uu.seUppsala University Publications
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, WenChuang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China..
    Dolguntseva, Irina
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Savin, Andrej
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Zhang, YongLiang
    Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China..
    Li, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Svensson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Numerical modelling of a point-absorbing wave energy converter in irregular and extreme waves2017In: Applied Ocean Research, ISSN 0141-1187, E-ISSN 1879-1549, Vol. 63, p. 90-105Article in journal (Refereed)
    Abstract [en]

    Based on the Navier-Stokes (RANS) equations, a three-dimensional (3-D) mathematical model for the hydrodynamics and structural dynamics of a floating point-absorbing wave energy converter (WEC) with a stroke control system in irregular and extreme waves is presented. The model is validated by a comparison of the numerical results with the wave tank experiment results of other researchers. The validated model is then utilized to examine the effect of wave height on structure displacements and connection rope tension. In the examined cases, the differences in WEC’s performance exhibited by an inviscid fluid and a viscous fluid can be neglected. Our results also reveal that the differences in behavior predicted by boundary element method (BEM) and the RANS-based method can be significant and vary considerably, depending on wave height.

  • 2.
    Lejerskog, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Gravråkmo, Halvar
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Savin, Andreij
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Strömstedt, Erland
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Tyrberg, Simon
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Haikonen, Kalle
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Krishna, Remya
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Boström, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Rahm, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Ekström, Rickard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Svensson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Ekergård, Boel
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Baudoin, Antoine
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Kurupath, Venugopalan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hai, Ling
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Li, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Sundberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Lysekil Research Site, Sweden: A status update2011In: 9th European Wave and Tidal Energy Conference, Southampton, UK, 2011, 2011Conference paper (Refereed)
  • 3.
    Li, Wei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hai, Ling
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Bontemps, Stephanie
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Isberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Optimization of the Dimensions of a Gravity-based Wave Energy Converter Foundation Based on Heave and Surge Forces2011In: 9th European Wave and Tidak Energy Conference, Southampton, UK, 2011, 2011Conference paper (Refereed)
  • 4.
    Li, Wei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hai, Ling
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Bontemps, Stephanie
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Isberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Optimization of the Dimensions of a Gravity-based Wave Energy Converter Foundation Based on Heave and Surge Forces2011In: 9th European Wave and Tidak Energy Conference, Southampton, UK, 2011, 2011Conference paper (Refereed)
  • 5.
    Li, Wei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Isberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Optimization of the Power Absorption for a Linear Generator Wave Energy Converter2015Conference paper (Refereed)
    Abstract [en]

    This paper presents performance optimization studies on a linear generator wave energy converting system developed by Uppsala University of Sweden. The optimization is focused on the investigation of the power absorption with regard to the wave climate at the Lysekil test site for the developed wave energy converter. A frequency domain simplified numerical model is built based on the equation of motion of the system for simulating the behavior of the wave energy converter. The power take-off damping coefficient is chosen as the control parameter in this study. The result shows that the power take-off damping coefficient can be further optimized with regard to the characteristic of the wave climate at the test site for increasing the power absorption capacity of the linear generator wave energy converter. This study will provide significant performance optimization information to the development of the linear generator wave energy converting technology.

  • 6.
    Li, Wei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Isberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Parametric Study of the Power Absorption for a Linear Generator Wave Energy Converter2015In: Journal of Ocean and Wind Energy, ISSN 0305-182X, E-ISSN 2245-408X, Vol. 4Article in journal (Refereed)
  • 7.
    Li, Wei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Isberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Study of the foundation design for a linear generator wave energy converter using stochastic methods2015In: Journal of Renewable and Sustainable Energy, ISSN 1941-7012, E-ISSN 1941-7012, Vol. 7, no 6, article id 063112Article in journal (Refereed)
    Abstract [en]

    This paper presents design studies of the gravity-based foundation for a linear generator wave energy converter. The wave energy converter is based on a direct driven generator mounted on the gravity-based foundation located at the seabed. The linear generator is connected to a point absorbing buoy on the sea surface via a connection rope. Such a device, developed at Uppsala University, has been in operation on the Swedish west coast since 2006. Study is focused on the analysis of the impact from undesirable motions of the gravity-based foundation, particularly the study of the tip and lifts phenomena with regard to the heave and surge forces. Long-term extreme significant wave heights are extrapolated from the statistical analysis of the measured wave climate data in the test site where the wave energy converter is deployed. The joint distribution of the significant wave height and the zero-crossing period from the measured wave climate is also analyzed to estimate the associated periods with respect to the long-term extreme significant wave height. The 25 years return extreme significant wave height 4.8m which is associated with its mean zero-crossing period 8.25 s from the joint distribution is chosen to determine the characteristics of the possible maximum wave for the Lysekil test site. The estimated maximum wave 9.2m is used to estimate the extreme values of the heave and surge forces on the wave energy converter and the gravity-based foundation. The results with respect to the foundation of a new generation wave energy converter about 35 tons with the presented methodology indicate that a heavier foundation which is about 70 tons needs to be designed in terms of considering the stability of the mooring foundation for long term real sea operation. The purpose of this paper is to propose a reliable approach to estimate the appropriate dimensions for gravity-based foundation of the linear generator wave energy converter and provides a theoretical reference to the construction of the gravity-based foundation.

  • 8.
    Li, Wei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Isberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Svensson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction2016In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 9, no 6, article id 396Article in journal (Refereed)
    Abstract [en]

    The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005-2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT) method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  • 9.
    Li, Xiaoqing
    et al.
    KTH Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden.;North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.;Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary..
    Schonecker, Stephan
    KTH Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden..
    Li, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Varga, Lajos K.
    Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary..
    Irving, Douglas L.
    North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA..
    Vitos, Levente
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. KTH Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden.;Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary.
    Tensile and shear loading of four fcc high-entropy alloys: A first-principles study2018In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 97, no 9, article id 094102Article in journal (Refereed)
    Abstract [en]

    Ab initio density-functional calculations are used to investigate the response of four face-centered-cubic (fcc) high-entropy alloys (HEAs) to tensile and shear loading. The ideal tensile and shear strengths (ITS and ISS) of the HEAs are studied by employing first-principles alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation. We benchmark the computational accuracy against literature data by studying the ITS under uniaxial [110] tensile loading and the ISS for the [11 (2) over tilde](111) shear deformation of pure fcc Ni and Al. For the HEAs, we uncover the alloying effect on the ITS and ISS. Under shear loading, relaxation reduces the ISS by similar to 50% for all considered HEAs. We demonstrate that the dimensionless tensile and shear strengths are significantly overestimated by adopting two widely used empirical models in comparison with our ab initio calculations. In addition, our predicted relationship between the dimensionless shear strength and shear instability are in line with the modified Frenkel model. Using the computed ISS, we derive the half-width of the dislocation core for the present HEAs. Employing the ratio of ITS to ISS, we discuss the intrinsic ductility of HEAs and compare it with a common empirical criterion. We observe a strong linear correlation between the shear instability and the ratio of ITS to ISS, whereas a weak positive correlation is found in the case of the empirical criterion.

  • 10.
    Parwal, Arvind
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Remouit, Flore
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hong, Yue
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Francisco, Francisco
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Castelucci, Valeria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Hai, Ling
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Ulvgård, Liselotte
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Li, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Lejerskog, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Baudoin, Antoine
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Nasir, M
    Chatzigiannakou, Maria Angiliki
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Haikonen, Kalle
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Ekström, Rickard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Boström, C.
    Göteman, Malin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Waters, Rafael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Svensson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Sundberg, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Rahm, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Strömstedt, Erland
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Engström, Jens
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Savin, Andrej
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Leijon, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Wave Energy Research at Uppsala University and The Lysekil Research Site, Sweden: A Status Update2015Conference paper (Refereed)
    Abstract [en]

    This paper provides a summarized status update ofthe Lysekil wave power project. The Lysekil project is coordinatedby the Div. of Electricity, Uppsala University since 2002, with theobjective to develop full-scale wave power converters (WEC). Theconcept is based on a linear synchronous generator (anchored tothe seabed) driven by a heaving point absorber. This WEC has nogearbox or other mechanical or hydraulic conversion systems,resulting in a simpler and robust power plant. Since 2006, 12 suchWECs have been build and tested at the research site located atthe west coast of Sweden. The last update includes a new andextended project permit, deployment of a new marine substation,tests of several concepts of heaving buoys, grid connection,improved measuring station, improved modelling of wave powerfarms, implementation of remote operated vehicles forunderwater cable connection, and comprehensive environmentalmonitoring studies.

  • 11.
    Wu, Jinming
    et al.
    Harbin Inst Technol, Dept Mech Engn, Harbin 150001, Heilongjiang, Peoples R China..
    Yao, Yingxue
    Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Guangdong, Peoples R China..
    Li, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Zhou, Liang
    Harbin Inst Technol, Dept Mech Engn, Harbin 150001, Heilongjiang, Peoples R China..
    Göteman, Malin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Optimizing the Performance of Solo Duck Wave Energy Converter in Tide2017In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 10, no 3, article id 289Article in journal (Refereed)
    Abstract [en]

    The high efficiency performance of the Edinburgh Duck wave energy converter (WEC) in 2D regular wave tests makes it a promising wave energy conversion scheme. A solo Duck WEC will be able to apply the point absorber effect to further enhance its performance. Since released degree of freedom will decrease the efficiency, a Duck WEC with fixed pitching axis will be a better option. However, for fixed supported WECs, tide is a non-ignorable consideration. In this paper, a movable mass method is utilized in the whole tidal range to not only balance the Duck to appropriate beak angles, but also follow the variation of hydrodynamic coefficients to keep cancelling the reactance of the system impedance so that complex conjugate control can be realized to optimize the power capture performance of the Duck WEC in tide. Results show that the beak angle should be adjusted to as large a value as possible so that the response amplitude of the Duck at maximum relative capture width will be reasonable small, and the lowest weight of the movable mass is found when its designed position locates at the center of the Duck profile.

  • 12.
    Wu, Jinming
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
    Yao, Yingxue
    Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China.
    Zhou, Liang
    School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
    Chen, Ni
    School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
    Yu, Huifeng
    State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China.
    Li, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Göteman, Malin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Performance analysis of solo Duck wave energy converter arrays under motion constraints2017In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 139, p. 155-169Article in journal (Refereed)
    Abstract [en]

    This paper studies the power capture performance of solo Duck wave energy converter (WEC) arrays. The barrier function method combined with a quasi-Newton BFGS optimization algorithm is applied to find the maximum captured power of the array when the Ducks are under motion constraints. Based on this optimized maximum captured power, the effects of separation distance, wave period, incident wave direction and Duck width on the array performance are investigated. For the two Ducks array, results show that the alternative constructive and destructive interaction stripes in the contour plot of the q-factor variation with non-dimensional separation distance are resulted from the diffracted wave pattern from each Duck, and the hydrodynamic interaction strength is reduced when constraints affect the performance. For the three Ducks array, the middle Duck shows larger variability of captured power than the side Ducks due to experiencing double in phase diffracted wave from the side ones. The captured power of the solo Duck WEC array is sensitive to incident wave direction, and arrays with Ducks of smaller width are found to have better performance in power capture efficiency.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf