uu.seUppsala University Publications
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cheung, Ocean
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Vall, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Novel mesoporous amorphous magnesium carbonate for the adsorption of textile dyes and heavy metal ions2018Conference paper (Refereed)
  • 2.
    Pan, Ruijun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Wang, Zhaohui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Double-sided conductive separators for lithium-metal batteries2019In: Energy Storage Materials, ISSN 2405-8297, Vol. 21, p. 464-473Article in journal (Refereed)
    Abstract [en]

    A novel double-sided conductive (DSC) separator consisting of two 5 μm-thick carbon nanotube (CNT)/cellulose nanofiber (CNF) composite layers coated on each side of a 20 μm-thick glass-fiber (GF)/CNF composite membrane is described. In a lithium-metal battery (LMB), the DSC separator exhibits a high ionic conductivity (i.e. 1.7 mS cm−1 using an LP40 electrolyte) due to the high porosity (i.e. 66%) of the GF/CNF membrane. More stable Li anodes can also be realized by depositing Li within the porous electronically conducting CNT/CNF matrix at the DSC separator anode side due to the decreased current density. The CNT/CNF layer of the DSC separator facing the cathode, which is in direct electric contact with the current collector, decreases the overpotential for the cathode and consequently improves its capacity and rate performance significantly. A Li/Li cell containing a DSC separator showed an improved cycling stability compared to an analogous cell equipped with a commercial Celgard separator at current densities up to 5 mA cm−2 for Li deposition and stripping capacities up to 5 mAh cm−2. A proof-of-concept LMB containing a lithium iron phosphate (LFP) composite cathode and a DSC separator showed a significantly improved rate capability, yielding capacities of about 110 mAh g−1 at 5 C and 80 mAh g−1 at 10 C. The LMB cell containing a DSC separator also exhibited a capacity retention of 80% after 200 cycles at a rate of 6 C indicating that the two-sided conductive separator design has significant potential in facilitating the development of well-functioning LMBs.

  • 3.
    Pan, Ruijun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Wang, Zhaohui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sandwich-structured nano/micro fiber-based separators for lithium metal batteries2019In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 55, p. 316-326Article in journal (Refereed)
    Abstract [en]

    Although the increased need for high-energy/power-density energy storage systems has revived the research on lithium metal batteries (LMBs), the influence of the separator on the performance of LMBs is still generally neglected. In the present study, a sandwich-structured separator (referred to as the CGC separator below) composed of two 2.5µm thick cellulose nanofiber (CNF) surface layers and an intermediate 15µm thick glass microfiber (GMF) and CNF composite layer is described. While the CNF surface layers of the CGC separator feature a homogeneous distribution of nano-sized pores favoring the attainment of a homogeneous current distribution at both electrodes, the intermediate GMF/CNF layer contains macropores facilitating the ionic transport through the separator. The CGC separator exhibited a much better electrolyte wettability and thermal stability compared to a Celgard separator, due to the use of the hydrophilic and thermally stable CNFs and GMFs. It is also shown that the combination of nano-sized and micro-sized fibers used in the CGC separator yields a higher ionic conductivity than that for the commercial separator (1.14 vs. 0.49 mS cm−1). Moreover, the influence of the separator pore structure (e.g. the porosity and pore distribution) on the performance of LMBs is studied for both Li anodes and LiFePO4 composite cathodes. The results demonstrate that the use of separators with high porosities and homogeneous surface pore distributions can improve the performances (e.g. capacities and stabilities) of LMBs considerably, and also highlights the importance of proper separator/electrode interactions. The present approach constitutes a practical engineering strategy for the production of separators with nano/micro fibers and a promising route for the development of LMBs with improved safety and enhanced electrochemical performances.

  • 4.
    Pan, Ruijun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University.
    Wang, Zhaohui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Polydopamine-based redox-active separator for lithium-ion batteriesIn: Article in journal (Refereed)
    Abstract [en]

    The performance of lithium-ion batteries (LIBs) can be effectively increased with functionalized separators. Herein, it is demonstrated that polydopamine-based redox-active (PRA) separators can provide additional capacity to that of typical anode materials, increase the volumetric capacity of the cell, as well as, decrease the cell resistance to yield an improved performance at higher cycling rates. The PRA separators, which are composed of a 2 µm thick electrically insulating nanocellulose fiber (NCF) layer and an 18 µm thick polydopamine (PDA) and carbon nanotube (CNT) containing redox-active layer, are readily produced using a facile paper-making process. The PRA separators are also easily wettable by commonly employed electrolytes (e.g. LP40) and exhibit a high dimensional stability even at elevated temperatures (e.g. 150 ºC). In addition, the pore structure endows the PRA separator with a high ionic conductivity (i.e. 1.06 mS cm-1 after soaking with LP40 electrolyte) that increases the rate performance of the cells. Due to the presence of the redox-active layer, Li4Ti5O12 (LTO) half-cells containing PRA separator were found to exhibit significantly higher capacities than the corresponding cells containing commercial separators. These results clearly show that the implementation of this type of redox-active separators constitutes a straightforward and effective way to increase the energy and power densities of LIBs.

  • 5.
    Pan, Ruijun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Wang, Zhaohui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Polydopamine-based redox-active separators for lithium-ion batteries2019In: Journal of Materiomics, ISSN 2352-8478, p. 204-213Article in journal (Refereed)
    Abstract [en]

    The performance of lithium-ion batteries (LIBs) can be effectively increased with functionalized separators. Herein, it is demonstrated that polydopamine-based redox-active (PRA) separators can provide additional capacity to that of typical anode materials, increase the volumetric capacity of the cell, as well as, decrease the cell resistance to yield an improved performance at higher cycling rates. The PRA separators, which are composed of a 2 μm thick electrically insulating nanocellulose fiber (NCF) layer and an 18 μm thick polydopamine (PDA) and carbon nanotube (CNT) containing redox-active layer, are readily produced using a facile paper-making process. The PRA separators are also easily wettable by commonly employed electrolytes (e.g. LP40) and exhibit a high dimensional stability. In addition, the pore structure endows the PRA separator with a high ionic conductivity (i.e. 1.06 mS cm−1) that increases the rate performance of the cells. Due to the presence of the redox-active layer, Li4Ti5O12 (LTO) half-cells containing PRA separator were found to exhibit significantly higher capacities than the corresponding cells containing commercial separators. These results clearly show that the implementation of this type of redox-active separators constitutes a straightforward and effective way to increase the energy and power densities of LIBs.

  • 6.
    Pan, Ruijun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Wang, Zhaohui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries2017In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, no 7, p. 2903-2911Article in journal (Refereed)
    Abstract [en]

    The pore structure of the separator is crucial to the performance of a lithium-battery as it affects the cell resistance. Herein, a straightforward approach to vary the pore structure of Cladophora cellulose (CC) separators is presented. It is demonstrated that the pore size and porosity of the CC separator can be increased merely by decreasing the thickness of the CC separator by using less CC in the manufacturing of the separator. As the pore size and porosity of the CC separator are increased, the mass transport through the separator is increased which decreases the electrolyte resistance in the pores of the separator. This enhances the battery performance, particularly at higher cycling rates, as is demonstrated for LiFePO4/Li half-cells. A specific capacity of around 100 mAh g-1 was hence obtained at a cycling rate of 2 C with a 10 μm thick CC separator while specific capacities of 40 and close to 0 mAh g-1 were obtained for separators with thicknesses of 20 and 40 μm, respectively. As the results also showed that a higher ionic conductivity was obtained for the 10 μm thick CC separator than for the 20 and 40 μm thick CC separators, it is clear that the different pore structure of the separators was an important factor affecting the battery performance in addition to the separator thickness. The present straightforward, yet efficient, strategy for altering the pore structure hence holds significant promise for the manufacturing of separators with improved performance, as well as for fundamental studies of the influence of the properties of the separator on the performance of lithium-ion cells.

  • 7.
    Pan, Ruijun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Xu, Xingxing
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Wang, Zhaohui
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindh, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries2018In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 14, no 21, article id 1704371Article in journal (Refereed)
    Abstract [en]

    Abstract Poor cycling stability and safety concerns regarding lithium (Li) metal anodes are two major issues preventing the commercialization of high‐energy density Li metal‐based batteries. Herein, a novel tri‐layer separator design that significantly enhances the cycling stability and safety of Li metal‐based batteries is presented. A thin, thermally stable, flexible, and hydrophilic cellulose nanofiber layer, produced using a straightforward paper‐making process, is directly laminated on each side of a plasma‐treated polyethylene (PE) separator. The 2.5 µm thick, mesoporous (≈20 nm average pore size) cellulose nanofiber layer stabilizes the Li metal anodes by generating a uniform Li+ flux toward the electrode through its homogenous nanochannels, leading to improved cycling stability. As the tri‐layer separator maintains its dimensional stability even at 200 °C when the internal PE layer is melted and blocks the ion transport through the separator, the separator also provides an effective thermal shutdown function. The present nanocellulose‐based tri‐layer separator design thus significantly facilitates the realization of high‐energy density Li metal‐based batteries.

  • 8.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Porous Amorphous Calcium Carbonate and Phosphate: Synthesis and Application2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The synthesis of porous amorphous calcium carbonate (ACC) and porous amorphous calcium phosphate (ACP) was developed in this thesis. Porous ACC with specific Brunauer–Emmett–Teller (BET) surface area of >350 m2/g was synthesized using a surfactant free approach. The high surface area of porous ACC was related to its nanostructure. Porous ACC was constructed with aggregated ACC nanoparticles that were less than 10 nm in diameter. The porosity and stability of porous ACC could be enhanced by introducing additives in the synthesis steps. The use of additives could also be used to control the crystallization of ACC to form vaterite particles with controllable morphologies. Porous ACC was tested as a drug carrier for two poorly soluble drugs (itraconazole and celecoxib). The porous ACC carrier was able to stabilize these drugs in their amorphous forms and enhance their release rate significantly when compared with the crystalline drug. Furthermore, porous ACC could also be used as a precursor/template for the synthesis of porous carbon. A porous carbon adsorbent with high uptake and high selectivity for greenhouse gases was produced. Porous ACP with a specific BET surface area of >400 m2/g was obtained by introducing phosphoric acid to the ACC suspension obtained during the synthesis of porous ACC. Similar to porous ACC, porous ACP was constructed of aggregated nanoparticles. ACP was found to be stable in ambient conditions for over 12 months and the stability could also be tailored by adjusting its composition. Porous ACP was cytocompatible and an effective drug carrier for alendronate - a bisphosphate drug for treatment of osteoporosis. The development of porous ACC and porous ACP as functional porous materials is summarized in this thesis.

    List of papers
    1. Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity
    Open this publication in new window or tab >>Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity
    Show others...
    2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 25, p. 21556-21564Article in journal (Refereed) Published
    Abstract [en]

    Amorphous calcium carbonate (ACC), with the highest reported specific surface area of all current forms of calcium carbonate (over 350 m2 g-1), was synthesized using a surfactant-free, one-pot method. Electron microscopy, helium pycnometry, and nitrogen sorption analysis revealed that this highly mesoporous ACC, with a pore volume of ∼0.86 cm3 g-1 and a pore-size distribution centered at 8-9 nm, is constructed from aggregated ACC nanoparticles with an estimated average diameter of 7.3 nm. The porous ACC remained amorphous and retained its high porosity for over 3 weeks under semi-air-tight storage conditions. Powder X-ray diffraction, large-angle X-ray scattering, infrared spectroscopy, and electron diffraction exposed that the porous ACC did not resemble any of the known CaCO3 structures. The atomic order of porous ACC diminished at interatomic distances over 8 Å. Porous ACC was evaluated as a potential drug carrier of poorly soluble substances in vitro. Itraconazole and celecoxib remained stable in their amorphous forms within the pores of the material. Drug release rates were significantly enhanced for both drugs (up to 65 times the dissolution rates for the crystalline forms), and supersaturation release of celecoxib was also demonstrated. Citric acid was used to enhance the stability of the ACC nanoparticles within the aggregates, which increased the surface area of the material to over 600 m2 g-1. This porous ACC has potential for use in various applications where surface area is important, including adsorption, catalysis, medication, and bone regeneration.

    Keywords
    amorphous calcium carbonate, drug delivery, large-angle X-ray scattering, nanoparticles, porous materials
    National Category
    Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-358032 (URN)10.1021/acsami.8b03939 (DOI)000437811400059 ()29862822 (PubMedID)
    Funder
    Knut and Alice Wallenberg FoundationSwedish Research Council, 2014-3929
    Available from: 2018-08-23 Created: 2018-08-23 Last updated: 2019-08-21Bibliographically approved
    2. Highly Porous Amorphous Calcium Phosphate
    Open this publication in new window or tab >>Highly Porous Amorphous Calcium Phosphate
    Show others...
    (English)In: Article in journal (Other academic) Submitted
    National Category
    Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-391171 (URN)
    Available from: 2019-08-20 Created: 2019-08-20 Last updated: 2019-08-21
    3. The Effects of Additives on the Porosity and Stability of Amorphous Calcium Carbonate
    Open this publication in new window or tab >>The Effects of Additives on the Porosity and Stability of Amorphous Calcium Carbonate
    (English)In: Article in journal (Other academic) Submitted
    National Category
    Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-391170 (URN)
    Available from: 2019-08-20 Created: 2019-08-20 Last updated: 2019-08-21
    4. Mesoscale Transformation of Amorphous Calcium Carbonate to Porous Vaterite Microparticles with Morphology Control
    Open this publication in new window or tab >>Mesoscale Transformation of Amorphous Calcium Carbonate to Porous Vaterite Microparticles with Morphology Control
    Show others...
    2019 (English)In: Crystal Growth & Design, ISSN 1528-7483Article in journal (Refereed) Published
    Abstract [en]

    The morphology controlled synthesis of porous vaterite microparticles from amorphous calcium carbonate (ACC) nanoparticles via mesoscale transformation and self-assembly is presented. The morphology of vaterite microparticles ranging from ellipsoidal to spherical can be controlled by adjusting the amount of adipic acid (AA) additive during synthesis. Electron microscopy and electron diffraction reveal that the vaterite microparticles are formed by the oriented self-assembly of vaterite nanocrystals. The Brunauer−Emmett−Teller (BET) surface area of the vaterite microparticle varies between ∼30 and ∼80 m2/g. The coverage of AA on the surface of the ACC nanoparticle plays the pivotal role in the morphology controlled synthesis of vaterite microparticles. 6-Aminocaproic acid (6A), benzoic acid (BA), citric acid (CA), and poly(acrylic acid) (PAA) are also tested as additives and their effect on the morphology of vaterite microparticles is presented. Morphology control of functional materials can be beneficial for application where the morphology and porosity are critical, such as drug delivery. This work demonstrates a possible method to finely adjust the morphology of vaterite microparticles with the assistance of additives through mesoscale transformation and self-assembly using amorphous nanoparticles as precursors.

    National Category
    Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-390852 (URN)
    Available from: 2019-08-15 Created: 2019-08-15 Last updated: 2019-08-21
    5. Hierarchical Porous Carbon Synthesized from Novel Porous Amorphous Calcium or Magnesium Citrate with Enhanced SF6 Uptake and SF6/N2 Selectivity
    Open this publication in new window or tab >>Hierarchical Porous Carbon Synthesized from Novel Porous Amorphous Calcium or Magnesium Citrate with Enhanced SF6 Uptake and SF6/N2 Selectivity
    2019 (English)In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 2, no 2, p. 778-789Article in journal (Refereed) Published
    Abstract [en]

    The emission of greenhouse gases such as CO2and SF6 is believed to contribute significantly toward globalwarming. One way to reduce their release is by adsorption atpoint sources using a suitable adsorbent. In this work we presentthe synthesis of two hierarchical porous carbon materials(referred to as PC-CaCit and PC-MgCit) with a high uptake ofSF6 (5.23 mmol/g, 0 °C, 100 kPa) and a reasonable uptake ofCO2 (>3 mmol/g). PC-CaCit and PC-MgCit were obtained bypyrolysis of the most porous calcium citrate and magnesiumcitrate ever reported, which were synthesized by us. TheLangmuir specific surface area of PC-CaCit and PC-MgCit wasover 2000 m2/g (BET surface area also close to 2000 m2/g). Wecharacterized PC-CaCit and PC-MgCit using a range of advanced characterization techniques including N2 adsorption, highresolutionelectron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. PC-CaCit and PC-MgCit alsoshowed a SF6-over-N2 selectivity of ∼33 at 0 °C (100 kPa), good cyclic performance, and moderately low heat of adsorption.The porous carbons synthesized in this work are good candidate adsorbents for greenhouse gases.

    Place, publisher, year, edition, pages
    American Chemical Society (ACS), 2019
    Keywords
    porous carbon, SF6 adsorption, CO2 adsorption, amorphous calcium citrate, amorphous magnesium citrate
    National Category
    Nano Technology
    Research subject
    Engineering Science with specialization in Nanotechnology and Functional Materials
    Identifiers
    urn:nbn:se:uu:diva-381054 (URN)10.1021/acsanm.8b02005 (DOI)000469409900019 ()
    Funder
    Swedish Research CouncilKnut and Alice Wallenberg Foundation
    Available from: 2019-04-03 Created: 2019-04-03 Last updated: 2019-08-21Bibliographically approved
  • 9.
    Sun, Rui
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Tai, Cheuk-Wai
    Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Cheung, Ocean
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Hierarchical Porous Carbon Synthesized from Novel Porous Amorphous Calcium or Magnesium Citrate with Enhanced SF6 Uptake and SF6/N2 Selectivity2019In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 2, no 2, p. 778-789Article in journal (Refereed)
    Abstract [en]

    The emission of greenhouse gases such as CO2and SF6 is believed to contribute significantly toward globalwarming. One way to reduce their release is by adsorption atpoint sources using a suitable adsorbent. In this work we presentthe synthesis of two hierarchical porous carbon materials(referred to as PC-CaCit and PC-MgCit) with a high uptake ofSF6 (5.23 mmol/g, 0 °C, 100 kPa) and a reasonable uptake ofCO2 (>3 mmol/g). PC-CaCit and PC-MgCit were obtained bypyrolysis of the most porous calcium citrate and magnesiumcitrate ever reported, which were synthesized by us. TheLangmuir specific surface area of PC-CaCit and PC-MgCit wasover 2000 m2/g (BET surface area also close to 2000 m2/g). Wecharacterized PC-CaCit and PC-MgCit using a range of advanced characterization techniques including N2 adsorption, highresolutionelectron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. PC-CaCit and PC-MgCit alsoshowed a SF6-over-N2 selectivity of ∼33 at 0 °C (100 kPa), good cyclic performance, and moderately low heat of adsorption.The porous carbons synthesized in this work are good candidate adsorbents for greenhouse gases.

  • 10.
    Sun, Rui
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Tai, Cheuk-Wai
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Cheung, Ocean
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    The effects of additives on the porosity and stability of amorphous calcium carbonate2020In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 292, p. 1-14, article id 109736Article in journal (Refereed)
    Abstract [en]

    Amorphous calcium carbonate (ACC) stabilized by various carboxylic additives was synthesized by incorporating the additives into an ACC suspension in methanol. The additives studied included polyacrylic acid, citric acid, adipic acid, 6-aminocaproic acid, 4-aminobutyric acid and hexanoic acid. The stabilized ACC samples (ACC-additives) exhibited similar characteristics to ACC alone. They appeared X-ray amorphous, contained characteristic infrared bands and had the same nanoparticle aggregated microstructure as ACC. The porosity of the ACC-additives was, however, markedly improved, with Brunauer-Emmett-Teller (BET) surface areas of up to 640 m2/g. The BET surface area of ACC-citric acid was close to double that of a highly porous ACC sample. The structure and amount of the additive had a noticeable effect on the porosity of the ACC-additives. When the additive was adsorbed onto the surface of the ACC nanoparticles, their growth was restricted. The restricted growth reduced the size of the ACC nanoparticles, which increased the BET surface area of ACC. Finally, the long-term stability study revealed that the stability of all the ACC-additives was markedly enhanced when stored in ambient or semi-airtight conditions (in a closed falcon tube). In particular, ACC stabilized with adipic acid (ACC-AA-267) had excellent stability, remaining in an amorphous phase for more than one year under ambient conditions and retaining 87% porosity for 48 weeks under semi-airtight conditions. The extremely high porosity and excellent long-term stability make these ACC-additives promising candidates for applications where porosity and stability are critical, such as those involving adsorption, bone regeneration or drug delivery.

  • 11.
    Sun, Rui
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Willhammar, Tom
    Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    Grape, Erik Svensson
    Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. Uppsala Univ, Dept Engn Sci, Div Nanotechnol & Funct Mat, SE-75121 Uppsala, Sweden.
    Cheung, Ocean
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mesoscale Transformation of Amorphous Calcium Carbonate to Porous Vaterite Microparticles with Morphology Control2019In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 19, no 9, p. 5075-5087Article in journal (Refereed)
    Abstract [en]

    The morphology controlled synthesis of porous vaterite microparticles from amorphous calcium carbonate (ACC) nanoparticles via mesoscale transformation and self-assembly is presented. The morphology of vaterite microparticles ranging from ellipsoidal to spherical can be controlled by adjusting the amount of adipic acid (AA) additive during synthesis. Electron microscopy and electron diffraction reveal that the vaterite microparticles are formed by the oriented self-assembly of vaterite nanocrystals. The Brunauer-Emmett-Teller (BET) surface area of the vaterite microparticle varies between similar to 30 and similar to 80 m(2)/g. The coverage of AA on the surface of the ACC nanoparticle plays the pivotal role in the morphology controlled synthesis of vaterite microparticles. 6-Aminocaproic acid (6A), benzoic acid (BA), citric acid (CA), and poly(acrylic acid) (PAA) are also tested as additives and their effect on the morphology of vaterite microparticles is presented. Morphology control of functional materials can be beneficial for application where the morphology and porosity are critical, such as drug delivery. This work demonstrates a possible method to finely adjust the morphology of vaterite microparticles with the assistance of additives through mesoscale transformation and self-assembly using amorphous nanoparticles as precursors.

  • 12.
    Sun, Rui
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Zhang, Peng
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
    Bajnóczi, Éva G
    Neagu, Alexandra
    Tai, Cheuk-Wai
    Persson, Ingmar
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Cheung, Ocean
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 25, p. 21556-21564Article in journal (Refereed)
    Abstract [en]

    Amorphous calcium carbonate (ACC), with the highest reported specific surface area of all current forms of calcium carbonate (over 350 m2 g-1), was synthesized using a surfactant-free, one-pot method. Electron microscopy, helium pycnometry, and nitrogen sorption analysis revealed that this highly mesoporous ACC, with a pore volume of ∼0.86 cm3 g-1 and a pore-size distribution centered at 8-9 nm, is constructed from aggregated ACC nanoparticles with an estimated average diameter of 7.3 nm. The porous ACC remained amorphous and retained its high porosity for over 3 weeks under semi-air-tight storage conditions. Powder X-ray diffraction, large-angle X-ray scattering, infrared spectroscopy, and electron diffraction exposed that the porous ACC did not resemble any of the known CaCO3 structures. The atomic order of porous ACC diminished at interatomic distances over 8 Å. Porous ACC was evaluated as a potential drug carrier of poorly soluble substances in vitro. Itraconazole and celecoxib remained stable in their amorphous forms within the pores of the material. Drug release rates were significantly enhanced for both drugs (up to 65 times the dissolution rates for the crystalline forms), and supersaturation release of celecoxib was also demonstrated. Citric acid was used to enhance the stability of the ACC nanoparticles within the aggregates, which increased the surface area of the material to over 600 m2 g-1. This porous ACC has potential for use in various applications where surface area is important, including adsorption, catalysis, medication, and bone regeneration.

  • 13.
    Sun, Rui
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Zhang, Peng
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Cheung, Ocean
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Highly Porous Amorphous Calcium Carbonate and Its Ability to Enhance the Dissolution of Poorly Soluble Drugs2018In: XIV International Conference on Nanostructured Materials, 2018Conference paper (Refereed)
  • 14.
    Wang, Zhaohui
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Pan, Ruijun
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Nanocellulose Structured Paper-Based Lithium Metal Batteries2018In: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 1, no 8, p. 4341-4350Article in journal (Refereed)
    Abstract [en]

    We report for the first time, a lithium metal battery (LMB) design based on low-cost, renewable, and mechanically flexible nanocellulose fibers (NCFs) as the separator as well as substrate materials for both the positive and negative electrodes. Combined with carbon nanofibers, the NCFs yield 3D porous conducting cellulose paper (CCP) current collectors with large surface areas, enabling a low effective current density. The porous structure yields a dendrite-free deposition of lithium (Li), faciliates the mass transport within the electrodes, and also compensates for the volume changes during the cycling. Stable Li electrodes are obtained by electrodepositing Li on CCP substrates while positive electrodes are realized by embedding LiFePO4 (LFP) particles within the flexible CCP matrix. The mesoporous NCF separator features a homogeneous pore distribution which provides uniform current distributions at the electrodes. This effect, which yields a more homogeneous Li deposition on the negative electrode as well as improves the safety, lifespan, and sustainability of the LMB. As a result, the present all-nanocellulose-based LMB demonstrates excellent cycling stability for a Li metal battery obtained to date, with 91% capacity retention after 800 cycles and 85% capacity retention after 1000 cycles at a rate of 2 C (i.e., 1.27 mA cm–2).

  • 15.
    Zhao, Jie
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Pan, Ruijun
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Wen, Chenyu
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Zhang, Shi-Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Wu, Biao
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Zhang, Zhi-Bin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    High-Conductivity Reduced-Graphene-Oxide/Copper Aerogel for Energy Storage2019In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 60, p. 760-767Article in journal (Refereed)
    Abstract [en]

    This work reports a room-temperature, solution-phase and one-pot method for macro-assembly of a three-dimensional (3D) reduced-graphene-oxide/copper hybrid hydrogel. The hydrogel is subsequently transformed into a highly conductive aerogel via freeze-drying. The aerogel, featuring reduced graphene oxide (rGO) networks decorated with Cu and CuxO nanoparticles (Cu/CuxO@rGO), exhibits a specific surface area of 48 m(2)/g and an apparent electrical conductivity of similar to 33 and similar to 430 S/m prior to and after mechanical compression, respectively. The compressed Cu/CuxO@rGO aerogel delivers a specific capacity of similar to 453 mAh g(-1) at a current density of 1 A/g and similar to 184 mAh g(-1) at 50 A/g in a 3 M KOH aqueous electrolyte evidenced by electrochemical measurements. Galvanostatic cycling tests at 5 A/g demonstrates that the Cu/CuxO@rGO aerogel retains 38% (similar to 129 mAh g(-1)) of the initial capacity (similar to 339 mAh g(-1)) after 500 cycles. The straightforward manufacturing process and the promising electrochemical performances make the Cu/CuxO@rGO aerogel an attractive electrode candidate in energy storage applications.

  • 16.
    Zhao, Jie
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. Northwest Univ, Coll Chem & Mat Sci, Minist Educ, Key Lab Synthet & Nat Funct Mol Chem, Xian, Shaanxi, Peoples R China.
    Wen, Chenyu
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Sun, Rui
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Zhang, Shi-Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Wu, Biao
    Northwest Univ, Coll Chem & Mat Sci, Minist Educ, Key Lab Synthet & Nat Funct Mol Chem, Xian, Shaanxi, Peoples R China.
    Zhang, Zhi-Bin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    A Sequential Process of Graphene Exfoliation and Site-Selective Copper/Graphene Metallization Enabled by Multifunctional 1-Pyrenebutyric Acid Tetrabutylammonium Salt2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 6, p. 6448-6455Article in journal (Refereed)
    Abstract [en]

    This paper reports a procedure leading to shear exfoliation of pristine few-layer graphene flakes in water and subsequent site-selective formation of Cu/graphene films on polymer substrates, both of which are enabled by employing the water soluble 1-pyrenebutyric acid tetrabutylammonium salt (PyB-TBA). The exfoliation with PyB-TBA as an enhancer leads to as-deposited graphene films dried at 90 °C that are characterized by electrical conductivity of ∼110 S/m. Owing to the good affinity of the tetrabutylammonium cations to the catalyst PdCl42–, electroless copper deposition selectively in the graphene films is initiated, resulting in a self-aligned formation of highly conductive Cu/graphene films at room temperature. The excellent solution-phase and low-temperature processability, self-aligned copper growth, and high electrical conductivity of the Cu/graphene films have permitted fabrication of several electronic circuits on plastic foils, thereby indicating their great potential in compliant, flexible, and printed electronics.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf