uu.seUppsala University Publications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Atak, Haluk
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Department of Nuclear Engineering, Hacetteppe University.
    Anastasiadis, Anastasios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Elter, Zsolt
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Holcombe, Scott
    3Institute for Energy Technology – OECD Halden Reactor Project.
    Andersson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    The degradation of gamma-ray mass attenuation of UO2 and MOX fuel with nuclear burnup2019In: Article in journal (Refereed)
  • 2.
    Elter, Zsolt
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Caldeira Balkeståhl, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Grape, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Partial defect identification in PWR spent fuel using Passive Gamma Spectroscopy2018Conference paper (Other academic)
  • 3.
    Grape, Sophie
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Branger, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Elter, Zsolt
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mishra, Vaibhav
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Machine learning in nuclear safeguards2019Conference paper (Other academic)
    Abstract [en]

    •Before placing spent nuclear fuel in in a geological repository, they will be characterized and their declared properties will be verified.

    •We have created large library of modelled spent nuclear fuel (SNF) assemblies and estimated their activity of gamma-ray emitting fission products, the early die-away time τ and the Cherenkov light intensity.

    •We have used Random Forest regression to evaluate the capability to determine the fuel parameters initial enrichment (IE), burnup (BU) and cooling time (CT) using data from non-destructive assay (NDA) techniques

  • 4.
    Pöder Balkeståhl, Li
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Elter, Zsolt
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Grape, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Parametrization of the differential die-away self-interrogation early die-away time for PWR spent fuel assemblies2019Conference paper (Other academic)
    Abstract [en]

    The differential die-away self-interrogation (DDSI) instrument developed and built in Los Alamos National Laboratory (LANL) is being considered for verification before final disposal. One of the signals from this instrument, the early die-away time, has been shown to be proportional to the multiplication of the spent fuel assembly. Full-scale simulations of the instrument response using MCNP are time consuming. This may become a problem in cases when the instrument response to a large number of fuel assemblies is required, such as in the case of training machine learning models.

     

    In this paper, we propose a parametrization of the early die-away time as a function of initial enrichment (IE), burn-up (BU) and cooling time (CT), for intact PWR spent fuel assemblies. The parametrization is calculated from a dataset of 1040 simulated PWR spent fuel assemblies with fuel parameters in the range of IE=2-5%, BU=15-60 GWd/tU and CT=5-70 years. The simulations are done using Serpent2 for the depletion calculation and MCNP6 for the neutron transport and detection in the DDSI.

     

    It was found that the CT dependence can be decoupled from the BU and IE dependence, and that it follows an exponential decay. The BU and IE dependences have been fitted with several different functions, and the best fit was chosen based on the chi-square value. The determination of the die-away time using the parametrization has been tested on a separate dataset, resulting in a root mean square error (RMSE) of 0.6 µs (the early die-away time ranges from 28 µs to 84 µs). A description of this work is given in the paper together with details on the choice of parametrizing function, and qualitative arguments for that choice.

  • 5.
    Zsolt, Elter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Mishra, Vaibhav
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Grape, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Branger, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Caldeira Balkeståhl, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Investigating the gamma and neutron radiation around quivers for verification purposes2019Conference paper (Other academic)
    Abstract [en]

    Before encapsulation of spent nuclear fuel in a geological repository, the fuels need to be verified fors afeguards purposes. This requirement applies to all spent fuel assemblies, including those with properties or designs that are especially challenging to verify. One such example are quivers, a new type of containers used to hold damaged spent fuel rods. After placing damaged rods inside the quivers, they are sealed with a thick lid and the water is removed. The lid is thick enough to significantly reduce the amount of the gamma radiation penetrating through it, which can make safeguards verification from the top using gamma techniques difficult.

    In this paper we make a first feasibility study related to safeguards verification of quivers, aimed at investigating the gamma and neutron radiation field around a quiver using a simplified quiver geometry. The nuclide inventory of the rods placed in the quiver is calculated with Serpent and Origen-Arp, and the radiation transport is modeled with Serpent. The objective is to assess the capability of existing non-destructive assay instruments, measuring the gamma and/or neutron radiation from the object, to verify the content for nuclear safeguards purposes. The results show that the thick quiver lid attenuates the gamma radiation, thereby making gamma-radiation based verification from above the quiver difficult. Verification using neutron instruments above the quiver, or gamma and/or neutron instruments on the side may be possible. These results are in agreement with measurements of a BWR quiver using a DCVD, performed by the authors.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf