uu.seUppsala University Publications
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Cadu, Alban
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Andersson, Pher G.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Birch Reaction Followed by Asymmetric Iridium-Catalysed Hydrogenation2011In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, no 23, p. 3796-3800Article in journal (Refereed)
    Abstract [en]

    Birch reaction products are asymmetrically hydrogenated with high enantio- and diastereoselectivity via iridium catalysts. This new method of producing chiral compounds was explored for a variety of 1,3-di- and 1,2,4-tri-substituted cyclohexadienes.

  • 2.
    Cheruku, Pradeep
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Church, Tamara L
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Andersson, Pher G
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Iridium-N,P-ligand-catalyzed enantioselective hydrogenation of diphenylvinylphosphine oxides and vinylphosphonates2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 23, p. 8285-8289Article in journal (Refereed)
    Abstract [en]

    Diphenylvinylphosphine oxides and di- and trisubstituted vinylphosphonates have been employed as substrates in iridium-catalyzed asymmetric hydrogenations. Complete conversions and excellent enantioselectivities (up to and above 99% ee) were observed for a range of substrates with both aromatic and aliphatic groups at the prochiral carbon. We have also hydrogenated electron-deficient carboxyethylvinylphosphonates with excellent stereoselectivity (up to and above 99% ee). The hydrogenated products of both classes of substrates are synthetically useful intermediates.

  • 3.
    Li, Jia-Qi
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Govender, Thavendran
    Andersson, Pher G
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Bicyclic phosphine-thiazole ligands for the asymmetric hydrogenation of olefins2010In: Tetrahedron: asymmetry, ISSN 0957-4166, E-ISSN 1362-511X, Vol. 21, no 11-12, p. 1328-1333Article in journal (Refereed)
    Abstract [en]

    New bicyclic thiazole-based chiral N,P-chelating ligands were developed. High activities and enantioselectivities were achieved in the iridium-catalyzed asymmetric hydrogenation of olefins with the new ligands.

  • 4.
    Mazuela, Javier
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Pàmies, Oscar
    Andersson, Pher G
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Diéguez, Montserrat
    Adaptative Biaryl Phosphite-Oxazole and Phosphite-Thiazole Ligands for Asymmetric Ir-Catalyzed Hydrogenation of Alkenes2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 15, p. 4567-4576Article in journal (Refereed)
    Abstract [en]

    A library of readily available phosphite-oxazole/thiazole ligands (L1 a-g-L7 a-g) was applied in the Ir-catalyzed asymmetric hydrogenation of several largely unfunctionalized E- and Z-trisubstituted and 1,1-disubstituted terminal alkenes. The ability of the catalysts to transfer chiral information to the product could be tuned by choosing suitable ligand components (bridge length, the substituents in the heterocyclic ring and the alkyl backbone chain, the configuration of the ligand backbone, and the substituents/configurations in the biaryl phosphite moiety), so that enantioselectivities could be maximized for each substrate as required. Enantioselectivities were therefore excellent (enantiomeric excess (ee) values up to >99 %) for a wide range of E- and Z-trisubstituted and 1,1-disubstituted terminal alkenes. The biaryl phosphite moiety was a very advantageous ligand component in terms of substrate versatility.

  • 5. Mazuela, Javier
    et al.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Tolstoy, Päivi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Pàmies, Oscar
    Diéguez, Montserrat
    Andersson, Pher G
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    A new class of modular P,N-ligand library for asymmetric Pd-catalyzed allylic substitution reactions: a study of the key Pd-pi-allyl intermediates2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 2, p. 620-638Article in journal (Refereed)
    Abstract [en]

    A new class of modular P,N-ligand library has been synthesized and screened in the Pd-catalyzed allylic substitution reactions of several substrate types. These series of ligands can be prepared efficiently from easily accessible hydroxyl-oxazole/thiazole derivatives. Their modular nature enables the bridge length, the substituents at the heterocyclic ring and in the alkyl backbone chain, the configuration of the ligand backbone, and the substituents/configurations in the biaryl phosphite moiety to be easily and systematically varied. By carefully selecting the ligand components, therefore, high regio- and enantioselectivities (ee values up to 96 %) and good activities are achieved in a broad range of mono-, di-, and trisubstituted linear hindered and unhindered substrates and cyclic substrates. The NMR spectroscopic and DFT studies on the Pd-pi-allyl intermediates provide a deeper understanding of the effect of ligand parameters on the origin of enantioselectivity.

  • 6.
    Paptchikhine, Alexander
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Källström, Klas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Andersson, Pher
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    New ligands for the RuCp*-diamine catalysed asymmetric hydrogenation of aryl ketones2007In: Comptes rendus. Chimie, ISSN 1631-0748, E-ISSN 1878-1543, Vol. 10, no 3, p. 213-219Article in journal (Refereed)
    Abstract [en]

    New chiral diamine ligands have been synthesized and evaluated in the asymmetric Ru-catalyzed hydrogenation of prochiral aryl ketones. All catalysts showed good conversions with observed enantioselectivities ranging from moderate to good.

  • 7.
    Tolstoy, Päivi
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Engman, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
    Church, Tamara L
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Leung, Abby W-M
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Andersson, Pher G
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Iridium-Catalyzed Asymmetric Hydrogenation yielding Chiral Diarylmethines with Weakly Coordinating or Noncoordinating Substituents2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 25, p. 8855-8860Article in journal (Refereed)
    Abstract [en]

    Diarylimethine-containing stereocenters are present in pharmaceuticals   and natural products, making the synthetic methods that form these   chiral centers are important in industry. We have applied iridium   complexes with novel N,P-chelating ligands to the asymmetric  hydrogenation of trisubstituted olefins, forming diarylmethine chiral   centers in high conversions and excellent enantioselectivities (up to   99% ee) for a broad range of substrates. Our results support the hypothesis that steric hindrance in one specific area of the catalyst   is playing a key role in stereoselection, as the hydrogenation of   substrates differing little at the prochiral carbon occurred with high enantioselectivity. As a result, excellent stereodiscrimination was obtained even when the prochiral carbon bore, for example, phenyl and p-tolyl groups.

  • 8.
    Verendel, J Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Zhou, Taigang
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Li, Jia-Qi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Paptchikhine, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Lebedev, Oleg
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Andersson, Pher G
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Highly Flexible Synthesis of Chiral Azacycles via Iridium-Catalyzed Hydrogenation2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 26, p. 8880-8881Article in journal (Refereed)
    Abstract [en]

    A range of saturated chiral azacycles has been prepared in high yield and with high selectivity from simple starting materials. A modular approach with ring-closing metathesis as a key step was used to produce a number of five-, six-, and seven-membered cyclic alkenes. Asymmetric hydrogenation catalyzed by N,P-ligated iridium complexes gave saturated azacycles in high optical purity. This methodology was demonstrated in the synthesis of a pharmaceutical precursor.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf