uu.seUppsala University Publications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Brufau, J
    et al.
    Puig-Vidal, M
    Lopez-Sanchez, J
    Snis, Niklas
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Simu, Urban
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Johansson, Stefan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Driesen, W
    Gao, J
    Velten, T
    MICRON: Small Autonomous Robot for Cell Manipulation Applications2005In: 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain April 2005, 2005Conference paper (Refereed)
  • 2.
    Edqvist, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Materials Science.
    Snis, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Materials Science.
    I-SWARM, Mass Produced Miniaturized Autonomous Robots2006Conference paper (Refereed)
  • 3.
    Edqvist, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Snis, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Casanova Mohr, Raimon
    SiC, Electronics Department, University of Barcelona, Barcelona, Spain.
    Scholz, Oliver
    IBMT, Fraunhofer Institute for Biomedical Engineering, St Ingbert, Germany.
    Corradi, Paolo
    Scuola Superiore Sant’Anna, Pisa, Italy.
    Gao, Jianbo
    IBMT, Fraunhofer Institute for Biomedical Engineering, St Ingbert, Germany.
    Di´eguez, Angel
    SiC, Electronics Department, University of Barcelona, Barcelona, Spain.
    Wyrsch, Nicolas
    Institut de Microtechnique, University of Neuchˆatel, Neuchˆatel, Switzerland.
    Johansson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards2009In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 19, no 7, p. 11pp-Article in journal (Refereed)
    Abstract [en]

    Initial tests of a building technology for a compact three-dimensional mass produciblemicrorobot are presented. The 3.9 × 3.9 × 3.3 mm3 sized prototype robot represents amicrosystem with actuators, sensors, energy management and integrated electronics. Theweight of a folded robot is 65 mg and the total volume is less than 23 mm3. The design of theinterfaces of the different modules in the robot, as well as the building technology, isdescribed. The modules are assembled using conductive adhesive with industrial surfacemounting technology on a thin double-sided flexible printed circuit board. The final shape ofthe microrobots is achieved by folding the flexible printed circuit board twice. Electrical andmechanical studies are performed to evaluate the assembly and it is concluded that thetechnology can be used for this type of microsystem. Several issues using the presentedassembly technique are identified and addressed.

  • 4.
    Edqvist, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Snis, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Johansson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Gentle dry etching of P(VDF-TrFE) multilayer micro actuator structures by use of an inductive coupled plasma2008In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 18, no 1, p. 015007-Article in journal (Refereed)
    Abstract [en]

    To fully utilize the actuator properties of poly(vinylidenefluoride) (P(VDF))-based polymers, the electric field has to be rather high and one way to accomplish this, in particular with low voltage drive signals, is to build multilayered structures. This paper focuses on how to structure poly(vinylidenefluoride-trifluoroethylene) P(VDF-TrFE) by presenting an etch method to create multilayered miniaturized actuators, with intermediate aluminium electrodes. To create inter-connect areas for the multilayer electrodes, a modified Bosch process in an inductive couple plasma (ICP) etcher is used to remove all P(VDF-TrFE) not covered by the electrodes. Since each electrode mask is slightly different from the others, the result is a staircase-like inter-electrode contact area that is connected from above using a conductive adhesive. The developed ICP etch results in high selective etching and a good agreement between theoretical and measured capacitance values. The manufactured cantilevers, consisting of a multilayer on top of a flexible printed circuit (FPC) board, were tested and the resonant stroke was confirmed to agree with expected values. The successful establishment of interlayer connections between the electrodes open up the possibility for batch fabrication of cheap low voltage micro actuators built on a standard substrate used in millions of commercial products. 2008 IOP Publishing Ltd.

  • 5.
    Johansson, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Snis, Niklas
    Piezomotor Uppsala AB.
    An ultrasonic motor for high-precision positioning2014Conference paper (Refereed)
  • 6.
    Snis, Niklas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Materials Science.
    Edqvist, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Materials Science.
    Simu, Urban
    Johansson, S.
    Multilayered P(VDF-TrFE) actuators for swarming robots2006Conference paper (Refereed)
  • 7.
    Snis, Niklas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Edqvist, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Simu, Urban
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Johansson, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Micro Structural Technology.
    Monolithic fabrication of multilayer P(VDF-TrFE) cantilevers2008In: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 144, no 2, p. 314-320Article in journal (Refereed)
    Abstract [en]

    When operating a piezoelectric actuator the use of multilayers has for a long time proven to be a good solution to maintain a high electric field at a reduced applied voltage. The piezoelectric copolymer polyvinylidene-trifluoroethylene P(VDF-TrFE) has rather low piezoelectric constant compared to piezoceramics but it can withstand much higher electric fields. As the copolymer can be spin coated the individual layer thickness of the multilayer can easily be reduced to a few m and rather large strains can be achieved at a moderate voltage. Here a monolithic fabrication technique for producing P(VDF-TrFE) actuators, without any lamination or adhesive layers, is presented. To fabricate the multilayer successive spin coating of the piezoelectric polymer polyvinylidene-trifluoroethylene P(VDF-TrFE) and electrode evaporation on a substrate was performed. Four different substrate materials were coated with a multilayer stack of 6 active P(VDF-TrFE) layers and 7 aluminum electrodes. The monolithic multilayer structures with patterned electrodes were diced by a cutting saw to produce unimorph cantilevers. No delamination or dissolution could be observed between adjacent copolymer layers. The cantilevers were evaluated in terms of static and resonant deflection and the Q-factor was estimated from the frequency spectra. A discussion regarding the influence of the Q-factor on the fabrication process tolerance is given. The different substrate materials used was stainless steel, flexible printed circuit board (FPC), polycarbonate and aluminum. The Q-factor varied from 30 for the polycarbonate to 83 for the stainless steel. These results provide guidelines for the material choices of a forthcoming locomotion module to be used in the 3 mm 3 mm 3 mm I-SWARM robots. The FPC substrate showed to have the best compatibility to the fabrication processes and the most suitable Q-value of 42. This together with the high deflections makes the FPC the preferred substrate materials the future actuators for the I-SWARM locomotion module. 2008 Elsevier B.V. All rights reserved.

  • 8.
    Snis, Niklas
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Simu, Urban
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Johansson, Staffan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Piezoelectric Drive Platform for cm3-sized Autonomous Robot2004In: ACTUATOR, Bremen, Germany, 2004Conference paper (Refereed)
  • 9.
    Snis, Niklas
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Simu, Urban
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    Johansson, Stefan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Engineering Sciences. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics and Materials Science, Materials Science.
    A piezoelectric disc-shaped motor using a quasi-static walking mechanism2005In: Journal of Micromechanics and Microengineering, Vol. 15, p. 2230-2234Article in journal (Refereed)
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf