uu.seUppsala University Publications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andreasson, Rebecca
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction. School of Informatics, University of Skövde, Skövde, Sweden.
    Alenljung, Beatrice
    School of Informatics, University of Skövde, Skövde, Sweden.
    Billing, Erik
    School of Informatics, University of Skövde, Skövde, Sweden.
    Lowe, Robert
    Department of Applied ITUniversity of Gothenburg, Gothenburg, Sweden.
    Affective touch in human–robot interaction: Conveying emotion to the Nao robot2018In: International Journal of Social Robotics, ISSN 1875-4791, E-ISSN 1875-4805, Vol. 10, p. 473-491Article in journal (Refereed)
    Abstract [en]

    Affective touch has a fundamental role in human development, social bonding, and for providing emotional support in interpersonal relationships. We present, what is to our knowledge, the first HRI study of tactile conveyance of both positive and negative emotions (affective touch) on the Nao robot, and based on an experimental set-up from a study of human–human tactile communication. In the present work, participants conveyed eight emotions to a small humanoid robot via touch. We found that female participants conveyed emotions for a longer time, using more varied interaction and touching more regions on the robot’s body, compared to male participants. Several differences between emotions were found such that emotions could be classified by the valence of the emotion conveyed, by combining touch amount and duration. Overall, these results show high agreement with those reported for human–human affective tactile communication and could also have impact on the design and placement of tactile sensors on humanoid robots.

  • 2. Johal, Wafa
    et al.
    Castellano, Ginevra
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Tanaka, Fumihide
    Okita, Sandra
    Robots for Learning2018In: International Journal of Social Robotics, ISSN 1875-4791, E-ISSN 1875-4805, Vol. 10, no 3, p. 293-294Article in journal (Other academic)
  • 3. Jones, Aidan
    et al.
    Bull, Susan
    Castellano, Ginevra
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    "I know that now, I'm going to learn this next": Promoting self-regulated learning with a robotic tutor2018In: International Journal of Social Robotics, ISSN 1875-4791, E-ISSN 1875-4805, Vol. 10, no 4, p. 439-454Article in journal (Refereed)
  • 4.
    Jones, Aidan
    et al.
    University Of Birmingham, Birmingham, United Kingdom.
    Castellano, Ginevra
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Adaptive robotic tutors that support self-regulated learning: A longer-term investigation with primary school children2018In: International Journal of Social Robotics, ISSN 1875-4791, E-ISSN 1875-4805, Vol. 10, no 3, p. 357-370Article in journal (Refereed)
    Abstract [en]

    Robots are increasingly being used to provide motivating, engaging and personalised support to learners. These robotic tutors have been able to increase student learning gain by providing personalised hints or problem selection. However, they have never been used to assist children in developing self regulated learning (SRL) skills. SRL skills allow a learner to more effectively self-assess and guide their own learning; learners that engage these skills have been shown to perform better academically. This paper explores how personalised tutoring by a robot achieved using an open learner model (OLM) promotes SRL processes and how this can impact learning and SRL skills compared to personalised domain support alone. An OLM allows the learner to view the model that the system holds about them. We present a longer-term study where participants take part in a geography-based task on a touch screen with adaptive feedback provided by the robot. In addition to domain support the robotic tutor uses an OLM to prompt the learner to monitor their developing skills, set goals, and use appropriate tools. Results show that, when a robotic tutor personalises and adaptively scaffolds SRL behaviour based upon an OLM, greater indication of SRL behaviour can be observed over the control condition where the robotic tutor only provides domain support and not SRL scaffolding.

  • 5.
    Obaid, Mohammad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Baykal, Gökçe Elif
    Yantaç, Asım Evren
    Barendregt, Wolmet
    Developing a prototyping method for involving children in the design of classroom robots2018In: International Journal of Social Robotics, ISSN 1875-4791, E-ISSN 1875-4805, Vol. 10, no 2, p. 279-291Article in journal (Refereed)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf