uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bergvall, Ida
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Att utveckla elevers begreppsförmåga: Bildens potential i undervisningen2018Konferensbidrag (Refereegranskat)
    Abstract [sv]

     Denna studie är ett planerat samarbete mellan aktiva lärare och forskare där syftet är att fördjupa kunskapen om bildens potential att stödja elevers begreppskompetens i matematikämnet. Olika semiotiska resurser såsom naturligt språk, matematisk notation och bilder används som redskap för att stärka elevers begreppskompetens i matematik (Brenner, Herman, Ho och Zimmer, 1999) vilket bland annat är vanligt i läromedel. Förekomsten av bilder som resurser i matematikläromedel har ökat under 2000-talet (Dimmel och Herbst, 2015) och därför behövs en fördjupad kunskap om bilders betydelse för elevers förståelse av matematiken. Bilder i matematiskt ämnesspråk kan vara av olika typ, allt från vardagsnära avbildningar till mer schematiska bilder. Detta har beskrivits som att bilder har olika kodningsorientering (se Kress och van Leeuwen 2006), vilket resulterar i varierande grad av abstraktion. I denna studie analyseras elevers samtal om matematik utifrån bilder med olika kodningsorientering. Studien genomförs i årskurs 5 i grundskolan och årskurs 1 på gymnasiet där elever i grupp löser matematikuppgifter. Inom varje årskurs används samma matematikproblem men typen av bild skiljer sig åt. I gymnasiet studeras elever på ett tekniskt program där syftet med matematikundervisningen är att förbereda eleverna för högre studier. Genom att studera två olika praktiker ges möjlighet till en rik beskrivning av bildens betydelse i två olika kontexter. Analyser genomförs på videoupptagningar av gruppsamtalen, avseende hur och i vilken utsträckning elevernas uttalanden signalerar begreppskompetens såsom definierad av Kilpatrick, Swafford och Findell (2001). Studien avses bidra till ökad kunskap om olika bilders potential att fungera som ett redskap i undervisningen för att stödja utvecklingen av elevers begreppskompetens. Resultaten kan förbättra lärares förutsättningar att göra medvetna didaktiska val av bilder med olika kodningsorientering. Till exempel kan en viss typ av bilder väljas i syfte att skapa förutsättningar för elevsamtal orienterade mot en högre abstraktionsnivå.

  • 2.
    Bergvall, Ida
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Multi-semiotic progression in school mathematics2019Konferensbidrag (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    A framework for mathematics task text analysis – focusing on cohesion between natural language, mathematical notation, and images2016Ingår i: A framework for mathematics task text analysis – focusing on cohesion between natural language, mathematical notation, and images, Karlstad: Svensk förening för MatematikDidaktisk Forskning - SMDF, 2016Konferensbidrag (Refereegranskat)
  • 4.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Conceptualising Translations Between Representations2018Ingår i: Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2). / [ed] Bergqvist, E., Österholm, M, Granberg, C., & Sumpter, L., Umeå, Sweden: PME , 2018, Vol. 2, s. 379-386Konferensbidrag (Refereegranskat)
    Abstract [en]

    Representations and translations between them are central in mathematics education. For example, in the NCTM standards it is emphasized students need to be able to “select, apply, and translate among mathematical representations to solve problems” (NCTM 2000, p.67). A variety of research studies have contributed to the knowledge about translations the last decades. This variety is both an asset and an obstacle when this research is used to implement new strategies in the school practice or as a base to plan new research studies. To enable an accumulation of the emerging knowledge there is a need to categorize studies that focus on similar questions and that conceptualizes translation similarly. The current paper suggests some classifications that such a categorization can be based on in an emerging framework. 

    Ladda ner fulltext (pdf)
    Dyrvold, A(2018)
  • 5.
    Dyrvold, Anneli
    Umeå University.
    Difficult to read or difficult to solve?: The role of natural language and other semiotic resources in mathematics tasks2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
  • 6.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Läsa matematik eller matematisk läsning? 2017Ingår i: Dyslexi - aktuellt om läs- och skrivsvårigheter, Vol. 22, nr 3, s. 18-23Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 7.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Relations between semiotic resources in mathematics tasks: a source of students’ difficultiesIngår i: Research in Mathematics Education, ISSN 1479-4802, E-ISSN 1754-0178Artikel i tidskrift (Refereegranskat)
  • 8.
    Dyrvold, Anneli
    Umeå University, Umeå, Sweden.
    The mathematics in the task text2017Ingår i: Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 1) / [ed] B. Kaur, W.K. Ho, T.L. Toh, & B.H. Choy, Singapore, 2017Konferensbidrag (Refereegranskat)
  • 9.
    Dyrvold, Anneli
    Umeå universitet.
    The role of semiotic resources when reading and solving mathematics tasks2016Ingår i: Nordisk matematikkdidaktikk, ISSN 1104-2176, Vol. 21, nr 3, s. 51-72Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One part of being proficient in mathematics is to be able to read and solve mathematics tasks where mathematics is represented using different semiotic resources (i.e. natural language, mathematical notation, and different types of images). In the current study, statistical methods are used to investigate the potential meaning that the presence and co-occurrences of semiotic resources have for how demanding a mathematical task is to read and solve. The results reveal that the number of different semiotic resources in a mathematical task is not related to difficulty, but that difficulty is related to the particular combinations of semiotic resources where pictorial images are one of the resources. The results also indicate that the difficulty related to these semiotic characteristics is not related to an unnecessary reading demand

  • 10.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Which textual features are difficult when reading and solving mathematical tasks?: Questions of Theme and Rheme2016Ingår i: Proceedings of the 40th Conference of the International Group for the psychology of Mathematics Education / [ed] C. Csíkos, A. Rausch, & J. Szitányi, Szeged, Hungary: PME , 2016, Vol. 2Konferensbidrag (Refereegranskat)
  • 11.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Which textual features are difficult when reading and solving mathematics tasks?: A meta study and a qualitative analysis.2017Ingår i: Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education: (CERME10, February 1 – 5, 2017) / [ed] T. Dooley, & G. Gueudet, Dublin, Ireland: DCU Institute of Education and ERME , 2017, s. 1412-1413Konferensbidrag (Refereegranskat)
  • 12.
    Dyrvold, Anneli
    et al.
    Umeå University.
    Bergqvist, Ewa
    Umeå University.
    Österholm, Magnus
    Umeå University.
    Uncommon vocabulary in mathematical tasks in relation to demand of reading ability and solution frequency2015Ingår i: Nordic Studies in Mathematics Education, Vol. 20, nr 1, s. 101-128Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study reports on the relation between commonness of the vocabulary used in mathematics tasks and aspects of students’ reading and solving of the tasks. The vocabulary in PISA tasks is analyzed according to how common the words are in a mathematical and an everyday context. The study examines correlations between different aspects of task difficulty and the presence of different types of uncommon vocabulary. The results show that the amount of words that are uncommon in both contexts are most important in relation to the reading and solving of the tasks. These words are not connected to the solution frequency of the task but to the demand of reading ability when solving the task

    Ladda ner fulltext (pdf)
    Dyrvold, A, Bergqvist, E. & Österholm, M
  • 13.
    Dyrvold, Anneli
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Bergvall, Ida
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Designing tasks with self-explanation prompts2019Ingår i: Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education / [ed] U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis, Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME , 2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents some results from an ongoing review on self-explanation prompts. An emphasis is laid on design principles based on empirical research. The review is grounded in scaffolding theory, which means that the self-explanation prompts are seen as a temporary support that the student shall learn to manage without. Three themes identified in the review are described and discussed in relation to design and implementation of tasks with self-explanation prompts: prompts with different purposes, the necessity to adapt prompt to students’ prior knowledge, and factors of importance for students’ engagement in the prompts. Examples of tasks with prompts for which these design aspects have been taken into account are given in the paper.

    Ladda ner fulltext (pdf)
    Dyrvold Bergvall(2019)
  • 14.
    Dyrvold, Anneli
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Bergvall, Ida
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Meeting the needs of today’s society – developing collaborative problem solving skills2019Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    Dyrvold & Bergvall (2019)
  • 15.
    Dyrvold, Anneli
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Bergvall, Ida
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Multimodal resources in school mathematics and their potential to express meaning in digital and printed teaching materials2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    General description on research questions, objectives and theoretical framework 

    This study addresses the language of the school subject mathematics and the aim is to investigate the potential of multimodal resources to express meaning in textbooks and digital teaching materials. An emphasis is in the analysis laid on the distinction between subject specific and everyday multisemiotic register. Language used in teaching materials in mathematics is often multisemiotic, which means that various semiotic resources such as natural language, symbolic notation, and images are used together. These semiotic resources have different potential to express meaning (Schleppegrell, 2007; Lemke, 1990; Unsworth, 1997; Abel & Exley, 2008). Natural language, is argued to be a very poor resource for formulating for example quantity, continuous co-variation, and gradation (Lemke, 1998) and therefore there is also a need for other resources to express meaning in mathematics. When various semiotic resources are used together in a text, the text can express both more and other things, compared to the use of the different semiotic resources separately, a phenomenon referred to as meaning multiplication (Lemke, 1998). This multiplicativity of meaning is possible since in a multisemiotic text, the different semiotic resources contribute differently to the text, and the meaning afforded by one resource can modulate the meaning afforded by another resource. 

    In mathematics education today these various semiotic resources are extensively used, both in print and on computer screens. Images together with natural language and mathematical notation is used as resources in teaching, in order to strengthen the student’s conceptual knowledge (Brenner, Herman, Ho & Zimmer, 1999). During the 20 th century the presence of images in mathematics teaching materials has increased (Dimmel & Herbst, 2015), but most often, students get no education about the role and function of images (Kress & van Leeuwen, 2006). Lemke (2000) emphasizes the importance of deepening the understanding about the role of different semiotic resources. Such an understanding is also required by a student to master a subject, as part of the content knowledge since representations have such an intrinsic role in the subject mathematics. It is therefore of importance to find out more precisely how various semiotic resources are used in school mathematics, and if these resources are used differently in different kinds of teaching materials. 

    To learn more about the semiotic resources used in teaching materials in school mathematics the current study adopts a social semiotic theoretical perspective (see e.g., Kress and van Leeuwen, 2006; O’Halloran, 2007). This perspective provides tools to investigate both how aspects of language, such as various semiotic resources, are used in acts of communication, and at the same time analyze how these chosen forms of language express and thus offer meaning to the reader in different ways (see e.g. Knain, 2005). The backbone of the study is an analysis focusing on the three metafunctions: the interpersonal, ideational and textual function (Halliday & Matthiessen, 2014). The inclusion of all three metafunctions makes it possible to highlight different semantic perspectives of interest both in relation to research about mathematics texts and for teaching. 

    Methods

     A qualitative analysis is used to thoroughly understand how different textual means are used in mathematics teaching material and which meaning that is offered to the reader. A sample of mathematics texts that introduces proportionality are analysed. In this study both digital and printed teaching material are referred to as text. The texts are of different types to obtain a breadth and to enable a comparison between texts with different purposes. Both teaching materials used in the primary school (11 years old) and teaching materials intended for a sub-group of upper secondary school students (16 years old) are analysed. These two types of texts are analysed to illuminate how the language resources are used for students at different levels in the education. Both printed texts and digital teaching materials are also analysed. Digital teaching material and printed mathematics text have different means available; in the digital media sound, film and interactive elements may be utilized. Those elements are important to include in the analysis to represent the whole composition of representations offered by the teaching material. However, in the initial analysis of the digital teaching materials only texts and images has been analysed in detail, something that has been taken into account in relation to these preliminary results. The final analysis will be complemented with a multimodal analysis focusing on interactive elements, film, and sound in the digital teaching material (see O’Halloran, 2011); focusing on how these elements interact with other components of the material. 

    The analytical tool has been developed based on previous work by Kress and van Leeuwen (2006), O’Halloran (2005, 2007), and Royce (2007). An emphasis is in the analytical tool put on its ability to distinguish between subject specific and everyday multisemiotic register, and on how particular affordances of the semiotic resources are used . In this study subject specific register is defined as language with a technical meaning or used with a technical meaning in the subject of mathematics, language that is not part of the everyday language for the intended readers. The analysis of digital and printed teaching material is conducted at two levels; first the natural language and the images are analysed separately. Thereafter the intersemiotic complementarity of the texts is analysed. The inclusion of both levels of analysis is motivated since the different elements of the text both function separately and together as a whole to express meaning. 

    Expected outcomes 

    The study will contribute with knowledge about the potential of multimodal resources to express meaning in textbooks and digital teaching materials. The preliminary analysis show that by taking advantage of the affordances of the different semiotic resources the ideational meaning can be expressed in a coherent way. Such an example can be found in a text introducing proportionality with an example. Speed is illustrated by a cartoon image representing a moving person and an explanatory sentence. Thereafter the mathematical content is presented utilizing subject-specific expressions, in natural language and in a graph. The cartoon is however included in the graph, which gives coherence to the text by making relations between the everyday content and the subject specific more pronounced. An opposite to this use of images are when images are used in a solely illustrative purpose. 

    Another result is that in the textbook as well as in the digital material for year 5, there is an evident personal voice expressed by persons present in the images or by proper names or personal pronouns in the written text. These features serves as subjects in the texts as well as in the images. The personal voice can signal to the reader that mathematics is something that concerns people's everyday lives. In the analysed material for upper secondary school, personal voice is used more sparsely. Instead, the mathematical objects functions a subjects, both in the texts and in the images. In this way, a distance between the reader and the mathematical content is expressed. In summary the results from the analysis of material written for different student groups, both in print and digital media, contribute with examples of how the different semiotic resources can function as meaning making resources. 

    References

    Abel, K. & Exley, B. (2008). Using Halliday’s functional grammar to examine early years worded mathematics texts. Australian Journal of Language & Literacy. 31(3), 227-241. 

    Brenner, M. E., Herman, S., Ho, H-Z., & Zimmer, J. M. (1999). Cross National Comparison of Representative Competence. Journal for Research in Mathematics Education, 30 (5), 541–557. 

    Dimmel, J. K., & Herbst, P. G. (2015). The semiotic structure of geometry diagrams: How textbook diagrams convey meaning. Journal for Research in Mathematics Education, 46 (2), 147-195. 

    Halliday, M., & Matthiessen, C. (2014). Halliday's introduction to functional grammar (4.th ed.). Abingdon, Oxon; New York: Routledge. 

    Knain, E. (2005). Identity and genre literacy in high-school students' experimental reports', International Journal of Science Education, 27:5, 607 - 624. 

    Kress, G. (2005). Gains and losses: New forms of texts, knowledge, and learning. Computers and Composition, 22, 5–22. 

    Kress, G. & van Leeuwen, T. (2006). Reading images. The grammar of visual design. 2nd edition. London: Routledge. 

    Kress, G. (2010). Multimodality: A social semiotic approach to contemporary communication. Milton Park, Abingdon, Oxon: Routledge. 

    Lemke, J. L. (1990). Talking Science: Language, Learning, and Values. Ablex, Norwood, N.J. 

    Lemke, J. (1998). Multiplying meaning. Visual and verbal semiotics in scientific text. In J. R. Martin, & R. Veel. Reading images. London: Routledge. (pp. 87-113)

     Lemke, J. (2000). Multimedia literacy demands of the scientific curriculum. Linguistics and Education, 10 (3), 247–271.

    O'Halloran, K. (2005). Mathematical Discourse: Language, symbolism and visual images. London: Continuum. 

    O’Halloran, K. (2007). Systemic functional multimodal discourse analysis (SF–MDA) approach to mathematics, grammar and literacy. In A. McCabe, M. O’Donnell, and R. Whittaker (Eds). Advances in Language and Education. London: Continuum. 

    O’Halloran, K. (2011). Multimodal Discourse Analysis. In K. Hyland and B. Paltridge (Eds). Companion to Discourse. London and New York: Continuum. 

    Royce, T. (2007). Intersemiotic complementarity: a framework for multimodal discourse analysis. In T. Royce, & W. Boucher. New Directions in the Analysis of Multimodal Discourse. (pp. 63-109). New York: Routledge. 

    Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: a research review. Reading & Writing Quarterly, 23 (2), 139-159. 

    Unsworth, L. (1997). Scaffolding reading of science explanations: accessing the grammatical and visual forms of specialized knowledge. Literacy, 31 (3), 30–42. 

     

  • 16.
    Dyrvold, Anneli
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Bråting, Kajsa
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Exploring teaching traditions in mathematics2019Ingår i: NERA 2019 Education in a globalized world, 6 - 8 March, 2019, Uppsala, Sweden, Abstact book 2019-03-06, Uppsala University, 2019, s. 269-270Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 17. Ribeck Nyström, Judy
    et al.
    Dyrvold, Anneli
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Subject language in mathematics textbooks: Verbal text fragments supplemented by other semiotic resources2019Konferensbidrag (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf