uu.seUppsala University Publications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Wang, Bei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China.
    Wu, Kang
    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China.
    Hjort, Klas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Guo, Chuanfei
    Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen, Peoples R China.
    Wu, Zhigang
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China.
    High-Performance Liquid Alloy Patterning of Epidermal Strain Sensors for Local Fine Skin Movement Monitoring2019In: SOFT ROBOTICS, ISSN 2169-5172, Vol. 6, no 3, p. 414-421Article in journal (Refereed)
    Abstract [en]

    Nowadays, stretchable/epidermal electronics based on liquid alloys has attracted more and more attention, and various processing techniques have subsequently been developed to demonstrate diverse applications never seen before. However, to fully exploit its potential advantages, epidermal electronics is still searching for a technique meeting all demands on resolution, pattern complexity, and operational flexibility. In this study, we propose a technique that allows for complex and high-density patterns on thin stretchable substrates by combining ultraviolet laser patterning of a modified water-soluble mask, atomized spray deposition of liquid alloys on a flexible temporary substrate, lift-off by water dissolving, and finally, component integration and encapsulation. With this new technique, it was possible to make epidermal precision strain sensors with liquid alloy patterns of high density, which were capable of monitoring fine local skin movements such as the detailed process of wrinkle formation as well as the overall motion of the body part. In addition, this process is highly efficient and well controllable, with high potential for possible industrial automation and massive production.

  • 2.
    Wang, Bei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China.
    Xin, Wenci
    Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China.
    Hjort, Klas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Guo, Chuanfei
    Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China.
    Wu, Zhigang
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China.
    Sandwiched Polyethylene Shrink Film Masking with Tunable Resolution and Shape for Liquid Alloy Patterning2019In: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, no 2, p. 145-151Article in journal (Refereed)
    Abstract [en]

    Among numerous patterning techniques, masked liquid alloy printing is one of the most promising techniques for scalable fabrication of liquid-alloy-based stretchable electronics. Like any other mask-based process, its resolution is often constrained by the quality of the mask, and the fabrication cost increases drastically with increased resolution. In this work, by introducing a sandwiched thermal shrink polymer film masking technique and a corresponding intermediate release agent, fine liquid alloy patterns were demonstrated by using a mechanical cutting plotter together with a common oven. The final resolution and shape of the mask could be tuned based on the anisotropy of the shrink polymer film and other operational parameters of the technique. After shrinkage, the width of the patterned liquid alloy lines and space in-between could be tuned to less than one third of the original cut pattern, to about 35 and 60 mu m, respectively, according to requirements. To better predict the final structure, several parameters were investigated experimentally and numerically. Finally, a liquid alloy strain sensor and three-dimensional conformal masking were demonstrated, showing the potential of the developed technique.

  • 3.
    Zhang, Shuo
    et al.
    Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China.
    Wang, Bei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China.
    Jiang, Jiajun
    Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China.
    Wu, Kang
    Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China.
    Guo, Chuan Fei
    Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China.
    Wu, Zhigang
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China.
    High-Fidelity Conformal Printing of 3D Liquid Alloy Circuits for Soft Electronics2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 7, p. 7148-7156Article in journal (Refereed)
    Abstract [en]

    Owing to the great deformability from fluid, liquid alloy-based soft electronics has inherent advantages over rigid-based ones for applications such as stretchable intelligence or soft robotics, where high fidelity of three-dimensional (3D) conformability or dynamic morphology is required. However, current fabrications heavily rely on planar techniques, which severely limit their great potential in such attracting applications. By tuning the wettability of liquid alloy on a soft substrate through a selective surface morphology modification, we present a flexography printing technique of liquid alloy circuits on both planar (from diverse materials) and 3D complex surfaces and investigate the tuning mechanism and the relation between liquid alloy wettability and surface morphology modification. In a demonstration, high-fidelity printing of liquid alloy circuits can be deployed not only on the outline but also on small pits of strawberry surface, and the circuits work well in a dynamic deformation. Furthermore, being compatible with current industry process, our technique can be highly potential for future mass manufacturing of liquid alloy-based soft electronics.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf