uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1 - 20 of 20
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Bokan, Petar
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Gradin, P.O. Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Madsen, Alexander K
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Mårtensson, Mikael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Öhman, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Rangel Smith, Camila
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    De Bruin, Pedro Sales
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC2017Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 13, nr 9, s. 852-858Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Light-by-light scattering (gamma gamma -> gamma gamma) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 mu b(-1) of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 +/- 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (gamma gamma) -> Pb-(center dot) + Pb-(center dot) gamma gamma, for photon transverse energy E-T > 3 GeV, photon absolute pseudorapidity vertical bar eta vertical bar < 2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 +/- 24 (stat.) +/- 17 (syst.) nb, which is in agreement with the standard model predictions.

  • 2.
    Aartsen, M. G.
    et al.
    Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Collaboration, IceCube
    Hill, G. C.
    Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Kyriacou, A.
    Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Robertson, S.
    Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Wallace, A.
    Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Whelan, B. J.
    Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
    Ackermann, M.
    DESY, Zeuthen, Germany.
    Bernardini, E.
    DESY, Zeuthen, Germany.
    Blot, S.
    DESY, Zeuthen, Germany.
    Bradascio, F.
    DESY, Zeuthen, Germany.
    Bretz, H. -P
    Brostean-Kaiser, J.
    DESY, Zeuthen, Germany.
    Franckowiak, A.
    DESY, Zeuthen, Germany.
    Jacobi, E.
    DESY, Zeuthen, Germany.
    Karg, T.
    DESY, Zeuthen, Germany.
    Kintscher, T.
    DESY, Zeuthen, Germany.
    Kunwar, S.
    DESY, Zeuthen, Germany.
    Nahnhauer, R.
    DESY, Zeuthen, Germany.
    Satalecka, K.
    DESY, Zeuthen, Germany.
    Spiering, C.
    DESY, Zeuthen, Germany.
    Stachurska, J.
    DESY, Zeuthen, Germany.
    Stasik, A.
    DESY, Zeuthen, Germany.
    Strotjohann, N. L.
    DESY, Zeuthen, Germany.
    Terliuk, A.
    DESY, Zeuthen, Germany.
    Usner, M.
    DESY, Zeuthen, Germany.
    van Santen, J.
    DESY, Zeuthen, Germany.
    Adams, J.
    Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand.
    Bagherpour, H.
    Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand.
    Aguilar, J. A.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Ansseau, I.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Heereman, D.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Meagher, K.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Meures, T.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    O'Murchadha, A.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Pinat, E.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Raab, C.
    Univ Libre Bruxelles, Sci Fac, Brussels, Belgium.
    Ahlers, M.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Bourbeau, E.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Koskinen, D. J.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Larson, M. J.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Medici, M.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Rameez, M.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Stuttard, T.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Ahrens, M.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Bohm, C.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Dumm, J. P.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Finley, C.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Flis, S.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Hultqvist, K.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Walck, C.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Zoll, M.
    Stockholm Univ, Oskar Klein Ctr, Stockholm, Sweden;Stockholm Univ, Dept Phys, Stockholm, Sweden.
    Al Samarai, I.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland.
    Bron, S.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland.
    Carver, T.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland.
    Christov, A.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland.
    Montaruli, T.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland.
    Altmann, D.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erlangen, Germany.
    Anton, G.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erlangen, Germany.
    Gluesenkamp, T.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erlangen, Germany.
    Katz, U.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erlangen, Germany.
    Kittler, T.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erlangen, Germany.
    Tselengidou, M.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erlangen, Germany.
    Andeen, K.
    Marquette Univ, Dept Phys, Milwaukee, WI 53233 USA.
    Plum, M.
    Marquette Univ, Dept Phys, Milwaukee, WI 53233 USA.
    Anderson, T.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    DeLaunay, J. J.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Dunkman, M.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Eller, P.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Huang, F.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Keivani, A.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Lanfranchi, J. L.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Pankova, D. V.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Tesic, G.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Turley, C. F.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Weiss, M. J.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
    Arguelles, C.
    MIT, Dept Phys, Cambridge, MA 02139 USA.
    Axani, S.
    MIT, Dept Phys, Cambridge, MA 02139 USA.
    Collin, G. H.
    MIT, Dept Phys, Cambridge, MA 02139 USA.
    Conrad, J. M.
    MIT, Dept Phys, Cambridge, MA 02139 USA.
    Moulai, M.
    MIT, Dept Phys, Cambridge, MA 02139 USA.
    Auffenberg, J.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Brenzke, M.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Glauch, T.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Haack, C.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Kalaczynski, P.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Koschinsky, J. P.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Leuermann, M.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Raedel, L.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Reimann, R.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Rongen, M.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Salzer, T.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Schoenen, S.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Schumacher, L.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Stettner, J.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Vehring, M.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Vogel, E.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Wallraff, M.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Waza, A.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Wiebusch, C. H.
    Rhein Westfal TH Aachen, Phys Inst 3, Aachen, Germany.
    Bai, X.
    South Dakota Sch Mines & Technol, Phys Dept, Rapid City, SD USA.
    Dvorak, E.
    South Dakota Sch Mines & Technol, Phys Dept, Rapid City, SD USA.
    Barron, J. P.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Giang, W.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Grant, D.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Kopper, C.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Moore, R. W.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Nowicki, S. C.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Herrera, S. E. Sanchez
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Sarkar, S.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark;Univ Alberta, Dept Phys, Edmonton, AB, Canada;Univ Oxford, Dept Phys, Oxford, England.
    Wandler, F. D.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Weaver, C.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Wood, T. R.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Woolsey, E.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Yanez, J. P.
    Univ Alberta, Dept Phys, Edmonton, AB, Canada.
    Barwick, S. W.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
    Yodh, G.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
    Baum, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Boeser, S.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    di Lorenzo, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Eberhardt, B.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Ehrhardt, T.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Koepke, L.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Krueckl, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Momente, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Peiffer, P.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Sandroos, J.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Steuer, A.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Wiebe, K.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
    Bay, R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
    Filimonov, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
    Price, P. B.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
    Woschnagg, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
    Beatty, J. J.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA;Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA.
    Tjus, J. Becker
    Ruhr Univ Bochum, Fak Phys & Astron, Bochum, Germany.
    Bos, F.
    Ruhr Univ Bochum, Fak Phys & Astron, Bochum, Germany.
    Eichmann, B.
    Ruhr Univ Bochum, Fak Phys & Astron, Bochum, Germany.
    Kroll, M.
    Ruhr Univ Bochum, Fak Phys & Astron, Bochum, Germany.
    Schoeneberg, S.
    Ruhr Univ Bochum, Fak Phys & Astron, Bochum, Germany.
    Tenholt, F.
    Ruhr Univ Bochum, Fak Phys & Astron, Bochum, Germany.
    Becker, K. -H
    Bindig, D.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Helbing, K.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Hickford, S.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Hoffmann, R.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Lauber, F.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Naumann, U.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Pollmann, A. Obertacke
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Soldin, D.
    Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    BenZvi, S.
    Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.
    Cross, R.
    Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.
    Berley, D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Blaufuss, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Cheung, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Felde, J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Friedman, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Hellauer, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Hoffman, K. D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Maunu, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Olivas, A.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Schmidt, T.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Song, M.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Sullivan, G. W.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
    Besson, D. Z.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
    Binder, G.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Klein, S. R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Miarecki, S.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Palczewski, T.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Tatar, J.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Boerner, M.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Fuchs, T.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Huennefeld, M.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Meier, M.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Menne, T.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Pieloth, D.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Rhode, W.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Ruhe, T.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Sandrock, A.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Schlunder, P.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Soedingrekso, J.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Werthebach, J.
    TU Dortmund Univ, Dept Phys, Dortmund, Germany.
    Bose, D.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    Dujmovic, H.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    In, S.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    Jeong, M.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    Kang, W.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    Kim, J.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    Rott, C.
    Sungkyunkwan Univ, Dept Phys, Suwon, South Korea.
    Botner, Olga
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Burgman, Alexander
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA;Univ Wuppertal, Dept Phys, Wuppertal, Germany.
    Hallgren, Allan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    de los Heros, Carlos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Unger, Elisabeth
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Bourbeau, J.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Braun, J.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Casey, J.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Chirkin, D.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Day, M.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Desiati, P.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Diaz-Velez, J. C.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Fahey, S.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Ghorbani, K.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Griffith, Z.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Halzen, F.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Hanson, K.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Hokanson-Fasig, B.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Jero, K.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Karle, A.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Kauer, M.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Kelley, J. L.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Kheirandish, A.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Liu, Q. R.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Luszczak, W.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Mancina, S.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    McNally, F.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Merino, G.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Schneider, A.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Tobin, M. N.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Tosi, D.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Ty, B.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Vandenbroucke, J.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Wandkowsky, N.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Wendt, C.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Westerhoff, S.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Wille, L.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Wolf, M.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Wood, J.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Xu, D. L.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Yuan, T.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA.
    Brayeur, L.
    VUB, Dienst ELEM, Brussels, Belgium.
    Casier, M.
    VUB, Dienst ELEM, Brussels, Belgium.
    De Clercq, C.
    VUB, Dienst ELEM, Brussels, Belgium.
    de Vries, K. D.
    VUB, Dienst ELEM, Brussels, Belgium.
    de Wasseige, G.
    VUB, Dienst ELEM, Brussels, Belgium.
    Kunnen, J.
    VUB, Dienst ELEM, Brussels, Belgium.
    Lunemann, J.
    VUB, Dienst ELEM, Brussels, Belgium.
    Maggi, G.
    VUB, Dienst ELEM, Brussels, Belgium.
    Toscano, S.
    VUB, Dienst ELEM, Brussels, Belgium.
    van Eijndhoven, N.
    VUB, Dienst ELEM, Brussels, Belgium.
    Clark, K.
    SNOLAB, Lively, ON, Canada.
    Classen, L.
    Westfal Wilhelms Univ Munster, Inst Kernphys, Munster, Germany.
    Kappes, A.
    Westfal Wilhelms Univ Munster, Inst Kernphys, Munster, Germany.
    Coenders, S.
    Tech Univ Munich, Phys Dept, Garching, Germany.
    Huber, M.
    Tech Univ Munich, Phys Dept, Garching, Germany.
    Krings, K.
    Tech Univ Munich, Phys Dept, Garching, Germany.
    Rea, I. C.
    Tech Univ Munich, Phys Dept, Garching, Germany.
    Resconi, E.
    Tech Univ Munich, Phys Dept, Garching, Germany.
    Turcati, A.
    Tech Univ Munich, Phys Dept, Garching, Germany.
    Cowen, D. F.
    Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA;Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA.
    de Andre, J. P. A. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    DeYoung, T.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    Hignight, J.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    Mahn, K. B. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    Micallef, J.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    Neer, G.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    Rysewyk, D.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
    Dembinski, H.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Evenson, P. A.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Gaisser, T. K.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Gonzalez, J. G.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Koirala, R.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Pandya, H.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Seckel, D.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Stanev, T.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    Tilav, S.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
    De Ridder, S.
    Univ Ghent, Department Phys & Astron, Ghent, Belgium.
    Labare, M.
    Univ Ghent, Department Phys & Astron, Ghent, Belgium.
    Ryckbosch, D.
    Univ Ghent, Department Phys & Astron, Ghent, Belgium.
    Van Driessche, W.
    Univ Ghent, Department Phys & Astron, Ghent, Belgium.
    Vanheule, S.
    Univ Ghent, Department Phys & Astron, Ghent, Belgium.
    Vraeghe, M.
    Univ Ghent, Department Phys & Astron, Ghent, Belgium.
    de With, M.
    Humboldt Univ, Inst Phys, Berlin, Germany.
    Hebecker, D.
    Humboldt Univ, Inst Phys, Berlin, Germany.
    Kolanoski, H.
    Humboldt Univ, Inst Phys, Berlin, Germany.
    Fazely, A. R.
    Southern Univ, Dept Phys, Baton Rouge, LA USA.
    Ter-Antonyan, S.
    Southern Univ, Dept Phys, Baton Rouge, LA USA.
    Xu, X. W.
    Southern Univ, Dept Phys, Baton Rouge, LA USA.
    Gallagher, J.
    Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
    Gerhardt, L.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Goldschmidt, A.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Nygren, D. R.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Przybylski, G. T.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Stezelberger, T.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Stokstad, R. G.
    Lawrence Berkeley Natl Lab, Berkeley, CA USA.
    Hoshina, K.
    Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA;Univ Wisconsin, Wisconsin Icecube Particle Astrophys Ctr, 1150 Univ Ave, Madison, WI 53706 USA;Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo, Japan.
    Ishihara, A.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Kim, M.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Kuwabara, T.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Lu, L.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Mase, K.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Relich, M.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Stoessl, A.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Yoshida, S.
    Chiba Univ, Dept Phys, Chiba, Japan;Chiba Univ, Inst Global Prominent Res, Chiba, Japan.
    Japaridze, G. S.
    Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
    Jones, B. J. P.
    Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA.
    Katori, T.
    Queen Mary Univ London, Sch Phys & Astron, London, England.
    Mandalia, S.
    Queen Mary Univ London, Sch Phys & Astron, London, England.
    Kiryluk, J.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
    Lesiak-Bzdak, M.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
    Niederhausen, H.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
    Xu, Y.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
    Kohnen, G.
    Univ Mons, Mons, Belgium.
    Kopper, S.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
    Nakarmi, P.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
    Pepper, J. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
    Santander, M.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
    Toale, P. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
    Williams, D. R.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
    Kowalski, M.
    DESY, Zeuthen, Germany;Humboldt Univ, Inst Phys, Berlin, Germany.
    Kurahashi, N.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
    Relethford, B.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
    Richman, M.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
    Wills, L.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
    Madsen, J.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
    Seunarine, S.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
    Spiczak, G. M.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
    Maruyama, R.
    Yale Univ, Dept Phys, New Haven, CT USA.
    Rawlins, K.
    Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK USA.
    Stamatikos, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
    Sutherland, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
    Taboada, I.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
    Tung, C. F.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
    Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube2018Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 14, nr 9, s. 961-966Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10(-28) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.

  • 3. Ablikim, M.
    et al.
    Ikegami Andersson, Walter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Li, Cui
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Papenbrock, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Pettersson, Joachim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Schönning, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Zou, J. H.
    Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation2019Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 15, nr 7, s. 631-634Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Particles directly produced at electron-positron colliders, such as the J/psi meson, decay with relatively high probability into a baryon-antibaryon pair(1). For spin-1/2 baryons, the pair can have the same or opposite helicites. A non-vanishing phase Delta Phi between the transition amplitudes to these helicity states results in a transverse polarization of the baryons(2-4). From the joint angular distribution of the decay products of the bary-ons, this phase as well as the parameters characterizing the baryon and the antibaryon decays can be determined. Here, we report the measurement of Delta Phi = 42.4 +/- 0.6 +/- 0.5 degrees using Lambda -> p pi(-) and (Lambda) over bar -> (p) over bar pi(+), (n ) over bar pi(0) decays at BESIII. We find a value for the Lambda -> p pi(-) decay parameter of alpha(-) = 0.750 +/- 0.009 +/- 0.004, 17 +/- 3% higher than the current world average, which has been used as input for all Lambda polarization measurements since 1978(5,6). For (Lambda) over bar -> (p) over bar pi(+) we find alpha(+) = -0.758 +/- 0.010 +/- 0.007, giving A(CP) = (alpha(-) + alpha(+))/(alpha(-) - alpha(+)) = -0.006 +/- 0.012 +/- 0.007, a precise direct test of charge-parity symmetry (CP) violation in Lambda decays.

  • 4.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ultrafast Spintronics: Give It A Whirl2014Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 10, nr 8, s. 552-553Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 5.
    Carva, Karel
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Battiato, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Oppeneer, Peter M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Is the controversy over femtosecond magneto-optics really solved?2011Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 7, nr 9, s. 665-665Artikkel i tidsskrift (Fagfellevurdert)
  • 6. Chapman, Henry N.
    et al.
    Barty, Anton
    Bogan, Michael J.
    Boutet, Sebastien
    Frank, Matthias
    Hau-Riege, Stefan P.
    Marchesini, Stefano
    Woods, Bruce W.
    Bajt, Sasa
    Benner, Henry
    London, Richard A.
    Ploenjes, Elke
    Kuhlmann, Marion
    Treusch, Rolf
    Duesterer, Stefan
    Tschentscher, Thomas
    Schneider, Jochen R.
    Spiller, Eberhard
    Moeller, Thomas
    Bostedt, Christoph
    Hoener, Matthias
    Shapiro, David A.
    Hodgson, Keith O.
    van der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Bergh, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Caleman, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Huldt, Gösta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Seibert, Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Maia, Filipe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Lee, Richard W.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Szöke, Abraham
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. Molekylär Biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. Molekylär Biofysik.
    Femtosecond diffractive imaging with a soft-X-ray free-electron laser2006Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 2, nr 12, s. 839-843Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Theory predicts(1-4) that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 x 10(13) W cm(-2) pulse, containing 10(12) photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling(5-9), shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one(10).

  • 7. Chen, Li-Jen
    et al.
    Bhattacharjee, A.
    Puhl-Quinn, P. A.
    Yang, H.
    Bessho, N.
    Imada, S.
    Muehlbachler, S.
    Daly, P. W.
    Lefebvre, B.
    Khotyaintsev, Yuri
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Fazakerley, A.
    Georgescu, E.
    Observation of energetic electrons within magnetic islands2008Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 4, nr 1, s. 19-23Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetic reconnection is the underlying process that releases impulsively an enormous amount of magnetic energy(1) in solar flares(2,3), flares on strongly magnetized neutron stars(4) and substorms in the Earth's magnetosphere(5). Studies of energy release during solar flares, in particular, indicate that up to 50% of the released energy is carried by accelerated 20-100 keV suprathermal electrons(6-8). How so many electrons can gain so much energy during reconnection has been a long-standing question. A recent theoretical study suggests that volume-filling contracting magnetic islands formed during reconnection can produce a large number of energetic electrons(9). Here we report the first evidence of the link between energetic electrons and magnetic islands during reconnection in the Earth's magnetosphere. The results indicate that energetic electron fluxes peak at sites of compressed density within islands, which imposes a new constraint on theories of electron acceleration.

  • 8.
    Diehl, S.
    et al.
    Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria;Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
    Micheli, A.
    Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria;Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
    Kantian, A.
    Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria;Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
    Kraus, B.
    Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria;Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
    Büchler, H. P.
    Institute for Theoretical Physics III, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
    Zoller, P.
    Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria;Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
    Quantum states and phases in driven open quantum systems with cold atoms2008Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 4, nr 11, s. 878-883Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An open quantum system, the time evolution of which is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the coupling between the system and the reservoir. This provides a route towards preparing many-body states and non-equilibrium quantum phases by quantum-reservoir engineering. Here, we discuss the example of a driven dissipative Bose–Einstein condensate of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations and the atomic current represents local dissipation. In the absence of interactions, the lattice gas is driven into a pure state with long-range order. Weak interactions lead to a weakly mixed state, which in three dimensions can be understood as a depletion of the condensate, and in one and two dimensions exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz–Thouless critical phase at finite temperature, with the role of the ’finite temperature’ taken by the interactions.

  • 9.
    Fu, H. S.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Khotyaintsev, Yuri V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Retino, A.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Energetic electron acceleration by unsteady magnetic reconnection2013Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 9, nr 7, s. 426-430Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The mechanism that produces energetic electrons during magnetic reconnection is poorly understood. This is a fundamental process responsible for stellar flares(1,2),substorms(34), and disruptions in fusion experiments(5,6).Observations in the solar chromosphere(1) and the Earth's magnetosphere(7-10) indicate significant electron acceleration during reconnection, whereas in the solar wind, energetic electrons are absent(11). Here we show that energetic electron acceleration is caused by unsteady reconnection. In the Earth's magnetosphere and the solar chromosphere, reconnection is unsteady, so energetic electrons are produced; in the solar wind, reconnection is steady(12), so energetic electrons are absent(11). The acceleration mechanism is quasi-adiabatic: betatron and Fermi acceleration in outflow jets are two processes contributing to electron energization during unsteady reconnection. The localized betatron acceleration in the outflow is responsible for at least half of the energy gain for the peak observed fluxes.

  • 10.
    Fukuhara, Takeshi
    et al.
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Kantian, Adrian
    DPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva.
    Endres, Manuel
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Cheneau, Marc
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Schauß, Peter
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Hild, Sebastian
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Bellem, David
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Schollwöck, Ulrich
    Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany.
    Giamarchi, Thierry
    DPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.
    Gross, Christian
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
    Bloch, Immanuel
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany;Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany.
    Kuhr, Stefan
    Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany;University of Strathclyde, Department of Physics, SUPA, Glasgow G4 0NG, UK.
    Quantum dynamics of a mobile spin impurity2013Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 9, nr 4, s. 235-241Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the elementary processes in quantum magnetism is the propagation of spin excitations. Here we study the quantum dynamics of a deterministically created spin-impurity atom, as it propagates in a one-dimensional lattice system. We probe the spatial probability distribution of the impurity at different times using single-site-resolved imaging of bosonic atoms in an optical lattice. In the Mott-insulating regime, the quantum-coherent propagation of a magnetic excitation in the Heisenberg model can be observed using a post-selection technique. Extending the study to the superfluid regime of the bath, we quantitatively determine how the bath affects the motion of the impurity, showing evidence of polaronic behaviour. The experimental data agree with theoretical predictions, allowing us to determine the effect of temperature on the impurity motion. Our results provide a new approach to studying quantum magnetism, mobile impurities in quantum fluids and polarons in lattice systems.

  • 11.
    Kazakov, Ye. O.
    et al.
    TEC Partner, Lab Plasma Phys, LPP ERM KMS, B-1000 Brussels, Belgium.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Sjöstrand, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Skiba, M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Weiszflog, Matthias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Andersson Sundén, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Binda, F.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Cecconello, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Conroy, Sean
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Dzysiuk, Nataliia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Ericsson, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Eriksson, Jacob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hellesen, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Hjalmarsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Tillämpad kärnfysik.
    Kazantzidis, V.
    Natl Tech Univ Athens, Iroon Politechniou 9, Zografos 15773, Greece.
    Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating2017Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 13, nr 10, s. 973-978Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed three-ion scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of He-3 ions to high energies in dedicated hydrogendeuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast He-3 ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, He-3-rich solar flares.

  • 12.
    Kochukhov, Oleg
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för astronomi och rymdfysik.
    Adelman, S.J.
    Gulliver, A.F.
    Piskunov, Nikolai
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för astronomi och rymdfysik.
    Weather in stellar atmosphere revealed by the dynamics of mercury clouds in alpha Andromedae2007Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 3, nr 8, s. 526-529Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The formation of long-lasting structures at the surfaces of stars is commonly ascribed to the action of strong magnetic fields. This paradigm is supported by observations of evolving cool spots in the Sun and active late-type stars, and stationary chemical spots in the early-type magnetic stars. However, results of our seven-year monitoring of mercury spots in non-magnetic early-type star αAndromedae show that the picture of magnetically driven structure formation is fundamentally incomplete. Using an indirect stellar-surface mapping technique, we construct a series of two-dimensional images of starspots and discover a secular evolution of the mercury cloud cover in this star. This remarkable structure-formation process, observed for the first time in any star, is plausibly attributed to a non-equilibrium, dynamical evolution of the heavy-element clouds created by atomic diffusion, and may have the same underlying physics as the weather patterns on terrestrial and giant planets.

  • 13. Li, Gene-Wei
    et al.
    Berg, Otto G.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för evolution, genomik och systematik, Molekylär evolution.
    Elf, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Bioinformatik.
    Effects of macromolecular crowding and DNA looping on gene regulation kinetics.2009Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 5, nr 4, s. 294-297Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    DNA-binding proteins control how genomes function. The theory of facilitated diffusion(1) explains how DNA-binding proteins can find targets apparently faster than the diffusion limit by using reduced dimensionality(2,3)-combining three-dimensional (3D) diffusion through cytoplasm with 1D sliding along DNA (refs 3-15). However, it does not include a description of macromolecular crowding on DNA as observed in living cells. Here, we show that such a physical constraint to sliding greatly reduces the search speed, in agreement with single-molecule measurements. Interestingly, the generalized theory also reveals significant insights into the design principles of biology. First, it places a hard constraint on the total number of DNA-binding proteins per cell. Remarkably, the number measured for Escherichia coli fits within the optimal range. Secondly, it defines a new role for DNA looping, a ubiquitous topological motif in genomes. DNA looping can speed up the search process by bypassing proteins that block the sliding track close to the target.

  • 14.
    Lindén, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi.
    An early peak in ion channel research2018Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 14, nr 2, s. 105-105Artikkel i tidsskrift (Annet vitenskapelig)
  • 15.
    Nisoli, Cristiano
    et al.
    Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.;Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA..
    Kapaklis, Vassilios
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Schiffer, Peter
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.;Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA..
    Deliberate exotic magnetism via frustration and topology2017Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 13, nr 3, s. 200-203Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Introduced originally to mimic the unusual, frustrated behaviour of spin ice pyrochlores, artificial spin ice can be realized in odd, dedicated geometries that open the door to new manifestations of a higher level of frustration.

  • 16.
    Retinò, Alessandro
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för astronomi och rymdfysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Sundkvist, David
    Vaivads, Andris
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Mozer, F.
    André, Mats
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Owen, C.J.
    In situ evidence of magnetic reconnection in turbulent plasma2007Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 3, nr 4, s. 235-238Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetic reconnection is a universal process leading to energy conversion in plasmas. It occurs in the Solar System, in laboratory plasmas and is important in astrophysics . Reconnection has been observed so far only at large-scale boundaries between different plasma environments . It is not known whether reconnection occurs and is important in turbulent plasmas where many small-scale boundaries can form. Solar and laboratory measurements as well as numerical simulations indicate such possibility. Here we report, for the first time, in situ evidence of reconnection in a turbulent plasma. The turbulent environment is the solar wind downstream of the Earths bow shock. We show that reconnection is fast and electromagnetic energy is converted into heating and acceleration of particles. This has significant implications for laboratory and astrophysical plasmas where both turbulence and reconnection should be common.

  • 17.
    Schoen, Martin A. W.
    et al.
    NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA.;Univ Regensburg, Inst Expt & Appl Phys, D-93053 Regensburg, Germany..
    Thonig, Danny
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Schneider, Michael L.
    NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
    Silva, T. J.
    NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
    Nembach, Hans T.
    NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Karis, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Shaw, Justin M.
    NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
    Ultra-low magnetic damping of a metallic ferromagnet2016Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 12, nr 9, s. 839-842Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom, as damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferro-magnetic materials(1-3). This presents a challenge for a broad range of applications in spintronics(4) and spin-orbitronics that depend on materials and structures with ultra-low dampine(5,6). It is believed that achieving ultra-low damping in metallic ferromagnets is limited by the scattering of magnons by the conduction electrons. However, we report on a binary alloy of cobalt and iron that overcomes this obstacle and exhibits a damping parameter approaching 10(-4), which is comparable to values reported only for ferrimagnetic insulators(7,8). We explain this phenomenon by a unique feature of the band structure in this system: the density of states exhibits a sharp minimum at the Fermi level at the same alloy concentration at which the minimum in the magnetic damping is found. This discovery provides both a significant fundamental understanding of damping mechanisms and a test of the theoretical predictions proposed by Mankovsky and colleagues(3).

  • 18. Tamburini, Fabrizio
    et al.
    Thidé, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutet för rymdfysik, Uppsalaavdelningen.
    Molina-Terriza, Gabriel
    Anzolin, Gabriele
    Twisting of light around rotating black holes2011Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 7, nr 3, s. 195-197Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory(1,2). These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer(3), indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra(4). Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  • 19.
    Villarroel, Beatriz Rodriguez
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Observationell astrofysik.
    Korn, Andreas J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk astrofysik.
    The different neighbours around Type-1 and Type-2 active galactic nuclei2014Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 10, nr 6, s. 417-420Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the most intriguing open issues in galaxy evolution is the structure and evolution of active galactic nuclei (AGN) that emit intense light believed to come from an accretion disk near a super massive black hole(1,2). To understand the zoo of different AGN classes, it has been suggested that all AGN are the same type of object viewed from different angles(3). This model-called AGN unification-has been successful in predicting, for example, the existence of hidden broad optical lines in the spectrum of many narrow-line AGN. But this model is not unchallenged(4) and it is debatable whether more than viewing angle separates the so-called Type-1 and Type-2 AGN. Here we report the first large-scale study that finds strong differences in the galaxy neighbours to Type-1 and Type-2 AGN with data from the Sloan Digital Sky Survey (SDSS; ref. 5) Data Release 7 (DR7; ref. 6) and Galaxy Zoo(7,8). We find strong differences in the colour and AGN activity of the neighbours to Type-1 and Type-2 AGN and in how the fraction of AGN residing in spiral hosts changes depending on the presence or not of a neighbour. These findings suggest that an evolutionary link between the two major AGN types might exist.

  • 20.
    Östman, Erik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Stopfel, Henry
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Chioar, Ioan-Augustin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Arnalds, Unnar B.
    Univ Iceland, Sci Inst, Reykjavik, Iceland.
    Stein, Aaron
    Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
    Kapaklis, Vassilios
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Hjörvarsson, Björgvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialfysik.
    Interaction modifiers in artificial spin ices2018Inngår i: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 14, nr 4, s. 375-379Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order(1-6), collective low-energy dynamics(7,8) and emergent magnetic properties(5,9,10) in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane(11). We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

1 - 20 of 20
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf