise) is observed as deviations of the single-coloured vectors from the axes. Detection of colocalized pixels is often based on a division of this 2D space into different regions by intensity thresholding. We have developed a method for reducing the scatter-plot to a 1D spectral angle histogram through a series of steps that compensate for the quantization noise which is always present in digital image data.

    Using the spectral angle histogram, we can quantify colocalization in a fully automated and robust manner. As compared to previous methods for quantification of colocalization, this approach is insensitive to cross-talk. In fact, it can also be employed to quantify and compensate for cross-talk, using either linear unmixing or fuzzy classification by spectral angle, ensuring complete suppression of cross-talk with minimal loss of information. Recently we started investigating how the method can deal with autofluorescence. Initial tests on real image data show that the method may be useful for improved background suppression and amplification of the true signals.

    The article “Quantification of colocalization and cross-talk based on spectral angles”, describing the method, is about to be published in the Journal of Microscopy. Authors have also filed a patent application “Pixel classification in image analysis” in 2008.

  • 47.
    Hast, Anders
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Barrera, Tony
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    A modified Phong-Blinn light model for shadowed areas2003Inngår i: Graphics programming methods / [ed] Jeff Lander, Hingham: Charles River Media , 2003, s. 231-235Kapittel i bok, del av antologi (Fagfellevurdert)
  • 48.
    Hast, Anders
    et al.
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Barrera, Tony
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    A modified Phong-Blinn light model for shadowed areas2003Inngår i: Proceedings of 3rd conference for the promotion of research in IT, 2003Konferansepaper (Annet vitenskapelig)
  • 49.
    Hast, Anders
    et al.
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Barrera, Tony
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Incremental Spherical Interpolation with Quadratically Varying Angle2006Inngår i: SIGRAD 2006. The Annual SIGRAD Conference, Special Theme: Computer Games, November 22–23, 2006, Skövde, Sweden, 2006Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Spherical linear interpolation has got a number of important applications in computer graphics. We show how spherical interpolation can be performed efficiently even for the case when the angle vary quadratically over the interval. The computation will be fast since the implementation does not need to evaluate any trigonometric functions in the inner loop. Furthermore, no renormalization is necessary and therefore it is a true spherical interpolation. This type of interpolation, with non equal angle steps, should be useful for animation with accelerating or decelerating movements, or perhaps even in other types of applications.

  • 50.
    Hast, Anders
    et al.
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Barrera, Tony
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Reconstruction Filters for Bump Mapping2002Inngår i: Proceedings from Promote IT 2002, 2002, s. 244-256Konferansepaper (Annet vitenskapelig)
123 1 - 50 of 113
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf