uu.seUppsala University Publications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Block Copolymer Electrolytes: Polymers for Solid-State Lithium Batteries2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The use of solid polymer electrolytes (SPEs) for lithium battery devices is a rapidly growing research area. The liquid electrolytes that are used today are inflammable and harmful towards the battery components. The adoption of SPEs could drastically improve this situation, but they still suffer from a too low performance at ambient temperatures for most practical applications. However, by increasing the operating temperature to between 60 °C and 90 °C, the electrolyte performance can be drastically increased. The drawback of this approach, partly, is that parasitic side reactions become noticeable at these elevated temperatures, thus affecting battery lifetime and performance. Furthermore, the ionically conductive polymer loses its mechanical integrity, thus triggering a need for an external separator in the battery device.

    One way of combining both mechanical properties and electrochemical performance is to design block copolymer (BCP) electrolytes, that is, polymers that are tailored to combine one ionic conductive block with a mechanical block, into one polymer. The hypothesis is that the BCP electrolytes should self-assemble into well-defined microphase separated regions in order to maximize the block properties. By varying monomer composition and structure of the BCP, it is possible to design electrolytes with different battery device performance. In Paper I and Paper II two types of methacrylate-based triblock copolymers with different mechanical blocks were synthesized, in order to evaluate morphology, electrochemical performance, and battery performance. In Paper III and Paper IV a different strategy was adopted, with a focus on diblock copolymers. In this strategy, the ethylene oxide was replaced by poly(e-caprolactone) and poly(trimethylene carbonate) as the lithium-ion dissolving group. The investigated mechanical blocks in these studies were poly(benzyl methacrylate) and polystyrene. The battery performance for these electrolytes was superior to the methacrylate-based battery devices, thus resulting in stable battery cycling at 40 °C and 30 °C.

    List of papers
    1. d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance
    Open this publication in new window or tab >>d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance
    Show others...
    2017 (English)In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, p. 234-242Article in journal (Refereed) Published
    Abstract [en]

    A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-337667 (URN)10.1016/j.polymer.2017.10.044 (DOI)000415014300026 ()
    Funder
    Swedish Research Council
    Available from: 2018-01-03 Created: 2018-01-03 Last updated: 2018-02-22Bibliographically approved
    2. Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries
    Open this publication in new window or tab >>Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries
    2018 (English)In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 321, p. 55-61Article in journal (Refereed) Published
    Abstract [en]

    A triblock copolymer of benzyl methacrylate and oligo(ethylene glycol) methyl ether methacrylate was polymerized to form the general structure PBnMA-POEGMA-PBnMA, using atom transfer radical polymerization (ATRP). The block copolymer (BCP) was blended with lithium bis(trifluoro methylsulfonate) (LiTFSI) to form solid polymer electrolytes (SPEs). AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 °C to 90 °C. Small-angle X-ray scattering (SAXS) was used to study the morphology of the electrolytes in the temperature interval 30 °C to 150 °C. By using benzyl methacrylate as a mechanical block it was possible to tune the microphase separation by the addition of LiTFSI, as proven by SAXS. By doing so the ionic conductivity increased to values higher than ones measured on a methyl methacrylate triblock copolymer-based electrolyte in the mixed state, which was investigated in an earlier paper by our group. A Li|SPE|LiFePO4 half-cell was constructed and cycled at 60 °C. The cell produced a discharge capacity of about 100 mAh g−1 of LiFePO4 at C/10, and the half-cell cycled for more than 140 cycles.

    National Category
    Polymer Chemistry
    Research subject
    Chemistry with specialization in Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-340851 (URN)10.1016/j.ssi.2018.04.006 (DOI)000437372200009 ()
    Funder
    Swedish Energy AgencyStandUp
    Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2018-10-11Bibliographically approved
    3. ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization
    Open this publication in new window or tab >>ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization
    Show others...
    2018 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, no 30, p. 16716-16725Article in journal (Refereed) Published
    Abstract [en]

    In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-340854 (URN)10.1039/c8ra00377g (DOI)000431814500034 ()
    Funder
    Swedish Energy Agency, 42031-1EU, Horizon 2020, 685716
    Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2018-08-27Bibliographically approved
    4. A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications
    Open this publication in new window or tab >>A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery Applications
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Polymer Chemistry
    Identifiers
    urn:nbn:se:uu:diva-340855 (URN)
    Available from: 2018-02-04 Created: 2018-02-04 Last updated: 2018-02-04
  • 2.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hedman, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sångeland, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization2018In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, no 30, p. 16716-16725Article in journal (Refereed)
    Abstract [en]

    In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

  • 3.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Guiomar, Hernández
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Mechanically Robust and Highly Conductive Di-Block Copolymers as Solid Polymer Electrolytes for Room Temperature Li-ion Batteries2018Conference paper (Other academic)
    Abstract [en]

    Alternative solid polymer electrolytes (SPEs) hosts to the archetype poly(ethylene oxide) are gaining attention thanks to their appealing properties, such as higher cation transport number, thermal stability and electrochemical stability [1]. In addition, high mechanical stability is required in order to integrate easy-to-use materials into flexible or ‘structural’ batteries [2, 3].

     In this work, a solid polymer electrolyte (SPE) featuring high ionic conductivity and mechanical robustness at room temperature is presented. The SPE consists of a di-block copolymer, poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate) (BCT), mixed with different loadings of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest ionic conductivity achieved for these SPEs was found with 16.7 wt% LiTFSI loading (BCT17), reaching 9.1 x 10-6 S cm-1 at 30 °C. The limited current fraction (F+) for the BCT17 electrolyte was calculated to be 0.64 with the Bruce-Vincent method. Furthermore, dynamic mechanical analysis showed a storage modulus (E’) of 0.2 GPa below 40 °C and 1 MPa above 50 °C. These results indicate that BCT with LiTFSI is a competitive electrolyte, combining high ionic conductivity and modulus at ambient temperatures.

     LiFePO4|BCT17|Li half-cells showed good cycling performance at 60 °C. At 30 °C, where the SPE possessed significantly higher modulus, decent cell performance could still be achieved after several optimization steps. These included incorporating a SPE as binder, and infiltration cast the SPE on the electrode to maximize the contact between both components, thereby improving the interfacial contact and decreasing the cell resistance and overpotential when cycling the battery device.

     References

    [1] J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell. Prog Polym Sci, (2018). DOI: 10.1016/j.progpolymsci.2017.12.004.

    [2] J.F. Snyder, R.H. Carter, E.D. Wetzel. Chem Mater, 19 (2007) 3793-801.

    [3] W.S. Young, W.F. Kuan, Thomas H. Epps. J Polym Sci, Part B: Polym Phys, 52 (2014) 1-16.

  • 4.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Mogensen, Ronnie
    Lacey, Matthew
    Hernández, Guiomar
    Brandell, Daniel
    Bowden, Tim
    A Mechanical Robust yet highly Conductive Diblock Copolymer-based Solid Polymer Electrolyte for Room Temperature Structural Battery ApplicationsManuscript (preprint) (Other academic)
  • 5.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Rubatat, Laurent
    CNRS/UNIV Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l´ Environnement et les Materiaux, Pau, France.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries2018In: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 321, p. 55-61Article in journal (Refereed)
    Abstract [en]

    A triblock copolymer of benzyl methacrylate and oligo(ethylene glycol) methyl ether methacrylate was polymerized to form the general structure PBnMA-POEGMA-PBnMA, using atom transfer radical polymerization (ATRP). The block copolymer (BCP) was blended with lithium bis(trifluoro methylsulfonate) (LiTFSI) to form solid polymer electrolytes (SPEs). AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 °C to 90 °C. Small-angle X-ray scattering (SAXS) was used to study the morphology of the electrolytes in the temperature interval 30 °C to 150 °C. By using benzyl methacrylate as a mechanical block it was possible to tune the microphase separation by the addition of LiTFSI, as proven by SAXS. By doing so the ionic conductivity increased to values higher than ones measured on a methyl methacrylate triblock copolymer-based electrolyte in the mixed state, which was investigated in an earlier paper by our group. A Li|SPE|LiFePO4 half-cell was constructed and cycled at 60 °C. The cell produced a discharge capacity of about 100 mAh g−1 of LiFePO4 at C/10, and the half-cell cycled for more than 140 cycles.

  • 6.
    Bergfelt, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Rubatat, Laurent
    Univ Pau & Pays Adour, CNRS, Inst Sci Analyt & Physicochim Environm & Mat, UMR5254, F-64000 Pau, France.
    Mogensen, Ronnie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance2017In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, p. 234-242Article in journal (Refereed)
    Abstract [en]

    A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

  • 7.
    Bergman, Martin
    et al.
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Sun, Bing
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden..
    Johansson, Patrik
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide)2015In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 175, p. 96-103Article in journal (Refereed)
    Abstract [en]

    For successful hybridization of heavy vehicles, high temperature batteries might be the solution. Here, high temperature solid polymer electrolytes (SPE's) based on different ratios of poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA), with LiTFSI salt (at a fixed ether oxygen (EO):Li ratio of 20:1) have been prepared and investigated. The copolymers comprise PMMA backbones with grafted PEGMA side-chains containing 9 EO units. The SPE systems were characterized using Raman spectroscopy, broadband dielectric spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and electrochemical cycling in prototype cells, with a particular focus on the 83 wt% PEGMA system. The electrolytes have good thermal stabilities and dissociate the LiTFSI salt easily, while at the same time maintaining low glass transition temperatures (T-g's). Depending on the polymeric structure, ionic conductivities >1 mS cm(-1) at 110 degrees C are detected, thus providing ion transport properties for a broad range of electrochemical applications. Prototype Li vertical bar polymer electrolyte vertical bar LiFePO4 cells utilizing the SPE at 60 degrees C showed surprisingly low capacities (<20 mA h g(-1) LiFePO4), which could be due to poor electrode/electrolyte contacts.

  • 8.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Österlund, Viking
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A robust, water-based, functional binder framework for high energy Li-S batteries2017Conference paper (Other academic)
  • 9.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Österlund, Viking
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries2017In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 13, p. 2758-2766Article in journal (Refereed)
    Abstract [en]

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAhcm(-2) capacity and 97-98% coulombic efficiency are achievable in electrodes with a 65% total sulfur content and a poly(ethylene oxide): poly(vinylpyrrolidone) (PEO: PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf