uu.seUppsala University Publications
Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Duan, Yu-Xia
    et al.
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Zhang, Cheng
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Rusz, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Oppeneer, Peter M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Durakiewicz, Tomasz
    Marie Curie Sklodowska Univ, Lnstitute Phys, PL-20031 Lublin, Poland.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Tjernberg, Oscar
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Kista, Sweden.
    Mansson, Martin
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Kista, Sweden.
    Berntsen, Magnus H.
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Kista, Sweden.
    Wu, Fan-Ying
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Zhao, Yin-Zou
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Song, Jiao-Jiao
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Wu, Qi-Yi
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Luo, Yang
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China.
    Bauer, Eric D.
    Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA.
    Thompson, Joe D.
    Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA.
    Meng, Jian-Qiao
    Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China;Hunan Normal Univ, SICQEA, Changsha 410081, Hunan, Peoples R China.
    Crystal electric field splitting and f-electron hybridization in heavy-fermion CePt2In72019In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 100, no 8, article id 085141Article in journal (Refereed)
    Abstract [en]

    We use high-resolution angle-resolved photoemission spectroscopy to investigate the electronic structure of the antiferromagnetic heavy fermion compound CePt2In7, which is amember of the CeIn3-derived heavy fermion material family. Weak hybridization among 4f electron states and conduction bands was identified in CePt2In7 at low temperature much weaker than that in the other heavy fermion compounds like CeIrIn5 and CeRhIn5. The Ce 4f spectrum shows fine structures near the Fermi energy, reflecting the crystal electric field splitting of the 4f(5/2)(1) and 4f(7/2)(1) states. Also, we find that the Fermi surface has a strongly three-dimensional topology, in agreement with density-functional theory calculations.

  • 2.
    Forslund, Ola Kenji
    et al.
    KTH Royal Inst Technol, Dept Appl Phys, Elect 229, SE-16440 Kista, Sweden.
    Andreica, Daniel
    Babes Bolyai Univ, Fac Phys, Cluj Napoca, Romania.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Nozaki, Hiroshi
    Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan.
    Umegaki, Izumi
    Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan.
    Nocerino, Elisabetta
    KTH Royal Inst Technol, Dept Appl Phys, Elect 229, SE-16440 Kista, Sweden.
    Jonsson, Viktor
    KTH Royal Inst Technol, Dept Appl Phys, Elect 229, SE-16440 Kista, Sweden.
    Tjernberg, Oscar
    KTH Royal Inst Technol, Dept Appl Phys, Elect 229, SE-16440 Kista, Sweden.
    Guguchia, Zurab
    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, PSI, Switzerland.
    Shermadini, Zurab
    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, PSI, Switzerland.
    Khasanov, Rustem
    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, PSI, Switzerland.
    Isobe, Masahiko
    Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany.
    Takagi, Hidenori
    Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany.
    Ueda, Yutaka
    Toyota Phys & Chem Res Inst, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan.
    Sugiyama, Jun
    Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan.
    Mansson, Martin
    KTH Royal Inst Technol, Dept Appl Phys, Elect 229, SE-16440 Kista, Sweden.
    Magnetic phase diagram of K2Cr8O16 clarified by high-pressure muon spin spectroscopy2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 1141Article in journal (Refereed)
    Abstract [en]

    The K2Cr8O16 compound belongs to a series of quasi-1D compounds with intriguing magnetic properties that are stabilized through a high-pressure synthesis technique. In this study, a muon spin rotation, relaxation and resonance (mu+SR) technique is used to investigate the pressure dependent magnetic properties up to 25 kbar. mu+SR allows for measurements in true zero applied field and hereby access the true intrinsic material properties. As a result, a refined temperature/pressure phase diagram is presented revealing a novel low temperature/high pressure (p(C1) = 21 kbar) transition from a ferromagnetic insulating to a high-pressure antiferromagnetic insulator. Finally, the current study also indicates the possible presence of a quantum critical point at p(C2) similar to 33 kbar where the magnetic order in K2Cr8O16 is expected to be fully suppressed even at T = 0 K.

  • 3.
    Giangrisostomi, Erika
    et al.
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-72489 Berlin, Germany..
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-72489 Berlin, Germany..
    Sorgenfrei, Florian
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany..
    Zhang, Teng
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Cappel, Ute B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Leitner, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Mitzner, Rolf
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-72489 Berlin, Germany..
    Svensson, Svante
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Mårtensson, Nils
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Foehlisch, Alexander
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-72489 Berlin, Germany.;Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany..
    Low Dose Photoelectron Spectroscopy at BESSY II: Electronic structure of matter in its native state2018In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 224, p. 68-78Article in journal (Refereed)
    Abstract [en]

    The implementation of a high-transmission, angular-resolved time-of-Right electron spectrometer with a 1.25 MHz pulse selector at the PM4 soft X-ray dipole beamline of the synchrotron BESSY II creates unique capabilities to inquire electronic structure via photoelectron spectroscopy with a minimum of radiation dose. Solid-state samples can be prepared and characterized with standard UHV techniques and rapidly transferred from various preparation chambers to a 4-axis temperature-controlled measurement stage. A synchronized MHz laser system enables excited-state characterization and dynamical studies starting from the picosecond timescale. This article introduces the principal characteristics of the PM4 beamline and LowDosePES end-station. Recent results from graphene, an organic hole transport material for solar cells and the transition metal dichalcogenide MoS2 are presented to demonstrate the instrument performances. (C) 2017 The Authors. Published by Elsevier B.V.

  • 4.
    Horio, M.
    et al.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Hauser, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Mingazheva, Z.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Sutter, D.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Kramer, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Cook, A.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Nocerino, E.
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Sweden.
    Forslund, O. K.
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Sweden.
    Tjernberg, O.
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Sweden.
    Kobayashi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Chikina, A.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Schröter, N. B. M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Krieger, J. A.
    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland;Swiss Fed Inst Technol, Lab Festkorperphys, CH-8093 Zurich, Switzerland.
    Schmitt, T.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Strocov, V. N.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Pyon, S.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan.
    Takayama, T.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan.
    Takagi, H.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan.
    Lipscombe, O. J.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
    Hayden, S. M.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
    Ishikado, M.
    CROSS, Tokai, Ibaraki 3191106, Japan.
    Eisaki, H.
    Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba 3058568, Japan.
    Neupert, T.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Månsson, M.
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Sweden.
    Matt, C. E.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland;Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland;Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
    Chang, J.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 7, article id 077004Article in journal (Refereed)
    Abstract [en]

    We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k(z) dispersion is observed along the nodal direction, whereas a significant antinodal k(z) dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2-xSrxCuO4 cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.

  • 5.
    Horio, M.
    et al.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Matt, C. E.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland;Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Kramer, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Sutter, D.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Cook, A. M.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Hauser, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Mansson, M.
    KTH Royal Inst Technol, Dept Appl Phys, Electrum 229, SE-16440 Stockholm, Sweden.
    Plumb, N. C.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Shi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Lipscombe, O. J.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
    Hayden, S. M.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
    Neupert, T.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Chang, J.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Two-dimensional type-II Dirac fermions in layered oxides2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 3252Article in journal (Refereed)
    Abstract [en]

    Relativistic massless Dirac fermions can be probed with high-energy physics experiments, but appear also as low-energy quasi-particle excitations in electronic band structures. In condensed matter systems, their massless nature can be protected by crystal symmetries. Classification of such symmetry-protected relativistic band degeneracies has been fruitful, although many of the predicted quasi-particles still await their experimental discovery. Here we reveal, using angle-resolved photoemission spectroscopy, the existence of two-dimensional type-II Dirac fermions in the high-temperature superconductor La1.77Sr0.23CuO4. The Dirac point, constituting the crossing of d(x2-y2) and d(z2) bands, is found approximately one electronvolt below the Fermi level (E-F) and is protected by mirror symmetry. If spin-orbit coupling is considered, the Dirac point degeneracy is lifted and the bands acquire a topologically non-trivial character. In certain nickelate systems, band structure calculations suggest that the same type-II Dirac fermions can be realised near EF.

  • 6.
    Kobayashi, Shintaro
    et al.
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi, Japan; SPring 8, Japan Synchrotron Radiat Res Inst, Kouto, Sayo, Japan.
    Katayama, Naoyuki
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi, Japan.
    Manjo, Taishun
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi, Japan.
    Ueda, Hiroaki
    Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto, Japan.
    Michioka, Chishiro
    Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto, Japan.
    Sugiyama, Jun
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi, Japan; CROSS Neutron Sci & Technol Ctr, Tokai, Ibaraki, Japan.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Chalmers Univ Technol, Dept Phys, Gothenburg, Sweden.
    Forslund, Ola Kenji
    KTH Royal Inst Technol, Dept Appl Phys, Electrum, Kista, Sweden.
    Mansson, Martin
    KTH Royal Inst Technol, Dept Appl Phys, Electrum, Kista, Sweden.
    Yoshimura, Kazuyoshi
    Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto, Japan; Kyoto Univ, Res Ctr Low Temp & Mat Sci, Kyoto, Japan.
    Sawa, Hiroshi
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi, Japan.
    Linear Trimer Formation with Antiferromagnetic Ordering in 1T-CrSe2 Originating from Peierls-like Instabilities and Interlayer Se–Se Interactions2019In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 58, no 21, p. 14304-14315Article in journal (Refereed)
    Abstract [en]

    Anomalous successive structural transitions in layered 1T-CrSe2 with an unusual Cr4+ valency were investigated by synchrotron X-ray diffraction. 1T-CrSe2 exhibits dramatic structural changes in in-plane Cr–Cr and interlayer Se–Se distances, which originate from two interactions: (i) in-plane Cr–Cr interactions derived from Peierls-like trimerization instabilities on the orbitally assisted one-dimensional chains and (ii) interlayer Se–Se interactions through p–p hybridization. As a result, 1T-CrSe2 has the unexpected ground state of an antiferromagnetic metal with multiple Cr linear trimers with three-center–two-electron σ bonds. Interestingly, partial substitution of Se for S atoms in 1T-CrSe2 changes the ground state from an antiferromagnetic metal to an insulator without long-range magnetic ordering, which is due to the weakening of interlayer interactions between anions. The unique low-temperature structures and electronic states of this system are determined by the competition and cooperation of in-plane Cr–Cr and interlayer Se–Se interactions.

  • 7.
    Matt, C. E.
    et al.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;ETH, Lab Solid State Phys, CH-8093 Zurich, Switzerland..
    Fatuzzo, C. G.
    Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland..
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics. Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;ETH, Lab Solid State Phys, CH-8093 Zurich, Switzerland..
    Mansson, M.
    Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland.;KTH Royal Inst Technol, Mat Phys, S-16440 Kista, Sweden.;Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland..
    Fatale, S.
    Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland..
    Bitetta, V.
    Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland..
    Shi, X.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Pailhes, S.
    Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland.;Univ Lyon 1, Inst Lumiere Matiere, CNRS, UMR5306, F-69622 Villeurbanne, France..
    Berntsen, M. H.
    KTH Royal Inst Technol, Mat Phys, S-16440 Kista, Sweden..
    Kurosawa, T.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan..
    Oda, M.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan..
    Momono, N.
    Muroran Inst Technol, Dept Appl Sci, Muroran, Hokkaido 0508585, Japan..
    Lipscombe, O. J.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Hayden, S. M.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Yan, J. -Q
    Zhou, J. -S
    Goodenough, J. B.
    Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA..
    Pyon, S.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Takayama, T.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Takagi, H.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Patthey, L.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Bendounan, A.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Razzoli, E.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.;Univ Fribourg, Fribourg Ctr Nanomat, CH-1700 Fribourg, Switzerland..
    Shi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Plumb, N. C.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Radovic, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Grioni, M.
    Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland..
    Mesot, J.
    ETH, Lab Solid State Phys, CH-8093 Zurich, Switzerland.;Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland.;Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland..
    Tjernberg, O.
    KTH Royal Inst Technol, Mat Phys, S-16440 Kista, Sweden.;KTH Royal Inst Technol, Ctr Quantum Mat, S-10691 Stockholm, Sweden.;Stockholm Univ, S-10691 Stockholm, Sweden..
    Chang, J.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland.;Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland..
    Electron scattering, charge order, and pseudogap physics in La1.6-xNd0.4SrxCuO4: An angle-resolved photoemission spectroscopy study2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 13, article id 134524Article in journal (Refereed)
    Abstract [en]

    We report an angle-resolved photoemission study of the charge stripe ordered La1.6-xNd0.4SrxCuO4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectral weight appears to be lost. These observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.

  • 8.
    Matt, C. E.
    et al.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.;Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Sutter, D.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Cook, A. M.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Mansson, M.
    KTH Royal Inst Technol, Mat Phys, SE-16440 Stockholm, Sweden..
    Tjernberg, O.
    KTH Royal Inst Technol, Mat Phys, SE-16440 Stockholm, Sweden..
    Das, L.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Horio, M.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Destraz, D.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Fatuzzo, C. G.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland..
    Hauser, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Shi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Kobayashi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Strocov, V. N.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Schmitt, T.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Dudin, P.
    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England..
    Hoesch, M.
    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England..
    Pyon, S.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Takayama, T.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Takagi, H.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Lipscombe, O. J.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Hayden, S. M.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Kurosawa, T.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan..
    Momono, N.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan.;Muroran Inst Technol, Dept Appl Sci, Muroran, Hokkaido 0508585, Japan..
    Oda, M.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan..
    Neupert, T.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Chang, J.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Direct observation of orbital hybridisation in a cuprate superconductor2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 972Article in journal (Refereed)
    Abstract [en]

    The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (d(x2-y2) and d(z2)) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.

  • 9.
    Razzoli, E.
    et al.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.;Univ Fribourg, Fribourg Ctr Nanomat, CH-1700 Fribourg, Switzerland.;Univ British Columbia, Quantum Matter Inst, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada..
    Matt, C. E.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.;ETH, Lab Solid State Phys, CH-8093 Zurich, Switzerland..
    Sassa, Y.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.;ETH, Lab Solid State Phys, CH-8093 Zurich, Switzerland..
    Mansson, M.
    Ecole Polytech Fed Lausanne, LQM, Stn 3, CH-1015 Lausanne, Switzerland.;Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland.;KTH Royal Inst Technol, Mat Phys, Electrum 229, S-16440 Stockholm, Sweden..
    Tjernberg, O.
    KTH Royal Inst Technol, Mat Phys, Electrum 229, S-16440 Stockholm, Sweden..
    Drachuck, G.
    Technion Israel Inst Technol, Phys Dept, IL-32000 Haifa, Israel..
    Monomo, M.
    Muroran Inst Technol, Dept Appl Sci, Muroran, Hokkaido 0508585, Japan..
    Oda, M.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan..
    Kurosawa, T.
    Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan..
    Huang, Y.
    Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.;Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China..
    Plumb, N. C.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland..
    Radovic, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland..
    Keren, A.
    Technion Israel Inst Technol, Phys Dept, IL-32000 Haifa, Israel..
    Patthey, L.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland..
    Mesot, J.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.;ETH, Lab Solid State Phys, CH-8093 Zurich, Switzerland.;EPF Lausanne, Inst Mat Complexe, CH-1015 Lausanne, Switzerland..
    Shi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland..
    Rotation symmetry breaking in La2-xSrxCuO4 revealed by angle-resolved photoemission spectroscopy2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, no 22, article id 224504Article in journal (Refereed)
    Abstract [en]

    Using angle-resolved photoemission spectroscopy it is revealed that in the vicinity of optimal doping the electronic structure of La2-x SrxCuO4 cuprate undergoes an electronic reconstruction associated with a wave vector q(a) = (pi, 0). The reconstructed Fermi surface and folded band are distinct to the shadow bands observed in BSCCO cuprates and in underdoped La2-xSrxCuO4 with x <= 0.12, which shift the primary band along the zone diagonal direction. Furthermore, the folded bands appear only with q(a) = (pi, 0) vector, but not with q(b) = (0, pi). We demonstrate that the absence of q(b) reconstruction is not due to thematrix-element effects in the photoemission process, which indicates the fourfold symmetry is broken in the system.

  • 10.
    Sassa, Yasmine
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland..
    Månsson, M.
    KTH Royal Inst Technol, Mat Phys, SE-16440 Stockholm, Sweden..
    Forslund, O. K.
    KTH Royal Inst Technol, Mat Phys, SE-16440 Stockholm, Sweden..
    Tjernberg, O.
    KTH Royal Inst Technol, Mat Phys, SE-16440 Stockholm, Sweden..
    Pomjakushin, V.
    Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland..
    Ofer, O.
    TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada..
    Ansaldo, E. J.
    TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada..
    Brewer, J. H.
    TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada..
    Umegaki, I.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Higuchi, Y.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Ikedo, Y.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan.;KEK, Muon Sci Lab, Tsukuba, Ibaraki 3050801, Japan..
    Nozaki, H.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Harada, M.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Watanabe, I.
    RIKEN Nishina Ctr, Adv Meson Sci Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan..
    Sakurai, H.
    Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan..
    Sugiyama, J.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    The metallic quasi-1D spin-density-wave compound NaV2O4 studied by angle-resolved photoelectron spectroscopy2018In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 224, p. 79-83Article in journal (Refereed)
    Abstract [en]

    Angle-resolved photoelectron spectroscopy has been used to follow the valence band and near Fermi edge electronic band structure in the quasi-1D compound NaV2O4. In this current study we have acquired the very first high-quality, high-resolution ARPES data from this material. Our data clearly reveal two distinct dispersive bands that cross the Fermi level at different k(F). This is a clear signature that the electronic properties of this material is affected by the presence of a mixed valence state on the different vanadium chains and possibly also the low-temperature magnetic spin order. (C) 2017 Elsevier B.V. All rights reserved.

  • 11.
    Sutter, D.
    et al.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Fatuzzo, C. G.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland..
    Moser, S.
    ALS, Berkeley, CA 94720 USA..
    Kim, M.
    Coll France, F-75231 Paris 05, France.;Univ Paris Saclay, CNRS, Ecole Polytech, Ctr Phys Theror, F-91128 Palaiseau, France..
    Fittipaldi, R.
    CNR, SPIN, I-84084 Salerno, Italy.;Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy..
    Vecchione, A.
    CNR, SPIN, I-84084 Salerno, Italy.;Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy..
    Granata, V.
    CNR, SPIN, I-84084 Salerno, Italy.;Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy..
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Cossalter, F.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Gatti, G.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland..
    Grioni, M.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland..
    Rönnow, H. M.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland..
    Plumb, N. C.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Matt, C. E.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Shi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Hoesch, M.
    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England..
    Kim, T. K.
    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England..
    Chang, T. -R
    Jeng, H. -T
    Jozwiak, C.
    ALS, Berkeley, CA 94720 USA..
    Bostwick, A.
    ALS, Berkeley, CA 94720 USA..
    Rotenberg, E.
    ALS, Berkeley, CA 94720 USA..
    Georges, A.
    Coll France, F-75231 Paris 05, France.;Univ Paris Saclay, CNRS, Ecole Polytech, Ctr Phys Theror, F-91128 Palaiseau, France.;Univ Geneva, Dept Quantum Matter Phys, CH-1211 Geneva 4, Switzerland..
    Neupert, T.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Chang, J.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Hallmarks of Hunds coupling in the Mott insulator Ca2RuO42017In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, article id 15176Article in journal (Refereed)
    Abstract [en]

    A paradigmatic case of multi-band Mott physics including spin-orbit and Hund's coupling is realized in Ca2RuO4. Progress in understanding the nature of this Mott insulating phase has been impeded by the lack of knowledge about the low-energy electronic structure. Here we provide-using angle-resolved photoemission electron spectroscopy-the band structure of the paramagnetic insulating phase of Ca2RuO4 and show how it features several distinct energy scales. Comparison to a simple analysis of atomic multiplets provides a quantitative estimate of the Hund's coupling J = 0.4 eV. Furthermore, the experimental spectra are in good agreement with electronic structure calculations performed with Dynamical Mean-Field Theory. The crystal field stabilization of the d(xy) orbital due to c-axis contraction is shown to be essential to explain the insulating phase. These results underscore the importance of multi-band physics, Coulomb interaction and Hund's coupling that together generate the Mott insulating state of Ca2RuO4.

  • 12.
    Sutter, D.
    et al.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Kim, M.
    Coll France, F-75231 Paris 05, France;Univ Paris Saclay, Ctr Phys Theor, CNRS, Ecole Polytech, F-91128 Palaiseau, France.
    Matt, C. E.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Horio, M.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Fittipaldi, R.
    CNR SPIN, I-84084 Salerno, Italy;Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy.
    Vecchione, A.
    CNR SPIN, I-84084 Salerno, Italy;Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy.
    Granata, V
    CNR SPIN, I-84084 Salerno, Italy;Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy.
    Hauser, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Gatti, G.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland.
    Grioni, M.
    Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland.
    Hoesch, M.
    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England.
    Kim, T. K.
    Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England.
    Rienks, E.
    Helmholtz Zentrum Berlin, Bessy 2, D-12489 Berlin, Germany.
    Plumb, N. C.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Shi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
    Neupert, T.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Georges, A.
    Coll France, F-75231 Paris 05, France;Univ Paris Saclay, Ctr Phys Theor, CNRS, Ecole Polytech, F-91128 Palaiseau, France;Univ Geneva, Dept Quantum Matter Phys, CH-1211 Geneva 4, Switzerland;Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA.
    Chang, J.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
    Orbitally selective breakdown of Fermi liquid quasiparticles in Ca1.8Sr0.2RuO42019In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 99, no 12, article id 121115Article in journal (Refereed)
    Abstract [en]

    We present a comprehensive angle-resolved photoemission spectroscopy study of Ca1.8Sr0.2RuO4. Four distinct bands are revealed and along the Ru-O bond direction their orbital characters are identified through a light polarization analysis and comparison to dynamical mean-field theory calculations. Bands assigned to d(xz),d(yz) orbitals display Fermi liquid behavior with fourfold quasiparticle mass renormalization. Extremely heavy fermions-associated with a predominantly d(xy) band character-are shown to display non-Fermi-liquid behavior. We thus demonstrate that Ca1.8Sr0.2RuO4 is a hybrid metal with an orbitally selective Fermi liquid quasiparticle breakdown.

  • 13.
    Teng, Zhang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Iulia, Brumboiu
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Lüder, Johann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Cesare, Grazioli
    University of Trieste.
    Valeria, Lanzilotto
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Erika, Giangrisostomi
    Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin.
    Ruslan, Ovsyannikov
    Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin.
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Ieva, Bidermane
    Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin.
    Matija, Stupar
    University of Nova Gorica, Slovenia.
    Monica, de Simone
    CNR-IOM, Italy.
    Marcello, Coreno
    CNR-ISM, Italy.
    Barbara, Ressel
    University of Nova Gorica, Slovenia.
    Maddalena, Pedio
    CNR-IOM, Italy.
    Petra, Rudolf
    Zernike Institute for Advanced Materials, University of Groningen, Netherland.
    Brena, Barbara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Puglia, Carla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Exploring the electronic structure of CoPc by photoemission and absorption spectroscopyManuscript (preprint) (Other academic)
    Abstract [en]

    Photoelectron spectroscopy  and X-ray absorption spectroscopy were used to investigate the occupied and empty density of states of cobalt phthalocyanine (CoPc) in the gas phase and in thin films of different thicknesses, deposited onto a Au (111) single crystal. The comparison between experimental gas phase results and density functional theory single molecule simulations confirmed that the CoPc ground state is correctly described by the 2A1g electronic configuration. Moreover, the atomic character of the highest occupied molecular orbital of CoPc was addressed by performing photon energy dependent valence photoemission spectroscopy experiments on both CoPc gas phase and film samples. Our results clearly show that the highest occupied molecular orbital is derived only from the organic ligand, with mainly contribution from the carbon atoms. Multiplet ligand field theory was employed to simulate the Co L edge X-ray absorption spectroscopy results.

  • 14.
    Zhang, Teng
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Brumboiu, I. E.
    Royal Inst Technol, Dept Theoret Chem & Biol, SE-10691 Stockholm, Sweden..
    Lanzilotto, Valeria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Luder, J.
    Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore..
    Grazioli, C.
    ISM CNR, Trieste Unit LD2, Basovizza AREA Sci Pk, I-34149 Trieste, Italy..
    Giangrisostomi, E.
    Helmholtz Zentrum Berlin, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Ovsyannikov, R.
    Helmholtz Zentrum Berlin, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Bidermane, I.
    Helmholtz Zentrum Berlin, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Stupar, M.
    Univ Nova Gorica, Dept Phys, Vipavska Cesta 11C, Ajdovscina 5270, Slovenia..
    de Simone, M.
    CNR IOM, SS 14 Km 163,5, I-34149 Trieste, Italy..
    Coreno, M.
    ISM CNR, Trieste Unit LD2, Basovizza AREA Sci Pk, I-34149 Trieste, Italy..
    Ressel, B.
    Univ Nova Gorica, Dept Phys, Vipavska Cesta 11C, Ajdovscina 5270, Slovenia..
    Pedio, M.
    CNR IOM, SS 14 Km 163,5, I-34149 Trieste, Italy..
    Rudolf, P.
    Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands..
    Brena, Barbara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Puglia, Carla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Conclusively Addressing the CoPc Electronic Structure: A Joint Gas-Phase and Solid-State Photoemission and Absorption Spectroscopy Study2017In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 47, p. 26372-26378Article in journal (Refereed)
    Abstract [en]

    The occupied and empty densities of states of cobalt phthalocyanine (CoPc) were investigated by photoelectron and X-ray absorption spectroscopies in the gas phase and in thin films deposited on a Au(111) surface. The comparison between the gas-phase results and density functional theory single-molecule simulations confirmed that the CoPc ground state is correctly described by the (2)A(1g) electronic configuration. Moreover, photon-energy-dependent valence photoemission spectra of both the gas phase and thin film confirmed the atomic character of the highest occupied molecular orbital as being derived from the organic ligand, with dominant contributions from the carbon atoms. Multiplet ligand-field theory was employed to simulate the Co L-edge X-ray absorption spectroscopy results.

  • 15.
    Zhu, Jian-Xin
    et al.
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Janoschek, Marc
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Chaves, D. S.
    Natl Ctr Res Energy & Mat CNPEM, Brazil Synchrotron Light Lab LNLS, Campinas, SP, Brazil.;Inst Neel, Grp Micro & Nanomagnetism, Grenoble, France..
    Cezar, J. C.
    Natl Ctr Res Energy & Mat CNPEM, Brazil Synchrotron Light Lab LNLS, Campinas, SP, Brazil..
    Durakiewicz, Tomasz
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Ronning, Filip
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Sassa, Yasmine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Mansson, Martin
    Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland.;KTH Royal Inst Technol, Dept Mat & Nanophys, SE-16440 Stockholm, Sweden..
    Scott, B. L.
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Wakeham, N.
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Bauer, Eric D.
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Thompson, J. D.
    Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA..
    Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe22016In: PHYSICAL REVIEW B, ISSN 2469-9950, Vol. 93, no 14, article id 144404Article in journal (Refereed)
    Abstract [en]

    Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within the local-density approximation (LDA) of the density-functional theory, and its combination with dynamical mean-field theory (DMFT). To compare these calculations, we measure magnetic and thermodynamic properties as well as x-ray magnetic circular dichroism and the photoemission spectrum of single-crystal Fe3GeTe2. We find that the experimentally determined Sommerfeld coefficient is enhanced by an order of magnitude with respect to the LDA value. This enhancement can be partially explained by LDA+DMFT. In addition, the inclusion of dynamical electronic correlation effects provides the experimentally observed magnetic moments, and the spectral density is in better agreement with photoemission data. These results establish the importance of electronic correlations in this ferromagnet.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf