uu.seUppsala University Publications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Khanna, Namita
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Esmieu, Charlène
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Meszaros, Livia S.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lindblad, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Berggren, Gustav
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    In vivo activation of an [FeFe] hydrogenase using synthetic cofactors2017In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 10, no 7, p. 1563-1567Article in journal (Refereed)
    Abstract [en]

    [FeFe] hydrogenases catalyze the reduction of protons, and oxidation of hydrogen gas, with remarkable efficiency. The reaction occurs at the H-cluster, which contains an organometallic [2Fe] subsite. The unique nature of the [2Fe] subsite makes it dependent on a specific set of maturation enzymes for its biosynthesis and incorporation into the apo-enzyme. Herein we report on how this can be circumvented, and the apo-enzyme activated in vivo by synthetic active site analogues taken up by the living cell.

  • 2.
    Kovacs, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lu, Xi
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Meszaros, Livia S.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Ott, Marjam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Andres, Julien
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Borbas, K. Eszter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Photophysics of Coumarin and Carbostyril-Sensitized Luminescent Lanthanide Complexes: Implications for Complex Design in Multiplex Detection2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 16, p. 5756-5767Article in journal (Refereed)
    Abstract [en]

    Luminescent lanthanide (Ln(III)) complexes with coumarin or carbostyril antennae were synthesized and their photophysical properties evaluated using steady-state and time-resolved UV-vis spectroscopy. Ligands bearing distant hydroxycoumarin-derived antennae attached through triazole linkers were modest sensitizers for Eu(III) and Tb(III), whereas ligands with 7-amidocarbostyrils directly linked to the coordination site could reach good quantum yields for multiple Ln(III), including the visible emitters Sm(III) and Dy(III), and the near-infrared emitters Nd(III) and Yb(III). The highest lanthanide-centered luminescence quantum yields were 35% (Tb), 7.9% (Eu), 0.67% (Dy), and 0.18% (Sm). Antennae providing similar luminescence intensities with 2-4 Ln-emitters were identified. Photoredox quenching of the carbostyril antenna excited states was observed for all Eu(III)-complexes and should be sensitizing in the case of Yb(III); the scope of the process extends to Ln(III) for which it has not been seen previously, specifically Dy(III) and Sm(III). The proposed process is supported by photophysical and electrochemical data. A FRET-type mechanism was identified in architectures with both distant and close antennae for all of the Lns. This mechanism seems to be the only sensitizing one at long distance and probably contributes to the sensitization at shorter distances along with the triplet pathway. The complexes were nontoxic to either bacterial or mammalian cells. Complexes of an ester-functionalized ligand were taken up by bacteria in a concentration-dependent manner. Our results suggest that the effects of FRET and photoredox quenching should be taken into consideration when designing luminescent Ln complexes. These results also establish these Ln(III)-complexes for multiplex detection beyond the available two-color systems.

  • 3.
    Magnuson, Ann
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Raleiras, Patricia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Meszaros, Livia S.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Khanna, Namita
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Miranda, Helder
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Ho, Felix M.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lindblad, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Sustainable photobiological hydrogen production via protein engineering of cyanobacterial hydrogenases2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 4.
    Meszaros, Livia S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Nemeth, Brigitta
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Esmieu, Charlène
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Ceccaldi, Pierre
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Berggren, Gustav
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    InVivo EPR Characterization of Semi-Synthetic [FeFe] Hydrogenases2018In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 57, no 10, p. 2596-2599Article in journal (Refereed)
    Abstract [en]

    EPR spectroscopy reveals the formation of two different semi-synthetic hydrogenases invivo. [FeFe] hydrogenases are metalloenzymes that catalyze the interconversion of molecular hydrogen and protons. The reaction is catalyzed by the H-cluster, consisting of a canonical iron-sulfur cluster and an organometallic [2Fe] subsite. It was recently shown that the enzyme can be reconstituted with synthetic cofactors mimicking the composition of the [2Fe] subsite, resulting in semi-synthetic hydrogenases. Herein, we employ EPR spectroscopy to monitor the formation of two such semi-synthetic enzymes in whole cells. The study provides the first spectroscopic characterization of semi-synthetic hydrogenases invivo, and the observation of two different oxidized states of the H-cluster under intracellular conditions. Moreover, these findings underscore how synthetic chemistry can be a powerful tool for manipulation and examination of the hydrogenase enzyme under invivo conditions.

  • 5.
    Raleiras, Patrícia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Khanna, Namita
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Miranda, Helder
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Meszaros, Livia S.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Krassen, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Ho, Felix
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Battchikova, Natalia
    Turku University.
    Aro, Eva-Mari
    Turku University.
    Magnuson, Ann
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Lindblad, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Styring, Stenbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme2016In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, no 2, p. 581-594Article in journal (Refereed)
    Abstract [en]

    The filamentous cyanobacterium Nostoc punctiforme ATCC 29133 produces hydrogen via nitrogenase in heterocysts upon onset of nitrogen-fixing conditions. N. punctiforme expresses concomitantly the uptake hydrogenase HupSL, which oxidizes hydrogen in an effort to recover some of the reducing power used up by nitrogenase. Eliminating uptake activity has been employed as a strategy for net hydrogen production in N. punctiforme (Lindberg et al., Int. J. Hydrogen Energy, 2002, 27, 1291-1296). However, nitrogenase activity wanes within a few days. In the present work, we modify the proximal iron-sulfur cluster in the hydrogenase small subunit HupS by introducing the designed mutation C12P in the fusion protein f-HupS for expression in E. coli (Raleiras et al., J. Biol. Chem., 2013, 288, 18345-18352), and in the full HupSL enzyme for expression in N. punctiforme. C12P f-HupS was investigated by EPR spectroscopy and found to form a new paramagnetic species at the proximal cluster site consistent with a [4Fe-4S] to [3Fe-4S] cluster conversion. The new cluster has the features of an unprecedented mixed-coordination [3Fe-4S] metal center. The mutation was found to produce stable protein in vitro, in silico and in vivo. When C12P HupSL was expressed in N. punctiforme, the strain had a consistently higher hydrogen production than the background [capital Delta]hupSL mutant. We conclude that the increase in hydrogen production is due to the modification of the proximal iron-sulfur cluster in HupS, leading to a turn of the electron flow in the enzyme.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf