uu.seUppsala University Publications
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Sjödin, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sterby, Mia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Åkerlund, Lisa
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Xiao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Organic Batteries Based on Quinone-Substituted Conducting Polymers2017Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 2.
    Åkerlund, Lisa
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Lisa Åkerlunds krokiga väg till forskningen2015Other (Other (popular science, discussion, etc.))
  • 3.
    Åkerlund, Lisa
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Morgondagens organiska batterier2017Other (Other (popular science, discussion, etc.))
    Download full text (pdf)
    fulltext
  • 4.
    Åkerlund, Lisa
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Organic battery materials2016Conference paper (Refereed)
  • 5.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone based Conducting Redox Polymers for Renewable Energy Storage2016Conference paper (Refereed)
    Abstract [en]

    To meet future energy needs and to minimize CO2-emissions, a higher share of produced electricity must come from renewable resources [1]. Unfortunately, the output of renewable energy sources varies and does not always correlate with the temporal demand for electricity. For this reason, high capacity electrical energy storage (EES) is needed to fully utilize renewable energy sources [2]. Today’s battery technologies primarily rely on metals extracted at large economic and environmental costs [3],and the benefits of converting to carbon based materials are several, e.g. lower weight, flexible materials, and better recycling possibilities. In addition, the total energy consumption in the production chain may be reduced if the high temperatures required for extracting and processing metals can be avoided. Conducting redox polymers (CRPs), i.e. conducting polymers with redox active side groups, are currently investigated as possible organic electrode materials [4]. In this work we focus on finding stable side groups with high charge storage capacity. Quinones, which occur in natural energy conversion systems, i.e. during photosynthesis and respiration, are an attractive side group for CRPs due to their high gravimetric capacity. Importantly, for a functioning battery application the redox group and the polymer backbone must be active in the same potential window and this can be tuned effectively over a wide potential range by substitution on the quinone ring; hence various quinone derivatives could match different polymer backbones. A high potential- and high charge capacity quinone derivative has been synthesized and electrochemically characterized with the aim of producing a novel CRP to function as an organic high charge capacity material, targeting renewable organic batteries for a future of sustainable EES.

     

    References

    [1]  D. Larcher, J. M. Tarascon,, Nat. Chem. 7 (2015) 19-29.

    [2] Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577–3613.

    [3] P. Poizot, F. Dolhem, Energy Environ. Sci. 4 (2011) 2003-2019.

    [4] (a) C. Karlsson, H. Huang, M. Stromme, A. Gogoll, M. Sjodin, RSC Adv. 5 (2015) 11309-11316; (b) C. Karlsson, H. Huang, M. Stromme, A. Gogoll, M. Sjodin, Electrochim. Acta 179 (2015) 336-342.

    [5] L. Åkerlund, R. Emanuelsson, A. Gogoll, M. Strömme, M. Sjödin, To be submitted.

    Download full text (pdf)
    Abstract ISPE XV 2016
  • 6.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone based Conducting Redox Polymers for Renewable Energy Storage2016Conference paper (Refereed)
    Abstract [en]

    To meet future energy needs and to minimize CO2-emissions, a higher share of produced electricity must come from renewable resources [1]. Unfortunately, the output of renewable energy sources varies and does not always correlate with the temporal demand for electricity. For this reason, high capacity electrical energy storage (EES) is needed to fully utilize renewable energy sources [2]. Today’s battery technologies primarily rely on metals extracted at large economic and environmental costs [3],and the benefits of converting to carbon based materials are several, e.g. lower weight, flexible materials, and better recycling possibilities. In addition, the total energy consumption in the production chain may be reduced if the high temperatures required for extracting and processing metals can be avoided. Conducting redox polymers (CRPs), i.e. conducting polymers with redox active side groups, are currently investigated as possible organic electrode materials [4]. In this work we focus on finding stable side groups with high charge storage capacity. Quinones, which occur in natural energy conversion systems, i.e. during photosynthesis and respiration, are an attractive side group for CRPs due to their high gravimetric capacity. Importantly, for a functioning battery application the redox group and the polymer backbone must be active in the same potential window and this can be tuned effectively over a wide potential range by substitution on the quinone ring; hence various quinone derivatives could match different polymer backbones. A high potential- and high charge capacity quinone derivative has been synthesized and electrochemically characterized with the aim of producing a novel CRP to function as an organic high charge capacity material, targeting renewable organic batteries for a future of sustainable EES.

     

    References

    [1]  D. Larcher, J. M. Tarascon,, Nat. Chem. 7 (2015) 19-29.

    [2] Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 111 (2011) 3577–3613.

    [3] P. Poizot, F. Dolhem, Energy Environ. Sci. 4 (2011) 2003-2019.

    [4] (a) C. Karlsson, H. Huang, M. Stromme, A. Gogoll, M. Sjodin, RSC Adv. 5 (2015) 11309-11316; (b) C. Karlsson, H. Huang, M. Stromme, A. Gogoll, M. Sjodin, Electrochim. Acta 179 (2015) 336-342.

    [5] L. Åkerlund, R. Emanuelsson, A. Gogoll, M. Strömme, M. Sjödin, To be submitted.

  • 7.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ruipérez, F.
    Casado, N.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mecerreyes, D.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    The proton trap - a new route to organic energy storage2019In: Organic Battery Days 2019, 2019Conference paper (Refereed)
  • 8.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Hernández, Guiomar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ruipérez, Fernando
    Casado, Nerea
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mecerreyes, David
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    In situ Investigations of a Proton Trap Material: A PEDOT-Based Copolymer with Hydroquinone and Pyridine Side Groups Having Robust Cyclability in Organic Electrolytes and Ionic Liquids2019In: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 2, no 6, p. 4486-4495Article in journal (Refereed)
    Abstract [en]

    A conducting redox polymer based on PEDOT with hydroquinone and pyridine pendant groups is reported and characterized as a proton trap material. The proton trap functionality, where protons are transferred from the hydroquinone to the pyridine sites, allows for utilization of the inherently high redox potential of the hydroquinone pendant group (3.3 V versus Li0/+) and sustains this reaction by trapping the protons within the polymer, resulting in proton cycling in an aprotic electrolyte. By disconnecting the cycling ion of the anode from the cathode, the choice of anode and electrolyte can be extensively varied and the proton trap copolymer can be used as cathode material for all-organic or metal-organic batteries. In this study, a stable and nonvolatile ionic liquid was introduced as electrolyte media, leading to enhanced cycling stability of the proton trap compared to cycling in acetonitrile, which is attributed to the decreased basicity of the solvent. Various in situ methods allowed for in-depth characterization of the polymer’s properties based on its electronic transitions (UV–vis), temperature-dependent conductivity (bipotentiostatic CV-measurements), and mass change (EQCM) during the redox cycle. Furthermore, FTIR combined with quantum chemical calculations indicate that hydrogen bonding interactions are present for all the hydroquinone and quinone states, explaining the reversible behavior of the copolymer in aprotic electrolytes, both in three-electrode setup and in battery devices. These results demonstrate the proton trap concept as an interesting strategy for high potential organic energy storage materials.

  • 9.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Renault, Stevén
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    The Proton Trap Technology: Toward High Potential Quinone-Based Organic Energy Storage2017In: Advanced Energy Materials, ISSN 1614-6840, Vol. 7, no 20, article id 1700259Article in journal (Refereed)
    Abstract [en]

    An organic cathode material based on a copolymer of poly(3,4-ethylenedioxythiophene) containing pyridine and hydroquinone functionalities is described as a proton trap technology. Utilizing the quinone to hydroquinone redox conversion, this technology leads to electrode materials compatible with lithium and sodium cycling chemistries. These materials have high inherent potentials that in combination with lithium give a reversible output voltage of above 3.5 V (vs Li0/+) without relying on lithiation of the material, something that is not showed for quinones previously. Key to success stems from coupling an intrapolymeric proton transfer, realized by an incorporated pyridine proton donor/acceptor functionality, with the hydroquinone redox reactions. Trapping of protons in the cathode material effectively decouples the quinone redox chemistry from the cycling chemistry of the anode, which makes the material insensitive to the nature of the electrolyte cation and hence compatible with several anode materials. Furthermore, the conducting polymer backbone allows assembly without any additives for electronic conductivity. The concept is demonstrated by electrochemical characterization in several electrolytes and finally by employing the proton trap material as the cathode in lithium and sodium batteries. These findings represent a new concept for enabling high potential organic materials for the next generation of energy storage systems.

  • 10.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Organic Polymeric Materials for Renewable Batteries2015Conference paper (Refereed)
    Abstract [en]

    To solve for future energy needs, capacity of storing energy will be crucial. In principle all of today’s batteries are made of metals, which are energy demanding to extract and recycle, as well as being non-renewable. A proposed alternative is to make batteries with same or higher charge capacity from renewable sources. Electrodes can be based on conducting redox polymers (CRPs) consisting of a polymeric backbone, such as PEDOT, with redox active side groups attached. As side groups, quinone derivatives can be utilized. Quinones function as charge carrier in nature’s photosynthesis. For a functioning battery application, redox group and polymer must be active in the same potential window and this can be tuned by changing functionality of the side groups. This project aims at finding and synthesizing high charge capacity CRP materials and targeting renewable organic batteries for a future of sustainable energy storage.

  • 11.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, M
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Martin, Sjödin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Conducting Redox Polymers for Renewable Energy Storage2016Conference paper (Refereed)
    Download full text (pdf)
    Abstract ASMCS 2016
  • 12.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Organic Polymeric Materials for Renewable Energy Storage2016Conference paper (Refereed)
    Abstract [en]

    To solve for future energy needs, the capacity of storing energy will be crucial when energy production from renewables increases. In principle all of today’s batteries are made of metals, which are energy demanding both to extract and recycle, as well as being non-renewable. An example is lithium ion batteries (LIBs), which today are unprofitable to recycle (due to the high temperatures needed), hence remaining deposits will not last for long if we want electric vehicles based on LIBs to replace conventional vehicles. Additionally, an electric car must be charged over 120 times before it even reaches a negative CO2 impact, compared to conventional cars. A solution to this problem is to make batteries with the same or higher charge capacity as conventional batteries, but from renewable sources.

    Quinones have high specific capacity and function as charge carriers in natures’ photosynthesis and respiration cycle. When combined with a polymeric backbone, the resulting material has potential of becoming a cheaper, lighter and greener alternative to LIBs.

    Conducting redox polymers (CRPs) have been proposed as a renewable alternative for electrode materials. CRPs consist of two parts: a conducting polymeric (CP) backbone, such as polypyrrole (PPy) or Poly(3,4-ethylenedioxythiophene) (PEDOT); and a redox active side group, such as quinones, attached to the backbone. For the system to function as a battery, the attached redox group must be active in the same potential window as the specific polymer is conducting.

    This project aims at finding, synthesizing and characterizing high charge capacity materials and targeting renewable organic batteries for a future of sustainable energy storage.

  • 13.
    Åkerlund, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Renewable Materials for Rechargeable Battery Applications2015Conference paper (Refereed)
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf