uu.seUppsala University Publications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alm, Love
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA;Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Lindqvist, P. -A
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Magnetotail Hall Physics in the Presence of Cold Ions2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 20, p. 10941-10950Article in journal (Refereed)
    Abstract [en]

    We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E x B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for similar to 30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j x B term of the generalized Ohm's law, with significant contributions from the del center dot P-e and v(c) x B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics. Plain Language Summary Cold ions have the potential of changing the fundamental physics behind magnetic reconnection. Here we present the first direct observation of this process in action in the magnetotail. Cold ions from the tail lobes were able to remain cold even deep inside the much hotter plasma sheet. Even though the cold ions only accounted for similar to 30% of the total ions, they had a significant impact on the electric fields near the reconnection region.

  • 2.
    Farrugia, C. J.
    et al.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Cohen, I. J.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Vasquez, B. J.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Lugaz, N.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Argall, M. R.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Paulson, K.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Lavraud, B.
    UPMC Univ Paris 06, Univ Paris Sud, Ecole Polytech, LPP,UMR7648,CNRS,Observ Paris, Paris, France.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Gratton, F. T.
    Acad Nacl Ciencias Buenos Aires, Buenos Aires, DF, Argentina.
    Matsui, H.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Rogers, A.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Forbes, T. G.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Payne, D.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Ergun, R. E.
    Univ Colorado, Boulder, CO 80309 USA.
    Mauk, B.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Shuster, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Nakamura, R.
    Space Res Inst, Graz, Austria.
    Fuselier, S. A.
    Southwest Res Inst, San Antonio, TX USA;Univ Texas San Antonio, San Antonio, TX USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Marklund, Göran T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA.
    Pollock, C. J.
    West Virginia Univ, Morgantown, WV USA.
    Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitube Alfvenic Fluctuations Terminating in a Field and Flow Discontinuity2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 11, p. 8983-9004Article in journal (Refereed)
    Abstract [en]

    In this paper we report on a sequence of large-amplitude Alfvenic fluctuations terminating in a field and flow discontinuity and their effects on electromagnetic fields and plasmas in the near-magnetopause magnetosheath. An arc-polarized structure in the magnetic field was observed by the Time History of Events and Macroscale Interactions during Substorms-C in the solar wind, indicative of nonlinear Alfven waves. It ends with a combined tangential discontinuity/vortex sheet, which is strongly inclined to the ecliptic plane and at which there is a sharp rise in the density and a drop in temperature. Several effects resulting from this structure were observed by the Magnetospheric Multiscale spacecraft in the magnetosheath close to the subsolar point (11:30 magnetic local time) and somewhat south of the geomagnetic equator (-33 degrees magnetic latitude): (i) kinetic Alfven waves; (ii) a peaking of the electric and magnetic field strengths where E . J becomes strong and negative (-1 nW/m(3)) just prior to an abrupt dropout of the fields; (iii) evolution in the pitch angle distribution of energetic (a few tens of kilo-electron-volts) ions (H+, Hen+, and On+) and electrons inside a high-density region, which we attribute to gyrosounding of the tangential discontinuity/vortex sheet structure passing by the spacecraft; (iv) field-aligned acceleration of ions and electrons that could be associated with localized magnetosheath reconnection inside the high-density region; and (v) variable and strong flow changes, which we argue to be unrelated to reconnection at partial magnetopause crossings and likely result from deflections of magnetosheath flow by a locally deformed, oscillating magnetopause.

  • 3.
    Fuselier, S. A.
    et al.
    Southwest Res Inst, San Antonio, TX 78238 USA;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA.
    Trattner, K. J.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA.
    Denton, M. H.
    New Mexico Consortium, Los Alamos, NM USA.
    Toledo-Redondo, S.
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Aunai, N.
    Lab Phys Plasmas, Paris, France.
    Chappell, C. R.
    Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
    Glocer, A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Haaland, S. E.
    Max Planck Inst Solar Syst Res, Gottingen, Germany;Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Hesse, M.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Kistler, L. M.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France.
    Li, W.
    Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China.
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Tenfjord, P.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Dargent, J.
    Univ Pisa, Phys Dept E Fermi, Pisa, Italy.
    Vines, S. K.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Nykyri, K.
    Embry Riddle Aeronaut Univ, Ctr Space & Atmospher Res, Daytona Beach, FL USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, Earth & Space Sci, Los Angeles, CA USA.
    Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 12, p. 6204-6213Article in journal (Refereed)
    Abstract [en]

    When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.

  • 4.
    Torbert, R. B.
    et al.
    Univ New Hampshire, Durham, NH 03824 USA;Southwest Res Inst SwRI, San Antonio, TX 78228 USA.
    Burch, J. L.
    Southwest Res Inst SwRI, San Antonio, TX 78228 USA.
    Phan, T. D.
    Univ Calif Berkeley, Berkeley, CA 94720 USA.
    Hesse, M.
    Southwest Res Inst SwRI, San Antonio, TX 78228 USA;Univ Bergen, Bergen, Norway.
    Argall, M. R.
    Univ New Hampshire, Durham, NH 03824 USA.
    Shuster, J.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Genestreti, K. J.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Gershman, D. J.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Paterson, W. R.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Turner, D. L.
    Aerosp Corp, El Segundo, CA 90245 USA.
    Cohen, I.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Giles, B. L.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Pollock, C. J.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Wang, S.
    Univ Maryland, College Pk, MD 20742 USA.
    Chen, L. -J
    Stawarz, J. E.
    Imperial Coll London, Blackett Lab, London, England.
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England.
    Hwang, K. J.
    Southwest Res Inst SwRI, San Antonio, TX 78228 USA.
    Farrugia, C.
    Univ New Hampshire, Durham, NH 03824 USA.
    Dors, I.
    Univ New Hampshire, Durham, NH 03824 USA.
    Vaith, H.
    Univ New Hampshire, Durham, NH 03824 USA.
    Mouikis, C.
    Univ New Hampshire, Durham, NH 03824 USA.
    Ardakani, A.
    Univ New Hampshire, Durham, NH 03824 USA.
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Fuselier, S. A.
    Southwest Res Inst SwRI, San Antonio, TX 78228 USA;Univ Texas San Antonio, San Antonio, TX USA.
    Russell, C. T.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, Los Angeles, CA USA.
    Moore, T. E.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Drake, J. F.
    Univ Maryland, College Pk, MD 20742 USA.
    Shay, M. A.
    Univ Delaware, Newark, DE USA.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Baumjohann, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Ahmadi, N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Dorelli, J. C.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Avanov, L. A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Oka, M.
    Univ Calif Berkeley, Berkeley, CA 94720 USA.
    Baker, D. N.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Fennell, J. F.
    Aerosp Corp, El Segundo, CA 90245 USA.
    Blake, J. B.
    Aerosp Corp, El Segundo, CA 90245 USA.
    Jaynes, A. N.
    Univ Iowa, Iowa City, IA USA.
    Le Contel, O.
    Univ Paris Sud, Sorbonne Univ, CNRS, Ecole Polytech,Observ Paris,Lab Phys Plasmas, Paris, France.
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA.
    Lavraud, B.
    Univ Toulouse, CNRS, Inst Rech Astrophys & Planetol, Ctr Natl Etud Spatiales, Toulouse, France.
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan.
    Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 362, no 6421, p. 1391-1395Article in journal (Refereed)
    Abstract [en]

    Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvenic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf