uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1234567 1 - 50 of 839
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abdi-Jalebi, Mojtaba
    et al.
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Pazoki, Meysam
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Philippe, Bertrand
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Dar, M. Ibrahim
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, Lausanne, Switzerland.
    Alsari, Mejd
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Sadhanala, Aditya
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Diyitini, Giorgio
    Univ Cambridge, Dept Mat Sci & Met, Charles Babbage Rd, Cambridge, England.
    Imani, Roghayeh
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lilliu, Samuele
    Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England; UAE Ctr Crystallog, Dubai, U Arab Emirates.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Rensmo, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Gratzel, Michael
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, Lausanne, Switzerland.
    Friend, Richard H.
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations2018Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, nr 7, s. 7301-7311Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.

  • 2.
    Adamovic, Nadja
    et al.
    TU Wien, ISAS, Vienna, Austria..
    Asinari, Pietro
    Politecn Torino, Dept Energy, Turin, Italy..
    Goldbeck, Gerhard
    Goldbeck Consulting Ltd, St Johns Innovat Ctr, Cambridge, England..
    Hashibon, Adham
    Fraunhofer Inst Mech Mat IWM, Freiburg, Germany..
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hristova-Bogaerds, Denka
    DPI, Eindhoven, Netherlands..
    Koopmans, Rudolf
    Koopmans Consulting GmbH, Zurich, Switzerland..
    Verbrugge, Tom
    Dow Benelux BV, Hoek, Netherlands..
    Wimmer, Erich
    Mat Design, Le Mans, France..
    European Materials Modelling Council2017Inngår i: Proceedings Of The 4Th World Congress On Integrated Computational Materials Engineering (Icme 2017) / [ed] Mason, P Fisher, CR Glamm, R Manuel, MV Schmitz, GJ Singh, AK Strachan, A, Springer Publishing Company, 2017, s. 79-92Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The aim of the European Materials Modelling Council (EMMC) is to establish current and forward looking complementary activities necessary to bring the field of materials modelling closer to the demands of manufacturers (both small and large enterprises) in Europe. The ultimate goal is that materials modelling and simulation will become an integral part of product life cycle management in European industry, thereby making a strong contribution to enhance innovation and competitiveness on a global level. Based on intensive efforts in the past two years within the EMMC, which included numerous consultation and networking actions with representatives of all stakeholders including Modellers, Software Owners, Translators and Manufacturers in Europe, the EMMC identified and proposed a set of underpinning and enabling actions to increase the industrial exploitation of materials modelling in Europe. EMMC will pursue the following overarching objectives in order to bridge the gap between academic innovation and industrial application: enhance the interaction and collaboration between all stakeholders engaged in different types of materials modelling, including modellers, software owners, translators and manufacturers, facilitate integrated materials modelling in Europe building on strong and coherent foundations, coordinate and support actors and mechanisms that enable rapid transfer of materials modelling from academic innovation to the end users and potential beneficiaries in industry, achieve greater awareness and uptake of materials modelling in industry, in particular SMEs, elaborate Roadmaps that (i) identify major obstacles to widening the use of materials modelling and (ii) elaborate strategies to overcome them.

  • 3.
    Ahlstrand, Emma
    et al.
    Linnus Univ, Dept Chem & Biomed Sci, S-39182 Kalmar, Sweden.;Linnus Univ, Ctr Biomat Chem, S-39182 Kalmar, Sweden..
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Friedman, Ran
    Linnus Univ, Dept Chem & Biomed Sci, S-39182 Kalmar, Sweden.;Linnus Univ, Ctr Biomat Chem, S-39182 Kalmar, Sweden..
    Interaction Energies in Complexes of Zn and Amino Acids: A Comparison of Ab Initio and Force Field Based Calculations2017Inngår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 121, nr 13, s. 2643-2654Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Zinc plays important roles in structural stabilization of proteins, eniyine catalysis, and signal transduction. Many Zn binding sites are located at the interface between the protein and the cellular fluid. In aqueous solutions, Zn ions adopt an octahedral coordination, while in proteins zinc can have different coordinations, with a tetrahedral conformation found most frequently. The dynainics of Zn binding to proteins and the formation of complexes that involve Zn are dictated by interactions between Zn and its binding partners. We calculated the interaction energies between Zn and its ligands in complexes that mimic protein binding sites and in Zn complexes of water and one or two amino acid moieties, using quantum mechanics (QM) and molecular mechanics (MM). It was found that MM calculations that neglect or only approximate polarizability did not reproduce even the relative order of the QM interaction energies in these complexes. Interaction energies calculated with the CHARMM-Diode polarizable force field agreed better with the ab initio results,:although the deviations between QM and MM were still rather large (40-96 kcallmol). In order to gain further insight into Zn ligand interactions, the free energies of interaction were estimated by QM calculations with continuum solvent representation, and we performed energy decomposition analysis calculations to examine the characteristics of the different complexes. The ligand-types were found to have high impact on the relative strength of polarization and electrostatic interactions. Interestingly, ligand ligand interactions did not play a significant role in the binding of Zn. Finally) analysis of ligand exchange energies suggests that carboxylates could be exchanged with water molecules, which explains the flexibility in Zn:binding dynamics. An exchange between earboxylate (Asp/Glii) and imidazole (His) is less likely.

  • 4.
    Ahlstrand, Emma
    et al.
    Linnæus University Centre for Biomaterials Chemistry.
    Spångberg, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Friedman, Ran
    Interaction Energies Between Metal Ions (Zn2+ and Cd2+) and Biologically Relevant Ligands2013Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 113, nr 23, s. 2554-2562Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interactions between the group XII metals Zn2+ and Cd2+ and amino acid residues play an important role in biology due to the prevalence of the first and the toxicity of the second. Estimates of the interaction energies between the ions and relevant residues in proteins are however difficult to obtain. This study reports on calculated interaction energy curves for small complexes of Zn2+ or Cd2+ and amino acid mimics (acetate, methanethiolate, and imidazole) or water. Given that many applications and models (e.g., force fields, solvation models, etc.) begin with and rely on an accurate description of gas-phase interaction energies, this is where our focus lies in this study. Four density functional theory (DFT)-functionals and MP2 were used to calculate the interaction energies not only at the respective equilibrium distances but also at a relevant range of ion–ligand separation distances. The calculated values were compared with those obtained by CCSD(T). All DFT-methods are found to overestimate the magnitude of the interaction energy compared to the CCSD(T) reference values. The deviation was analyzed in terms of energy components from localized molecular orbital energy decomposition analysis scheme and is mostly attributed to overestimation of the polarization energy. MP2 shows good agreement with CCSD(T) [root mean square error (RMSE) = 1.2 kcal/mol] for the eight studied complexes at equilibrium distance. Dispersion energy differences at longer separation give rise to increased deviations between MP2 and CCSD(T) (RMSE = 6.4 kcal/mol at 3.0 Å). Overall, the results call for caution in applying DFT methods to metalloprotein model complexes even with closed-shell metal ions such as Zn2+ and Cd2+, in particular at ion–ligand separations that are longer than the equilibrium distances.

  • 5.
    Aktekin, Burak
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    The Electrochemistry of LiNi0.5-xMn1.5+xO4-δ in Li-ion Batteries: Structure, Side-reactions and Cross-talk2019Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The use of Li-ion batteries in portable electronic products is today widespread and on-going research is extensively dedicated to improve their performance and energy density for use in electric vehicles. The largest contribution to the overall cell weight comes from the positive electrode material, and improvements regarding this component thereby render a high potential for the development of these types of batteries. A promising candidate is LiNi0.5Mn1.5O4 (LMNO), which offers both high power capability and energy density. However, the instability of conventional electrolytes at the high operating potential (~4.7 V vs. Li+/Li) associated with this electrode material currently prevents its use in commercial applications.

    This thesis work aims to investigate practical approaches which have the potential of overcoming issues related to fast degradation of LNMO-based batteries. This, in turn, necessitates a comprehensive understanding of degradation mechanisms. First, the effect of a well-known electrolyte additive, fluoroethylene carbonate is investigated in LNMO-Li4Ti5O12 (LTO) cells with a focus on the positive electrode. Relatively poor cycling performance is found with 5 wt% additive while 1 wt% additive does not show a significant difference as compared to additive-free electrolytes. Second, a more fundamental study is performed to understand the effect of capacity fading mechanisms contributing to overall cell failure in high-voltage based full-cells. Electrochemical characterization of LNMO-LTO cells in different configurations show how important the electrode interactions (cross-talk) can be for the overall cell behaviour. Unexpectedly fast capacity fading at elevated temperatures is found to originate from a high sensitivity of LTO to cross-talk.

    Third, in situ studies of LNMO are conducted with neutron diffraction and electron microscopy. These show that the oxygen release is not directly related to cation disordering. Moreover, microstructural changes upon heating are observed. These findings suggest new sample preparation strategies, which allow the control of cation disorder without oxygen loss. Following this guidance, ordered and disordered samples with the same oxygen content are prepared. The negative effect of ordering on electrochemical performance is investigated and changes in bulk electronic structure following cycling are found in ordered samples, accompanied by thick surface films on surface and rock-salt phase domains near surface.

    Delarbeid
    1. The Effect of the Fluoroethylene Carbonate Additive in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells
    Åpne denne publikasjonen i ny fane eller vindu >>The Effect of the Fluoroethylene Carbonate Additive in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells
    Vise andre…
    2017 (engelsk)Inngår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, nr 4, s. A942-A948Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The effect of the electrolyte additive fluoroethylene carbonate (FEC) for Li-ion batteries has been widely discussed in literature in recent years. Here, the additive is studied for the high-voltage cathode LiNi0.5Mn1.5O4 (LNMO) coupled to Li4Ti5O12 (LTO) to specifically study its effect on the cathode side. Electrochemical performance of full cells prepared by using a standard electrolyte (LP40) with different concentrations of FEC (0, 1 and 5 wt%) were compared and the surface of cycled positive electrodes were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that addition of FEC is generally of limited use for this battery system. Addition of 5 wt% FEC results in relatively poor cycling performance, while the cells with 1 wt% FEC showed similar behavior compared to reference cells prepared without FEC. SEM and XPS analysis did not indicate the formation of thick surface layers on the LNMO cathode, however, an increase in layer thickness with increased FEC content in the electrolyte could be observed. XPS analysis on LTO electrodes showed that the electrode interactions between positive and negative electrodes occurred as Mn and Ni were detected on the surface of LTO already after 1 cycle. (C) The Author(s) 2017. Published by ECS. All rights reserved.

    sted, utgiver, år, opplag, sider
    ELECTROCHEMICAL SOC INC, 2017
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-323509 (URN)10.1149/2.0231706jes (DOI)000400958600056 ()
    Tilgjengelig fra: 2017-06-14 Laget: 2017-06-14 Sist oppdatert: 2019-07-29bibliografisk kontrollert
    2. Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures
    Åpne denne publikasjonen i ny fane eller vindu >>Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures
    Vise andre…
    2018 (engelsk)Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 21, s. 11234-11248Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The high-voltage spinel LiNi0.5Mn1.5O4, (LNMO) is an attractive positive electrode because of its operating voltage around 4.7 V (vs Li/Li+) and high power capability. However, problems including electrolyte decomposition at high voltage and transition metal dissolution, especially at elevated temperatures, have limited its potential use in practical full cells. In this paper, a fundamental study for LNMO parallel to Li4Ti5O12 (LTO) full cells has been performed to understand the effect of different capacity fading mechanisms contributing to overall cell failure. Electrochemical characterization of cells in different configurations (regular full cells, back-to-back pseudo-full cells, and 3-electrode full cells) combined with an intermittent current interruption technique have been performed. Capacity fade in the full cell configuration was mainly due to progressively limited lithiation of electrodes caused by a more severe degree of parasitic reactions at the LTO electrode, while the contributions from active mass loss from LNMO or increases in internal cell resistance were minor. A comparison of cell formats constructed with and without the possibility of cross-talk indicates that the parasitic reactions on LTO occur because of the transfer of reaction products from the LNMO side. The efficiency of LTO is more sensitive to temperature, causing a dramatic increase in the fading rate at 55 degrees C. These observations show how important the electrode interactions (cross-talk) can be for the overall cell behavior. Additionally, internal resistance measurements showed that the positive electrode was mainly responsible for the increase of resistance over cycling, especially at 55 degrees C. Surface characterization showed that LNMO surface layers were relatively thin when compared with the solid electrolyte interphase (SEI) on LTO. The SEI on LTO does not contribute significantly to overall internal resistance even though these films are relatively thick. X-ray absorption near-edge spectroscopy measurements showed that the Mn and Ni observed on the anode were not in the metallic state; the presence of elemental metals in the SEI is therefore not implicated in the observed fading mechanism through a simple reduction process of migrated metal cations.

    sted, utgiver, år, opplag, sider
    American Chemical Society (ACS), 2018
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-357732 (URN)10.1021/acs.jpcc.8b02204 (DOI)000434236700007 ()
    Forskningsfinansiär
    Swedish Energy Agency, 42031-1
    Tilgjengelig fra: 2018-08-31 Laget: 2018-08-31 Sist oppdatert: 2019-07-29bibliografisk kontrollert
    3. Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO): In Situ Neutron Diffraction and Performance in Li Ion Full Cells
    Åpne denne publikasjonen i ny fane eller vindu >>Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO): In Situ Neutron Diffraction and Performance in Li Ion Full Cells
    Vise andre…
    2019 (engelsk)Inngår i: ACS APPLIED ENERGY MATERIALS, ISSN 2574-0962, Vol. 2, nr 5, s. 3323-3335Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Lithium ion cells utilizing LiNi0.5Mn1.5O4 (LNMO) as the positive electrode are prone to fast capacity fading, especially when operated in full cells and at elevated temperatures. The crystal structure of LNMO can adopt a P4(3)32 (cation-ordered) or Fd (3) over barm (disordered) arrangement, and the fading rate of cells is usually mitigated when samples possess the latter structure. However, synthesis conditions leading to disordering also lead to oxygen deficiencies and rock-salt impurities and as a result generate Mn3+. In this study, in situ neutron diffraction was performed on disordered and slightly Mn-rich LNMO samples to follow cation ordering-disordering transformations during heating and cooling. The study shows for the first time that there is not a direct connection between oxygen release and cation disordering, as cation disordering is observed to start prior to oxygen release when the samples are heated in a pure oxygen atmosphere. This result demonstrates that it is possible to tune disordering in LNMO without inducing oxygen deficiencies or forming the rock-salt impurity phase. In the second part of the study, electrochemical testing of samples with different degrees of ordering and oxygen content has been performed in LNMO vertical bar vertical bar LTO (Li4Ti5O12) full cells. The disordered sample exhibits better performance, as has been reported in other studies; however, we observe that all cells behave similarly during the initial period of cycling even when discharged at a 10 C rate, while differences arise only after a period of cycling. Additionally, the differences in fading rate were observed to be time-dependent rather than dependent on the number of cycles. This performance degradation is believed to be related to instabilities in LNMO at higher voltages, that is, in its lower lithiation states. Therefore, it is suggested that future studies should target the individual effects of ordering and oxygen content. It is also suggested that more emphasis during electrochemical testing should be placed on the stability of samples in their delithiated state.

    sted, utgiver, år, opplag, sider
    AMER CHEMICAL SOC, 2019
    Emneord
    high-voltage spinel, neutron diffraction, LNMO, cation ordering, oxygen deficiency
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-387975 (URN)10.1021/acsaem.8b02217 (DOI)000469885300040 ()
    Forskningsfinansiär
    Swedish Energy Agency, 42758-1Swedish Energy Agency, 39043-1StandUp
    Tilgjengelig fra: 2019-06-27 Laget: 2019-06-27 Sist oppdatert: 2019-07-29bibliografisk kontrollert
    4. The role of anionic processes in Li1xNi0.44Mn1.56O4 studied by resonant inelastic X-ray scattering
    Åpne denne publikasjonen i ny fane eller vindu >>The role of anionic processes in Li1xNi0.44Mn1.56O4 studied by resonant inelastic X-ray scattering
    Vise andre…
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-389847 (URN)
    Tilgjengelig fra: 2019-07-29 Laget: 2019-07-29 Sist oppdatert: 2019-08-13
    5. How Mn/Ni ordering controls electrochemical performance in high-voltage spinel LiNi0.44Mn1.56O4 (LNMO) with fixed oxygen content
    Åpne denne publikasjonen i ny fane eller vindu >>How Mn/Ni ordering controls electrochemical performance in high-voltage spinel LiNi0.44Mn1.56O4 (LNMO) with fixed oxygen content
    Vise andre…
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Emneord
    High voltage spinel, LNMO, cation ordering, oxygen deficiency, rock-salt, anionic redox activity
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-389799 (URN)
    Tilgjengelig fra: 2019-07-28 Laget: 2019-07-28 Sist oppdatert: 2019-08-13
  • 6.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brant, William
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Marzano, Fernanda
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO)—In Situ Neutron Diffraction and Performance in Li-Ion Full Cells2018Konferansepaper (Fagfellevurdert)
    Abstract [en]

    LiNi0.5Mn1.5O4 (LNMO) is a promising spinel-type positive electrode for lithium ion batteries as it operates at high voltage and possesses high power capability. However, rapid performance degradation in full cells, especially at elevated temperatures, is a problem. There has been a considerable interest in its crystal structure as this is known to affect its electrochemical performance. LNMO can adopt a P4332 (cation ordered) or Fd-3m (cation disordered) arrangement depending on the synthesis conditions. Most of the studies in literature agree on better electrochemical performance for disordered LNMO [1], however, a clear understanding of the reason for this behaviour is still lacking. This partly arises from the fact that synthesis conditions leading to disordering also lead to oxygen deficiency, rock-salt impurities and therefore generate some Mn3+ [2]. Most commonly, X-ray diffraction is used to characterize these materials, however, accurate structural analysis is difficult due to the near identical scattering lengths of Mn and Ni. This is not the case for neutron diffraction. In this study, an in-situ neutron diffraction heating-cooling experiment was conducted on slightly Mn-rich LNMO under pure oxygen atmosphere in order to investigate relationship between disordering and oxygen deficiency. The study shows for the first time that there is no direct relationship between oxygen loss and cation disordering, as disordering starts prior to oxygen release. Our findings suggest that it is possible to obtain samples with varying degrees of ordering, yet with the same oxygen content and free from impurities. In the second part of the study, highly ordered, partially ordered and fully disordered samples have been tested in LNMO∥LTO (Li4Ti5O12) full cells at 55 °C. It is shown that differences in their performances arise only after repeated cycling, while all the samples behave similarly at the beginning of the test. The difference is believed to be related to instabilities of LNMO at higher voltages, that is, in its lower lithiation states.

    [1] A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 7 (2014) 1339.

    [2] M. Kunduraci, G.G. Amatucci, J. Power Sources. 165 (2007) 359–367.

  • 7.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lacey, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nordh, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tengstedt, Carl
    Scania CV AB, SE-15187 Sodertalje, Sweden.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4-Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2018Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 21, s. 11234-11248Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The high-voltage spinel LiNi0.5Mn1.5O4, (LNMO) is an attractive positive electrode because of its operating voltage around 4.7 V (vs Li/Li+) and high power capability. However, problems including electrolyte decomposition at high voltage and transition metal dissolution, especially at elevated temperatures, have limited its potential use in practical full cells. In this paper, a fundamental study for LNMO parallel to Li4Ti5O12 (LTO) full cells has been performed to understand the effect of different capacity fading mechanisms contributing to overall cell failure. Electrochemical characterization of cells in different configurations (regular full cells, back-to-back pseudo-full cells, and 3-electrode full cells) combined with an intermittent current interruption technique have been performed. Capacity fade in the full cell configuration was mainly due to progressively limited lithiation of electrodes caused by a more severe degree of parasitic reactions at the LTO electrode, while the contributions from active mass loss from LNMO or increases in internal cell resistance were minor. A comparison of cell formats constructed with and without the possibility of cross-talk indicates that the parasitic reactions on LTO occur because of the transfer of reaction products from the LNMO side. The efficiency of LTO is more sensitive to temperature, causing a dramatic increase in the fading rate at 55 degrees C. These observations show how important the electrode interactions (cross-talk) can be for the overall cell behavior. Additionally, internal resistance measurements showed that the positive electrode was mainly responsible for the increase of resistance over cycling, especially at 55 degrees C. Surface characterization showed that LNMO surface layers were relatively thin when compared with the solid electrolyte interphase (SEI) on LTO. The SEI on LTO does not contribute significantly to overall internal resistance even though these films are relatively thick. X-ray absorption near-edge spectroscopy measurements showed that the Mn and Ni observed on the anode were not in the metallic state; the presence of elemental metals in the SEI is therefore not implicated in the observed fading mechanism through a simple reduction process of migrated metal cations.

  • 8.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lacey, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nordh, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tengstedt, Carl
    Scania CV AB.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Understanding the Rapid Capacity Fading of LNMO-LTO Lithium-ion Cells at Elevated Temperature2017Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) has an average operating potential around 4.7 V vs. Li/Li+ and a gravimetric charge capacity of 146 mAh/g making it a promising high energy density positive electrode for Li-ion batteries. Additionally, the 3-D lithium transport paths available in the spinel structure enables fast diffusion kinetics, making it suitable for power applications [1]. However, the material displays large instability during cycling, especially at elevated temperatures. Therefore, significant research efforts have been undertaken to better understand and improve this electrode material.

    Electrolyte (LiPF6 in organic solvents) oxidation and transition metal dissolution are often considered as the main problems [2] for the systems based on this cathode material. These can cause a variety of problems (in different parts of the cell) eventually increasing internal cell resistance, causing active mass loss and decreasing the amount of cyclable lithium.

    Among these issues, cyclable lithium loss cannot be observed in half cells since lithium metal will provide almost unlimited capacity. Being a promising full cell chemistry for high power applications, there has also been a considerable interest on LNMO full cells with Li4Ti5O12 (LTO) used as the negative electrode. For this chemistry, for an optimized cell, quite stable cycling for >1000 cycles has been reported at room temperature while fast fading is still present at 55 °C [3]. This difference in performance (RT vs. 55 °C) is beyond most expectations and likely does not follow any Arrhenius-type of trend.

    In this study, a comprehensive analysis of LNMO-LTO cells has been performed at different temperatures (RT, 40 °C and 55 °C) to understand the underlying reasons behind stable cycling at room temperature and rapid fading at 55 °C. For this purpose, testing was made on regular cells (Figure 1a), 3-electrode cells (Figure 1b) and back-to-back cells [4] (Figure 1c). Electrode interactions (cross-talk) have been shown to exist in the LTO-LNMO system [5] and back-to-back cells have therefore been used to observe fading under conditions where cross-talk is impossible [4]. Galvanostatic cycling combined with short-duration intermittent current interruptions [6] was performed in order to separately observe changes in internal resistance for LNMO and LTO electrodes in a full cell. Ex-situ characterization of electrodes have also been performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES).

    Our findings show how important the electrode interactions can be in full cells, as a decrease in lithium inventory was shown to be the major factor for the observed capacity fading at elevated temperature. In this presentation, the effect of other factors – active mass loss and internal cell resistance – will be discussed together with the consequences of cross-talk.

    References

    [1] A. Kraytsberg et al. Adv. Energy Mater., vol. 2, pp. 922–939,2012.

    [2] J. H. Kim et al., ChemPhysChem, vol. 15, pp. 1940–1954, 2014.

    [3] H. M. Wu et al. J. E. Soc., vol. 156, pp. A1047–A1050, 2009.

    [4] S. R. Li et al., J. E. Soc., vol. 160, no. 9, pp. A1524–A1528, 2013.

    [5] Dedryvère et al. J. Phys. C., vol. 114 (24), pp. 10999–11008, 2010.

    [6] M. J. Lacey, ChemElectroChem, pp. 1–9, 2017.

  • 9.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lacey, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nordh, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tengstedt, Carl
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O(LNMO) is an attractive positive electrode due to its operating voltage around 4.7 V (vs. Li/Li+) arising from the Ni2+/Ni4+ redox couple. In addition to high voltage operation, a second advantage of this material is its capability for fast lithium diffusion kinetics through 3-D transport paths in the spinel structure. However, the electrode material is prone to side reactions with conventional electrolytes, including electrolyte decomposition and transition metal dissolution, especially at elevated temperatures1. It is important to understand how undesired reactions originating from the high voltage spinel affect the aging of different cell components and overall cycle life. Half-cells are usually considered as an ideal cell configuration in order to get information only from the electrode of interest. However, this cell configuration may not be ideal to understand capacity fading for long-term cycling and the assumption of ‘stable’ lithium negative electrode may not be valid, especially at high current rates2. Also, among the variety of capacity fading mechanisms, the loss of “cyclable” lithium from the positive electrode (or gain of lithium from electrolyte into the negative electrode) due to side reactions in a full-cell can cause significant capacity loss. This capacity loss is not observable in a typical half-cell as a result of an excessive reserve of lithium in the negative electrode.

    In a full-cell, it is desired that the negative electrode does not contribute to side reactions in a significant way if the interest is more on the positive side. Among candidates on the negative side, Li4Ti5O12 (LTO) is known for its stability since its voltage plateau (around 1.5 V vs. Li/Li+) is in the electrochemical stability window of standard electrolytes and it shows a very small volume change during lithiation. These characteristics make the LNMO-LTO system attractive for a variety of applications (e.g. electric vehicles) but also make it a good model system for studying aging in high voltage spinel-based full cells.

    In this study, we aim to understand the fundamental mechanisms resulting in capacity fading for LNMO-LTO full cells both at room temperature and elevated temperature (55°C). It is known that electrode interactions occur in this system due to migration of reaction products from LNMO to the LTO side3, 4. For this purpose, three electrode cells have been cycled galvanostatically with short-duration intermittent current interruptionsin order to observe internal resistance for both LNMO and LTO electrodes in a full cell, separately. Change of voltage curves over cycling has also been observed to get an insight into capacity loss. For comparison purposes, back-to-back cells (a combination of LNMO and LTO cells connected electrically by lithium sides) were also tested similarly. Post-cycling of harvested electrodes in half cells was conducted to determine the degree of capacity loss due to charge slippage compared to other aging factors. Surface characterization of LNMO as well as LTO electrodes after cycling at room temperature and elevated temperature has been done via SEM, XPS, HAXPES and XANES.

    References

    1. A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater., vol. 2, pp. 922–939, 2012.

    2. Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. Solid State Ionics, 148(3), 405-416, 2002.

    3. Li et al., Journal of The Electrochemical Society, 160 (9) A1524-A1528, 2013.

    4. Aktekin et al., Journal of The Electrochemical Society 164.4: A942-A948. 2017.

    5. Lacey, M. J., ChemElectroChem. Accepted Author Manuscript. doi:10.1002/celc.201700129, 2017. 

  • 10.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lacey, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nordh, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tengstedt, Carl
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Understanding the capacity loss in LNMO-LTO lithium-ion cells at ambient and elevated temperaturesManuskript (preprint) (Annet vitenskapelig)
    Abstract
  • 11.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Massel, Felix
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Ahmadi, Majid
    Delft University of Technology, Kavli Institute of Nanoscience, Faculty of Applied Sciences.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hahlin, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Zipprich, Wolfgang
    Volkswagen AG.
    Marzano, Fernanda
    Scania CV AB.
    Duda, Laurent
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    How Mn/Ni ordering controls electrochemical performance in high-voltage spinel LiNi0.44Mn1.56O4 (LNMO) with fixed oxygen contentManuskript (preprint) (Annet vitenskapelig)
  • 12.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Smith, Ronald I.
    Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Harwell Campus, Didcot OX11 0QX, Oxon, England.
    Sörby, Magnus H.
    Inst Energy Technol, Dept Neutron Mat Characterizat, POB 40, NO-2027 Kjeller, Norway.
    Marzano, Fernanda Lodi
    Scania CV AB, SE-15187 Sodertalje, Sweden.
    Zipprich, Wolfgang
    Volkswagen AG, D-38436 Wolfsburg, Germany.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brant, William
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO): In Situ Neutron Diffraction and Performance in Li Ion Full Cells2019Inngår i: ACS APPLIED ENERGY MATERIALS, ISSN 2574-0962, Vol. 2, nr 5, s. 3323-3335Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lithium ion cells utilizing LiNi0.5Mn1.5O4 (LNMO) as the positive electrode are prone to fast capacity fading, especially when operated in full cells and at elevated temperatures. The crystal structure of LNMO can adopt a P4(3)32 (cation-ordered) or Fd (3) over barm (disordered) arrangement, and the fading rate of cells is usually mitigated when samples possess the latter structure. However, synthesis conditions leading to disordering also lead to oxygen deficiencies and rock-salt impurities and as a result generate Mn3+. In this study, in situ neutron diffraction was performed on disordered and slightly Mn-rich LNMO samples to follow cation ordering-disordering transformations during heating and cooling. The study shows for the first time that there is not a direct connection between oxygen release and cation disordering, as cation disordering is observed to start prior to oxygen release when the samples are heated in a pure oxygen atmosphere. This result demonstrates that it is possible to tune disordering in LNMO without inducing oxygen deficiencies or forming the rock-salt impurity phase. In the second part of the study, electrochemical testing of samples with different degrees of ordering and oxygen content has been performed in LNMO vertical bar vertical bar LTO (Li4Ti5O12) full cells. The disordered sample exhibits better performance, as has been reported in other studies; however, we observe that all cells behave similarly during the initial period of cycling even when discharged at a 10 C rate, while differences arise only after a period of cycling. Additionally, the differences in fading rate were observed to be time-dependent rather than dependent on the number of cycles. This performance degradation is believed to be related to instabilities in LNMO at higher voltages, that is, in its lower lithiation states. Therefore, it is suggested that future studies should target the individual effects of ordering and oxygen content. It is also suggested that more emphasis during electrochemical testing should be placed on the stability of samples in their delithiated state.

  • 13.
    Aktekin, Burak
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Zipprich, Wolfgang
    Volkswagen AG, Wolfsburg, Germany..
    Tengstedt, Carl
    Scania CV AB, Södertalje..
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    The Effect of the Fluoroethylene Carbonate Additive in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells2017Inngår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, nr 4, s. A942-A948Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of the electrolyte additive fluoroethylene carbonate (FEC) for Li-ion batteries has been widely discussed in literature in recent years. Here, the additive is studied for the high-voltage cathode LiNi0.5Mn1.5O4 (LNMO) coupled to Li4Ti5O12 (LTO) to specifically study its effect on the cathode side. Electrochemical performance of full cells prepared by using a standard electrolyte (LP40) with different concentrations of FEC (0, 1 and 5 wt%) were compared and the surface of cycled positive electrodes were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results show that addition of FEC is generally of limited use for this battery system. Addition of 5 wt% FEC results in relatively poor cycling performance, while the cells with 1 wt% FEC showed similar behavior compared to reference cells prepared without FEC. SEM and XPS analysis did not indicate the formation of thick surface layers on the LNMO cathode, however, an increase in layer thickness with increased FEC content in the electrolyte could be observed. XPS analysis on LTO electrodes showed that the electrode interactions between positive and negative electrodes occurred as Mn and Ni were detected on the surface of LTO already after 1 cycle. (C) The Author(s) 2017. Published by ECS. All rights reserved.

  • 14.
    Alvi, Muhammad Rouf
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Jahn, Burkhard O.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Tibbelin, Julius
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Baumgartner, Judith
    Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria.
    Gómez, Cesar Pay
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Highly Efficient and Convenient Acid Catalyzed Hypersilyl Protection of Alcohols and Thiols by Tris(trimethylsilyl)silyl-N,N-dimethylmethaneamide2012Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    Tris(trimethylsilyl)silyl-N,N-dimethylmethaneamide, herein named hypersilylamide, is a convenient and efficient source of the hypersilyl group in the first widely applicable acid catalyzed protocol for silyl group protection of primary, secondary, tertiary alkyl as well as aryl alcohols and thiols in high yields. The sole by-product is N,N-dimethylformamide (DMF) and a range of solvents can be used, including DMF. A high selectivity in the protection of diols can be achieved, also for diols with very small differences in the steric demands at the two hydroxyl groups. Moreover, in the protection of equivalent alcohol and thiol sites the protection of the alcohol is faster, allowing for selective protection in high yields. Quantum chemical calculations at the M062X hybrid meta density functional theory level give insights on the mechanism for the catalytic process. Finally, the hypersilyl group is easily removed from all protected alcohols and thiols examined herein by irradiation at 254 nm.

  • 15.
    Anaraki, Elham Halvani
    et al.
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland;Isfahan Univ Technol, Dept Mat Engn, Esfahan 8415683111, Iran.
    Kermanpur, Ahmad
    Isfahan Univ Technol, Dept Mat Engn, Esfahan 8415683111, Iran.
    Mayer, Matthew T.
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland;Helmholtz Zentrum Berlin, Young Investigator Grp Electrochem Convers CO2, Hahn Meitner Pl 1, D-14109 Berlin, Germany.
    Steier, Ludmilla
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland;Imperial Coll London, Dept Chem, London SW7 2AZ, England.
    Ahmed, Taha
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Turren-Cruz, Silver-Hamill
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland.
    Seo, Jiyoun
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland.
    Luo, Jingshan
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland.
    Zakeeruddin, Shaik Mohammad
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland;Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland.
    Tress, Wolfgang Richard
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland;Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Graetzel, Michael
    Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland.
    Hagfeldt, Anders
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland.
    Correa-Baena, Juan-Pablo
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photomol Sci, CH-1015 Lausanne, Switzerland;MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
    Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells2018Inngår i: ACS Energy Letters, ISSN 2380-8195, Vol. 3, nr 4, s. 773-778Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Low-temperature planar organic inorganic lead halide perovskite solar cells have been at the center of attraction as power conversion efficiencies go beyond 20%. Here, we investigate Nb doping of SnO2 deposited by a low-cost, scalable chemical bath deposition (CBD) method. We study the effects of doping on compositional, structural, morphological, and device performance when these layers are employed as electron-selective layers (ESLs) in planar-structured PSCs. We use doping concentrations of 0, 1, 5, and 10 mol % Nb to Sn in solution. The ESLs were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and ultraviolet visible spectroscopy. ESLs with an optimum 5 mol % Nb doping yielded, on average, an improvement of all the device photovoltaic parameters with a champion power conversion efficiency of 20.5% (20.1% stabilized).

  • 16.
    Andersson, Anna M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Henningsson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Siegbahn, Hans
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Electrochemically lithiated graphite characterised by photoelectron spectroscopy2003Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 119-121, s. 522-527Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    X-ray photoelectron spectroscopy (XPS) has been used to study the depth profile of the solid–electrolyte interphase (SEI) formed on a graphite powder electrode in a Li-ion battery. The morphology of the SEI-layer, formed in a 1 M LiBF4 EC/DMC 2:1 solution, consists of a 900 Å porous layer of polymers (polyethylene oxide) and a 15–20 Å thin layer of Li2CO3 and LiBF4 reduction–decomposition products. Embedded LiF crystals as large as 0.2 μm were found in the polymer matrix. LiOH and Li2O are not major components on the surface but rather found as a consequence of sputter-related reactions. Monochromatised Al Kα XPS-analysis based on the calibration of Ar+ ion sputtering of model compounds combined with a depth profile analysis based on energy tuning of synchrotron XPS can describe the highly complex composition and morphology of the SEI-layer.

  • 17.
    Andersson, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Synthesis of polycarbonate polymer electrolytes for lithium ion batteries and study of additives to raise the ionic conductivity2015Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
    Abstract [en]

    Polymer electrolyte films based on poly(trimethylene carbonate) (PTMC) mixed with LiTFSI salt in different compositions were synthesized and investigated as electrolytes for lithium ion batteries, where the ionic conductivity is the most interesting material property. Electrochemical impedance spectroscopy (EIS) and DSC were used to measure the ionic conductivity and thermal properties, respectively. Additionally, FTIR and Raman spectroscopy were used to examine ion coordination in the material. Additives of nanosized TiO2 and powders of superionically conducting Li1.3Al0.3Ti1.7(PO4)3 were investigated as enhancers of ionic conductivity, but no positive effect could be shown. The most conductive composition was found at a [Li+]:[carbonate] ratio of 1, corresponding to a salt concentration of 74 percent by weight, which showed an ionic conductivity of 2.0 × 10–6 S cm–1 at 25 °C and 2.2 × 10–5 S cm–1 at 60 °C, whereas for even larger salt concentrations, the mechanical durability of the polymeric material was dramatically reduced, preventing use as a solid electrolyte material. Macroscopic salt crystallization was also observed for these concentrations. Ion coordination to carbonyls on the polymer chain was examined for high salt content compositions with FTIR spectroscopy, where it was found to be relatively similar between the samples, possibly indicating saturation. Moveover, with FTIR, the ion-pairing was found to increase with salt concentration. The ionic conductivity was found to be markedly lower after 7 weeks of aging of the materials with highest salt concentrations.

  • 18.
    Andersson, Matilda
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Högström, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Urbonaite, Sigita
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Furlan, Andrej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Deposition and characterization of magnetron sputtered amorphous Cr-C films2012Inngår i: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 86, nr 9, s. 1408-1416Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thin films in the Cr-C system with carbon content of 25-85 at.% have been deposited using non-reactive DC magnetron sputtering from elemental targets. Analyses with X-ray diffraction and transmission electron microscopy confirm that the films are completely amorphous. Also, annealing experiment show that the films had not crystallized at 500 degrees C. Furthermore, X-ray spectroscopy and Raman spectroscopy show that the films consist of two phases, an amorphous CrCx phase and an amorphous carbon (a-C) phase. The presence of two amorphous phases is also supported by the electrochemical analysis, which shows that oxidation of both chromium and carbon contributes to the total current in the passive region. The relative amounts of these amorphous phases influence the film properties. Typically, lower carbon content with less a-C phase leads to harder films with higher Young's modulus and lower resistivity. The results also show that both films have lower currents in the passive region compared to the uncoated 316L steel substrate. Finally, our results were compared with literature data from both reactively and non-reactively sputtered chromium carbide films. The comparison reveals that non-reactive sputtering tend to favour the formation of amorphous films and also influence e.g. the sp(2)/sp(3) ratio of the a-C phase. 

  • 19.
    Andersson, Matilda
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Urbonaite, Sigita
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lewin, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Magnetron sputtering of Zr-Si-C thin films2012Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, nr 20, s. 6375-6381Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The phase composition and chemical bonding of Zr-C and Zr-Si-C films deposited by magnetron sputtering has been studied. The results show that the binary Zr-C films at higher carbon contents form nanocrystallites of ZrC in an amorphous carbon matrix. The addition of Si induces a complete amorphization of the films above a critical concentration of about 15 at.%. X-ray diffraction and transmission electron microscopy confirm that the amorphous films contain no nanocrystallites and therefore can be described as truly amorphous carbides. The amorphous films are thermally stable but start to crystallize above 500 degrees C. Analysis of the chemical bonding with X-ray photoelectron spectroscopy suggests that the amorphous films exhibit a mixture of different chemical bonds such as Zr-C, Zr-Si and Si-C and that the electrical and mechanical properties are dependent on the distribution of these bonds. For higher carbon contents, strong Si-C bonds are formed in the amorphous Zr-Si-C films making them harder than the corresponding binary Zr-C films.

  • 20.
    Andersson, Rassmus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Silicon-based graphite electrodes for Li-ion batteries2018Independent thesis Basic level (professional degree), 20 poäng / 30 hpOppgave
    Abstract [en]

    The cycling performance of silicon containing graphite electrodes as the anode in lithium-ion batteries has been investigated. Different electrode compositions of silicon, graphite, carbon black, sodium carboxymethylcellulose (CMC-Na), styrene–butadiene rubber (SBR) and using water as the solvent have been prepared and evaluated electrochemically by constant-current-constant-voltage (CCCV) cycling. To understand the impact on the cycling performance of the electrodes, the process parameters in the coating process have been evaluated by rheological measurements of the electrode slurries.

    The highest and most stable capacity was found for the electrode containing 5 wt% silicon (vs. graphite), 3 wt% binder, equal amount of the binders CMC-Na and SBR and 70 wt% solvent in the initial electrode slurry. It showed a stable capacity retention of 360 mAh/g after 315 cycles, before it faded. It was found that the CMC-Na and the solvent have a strong impact on the properties of the electrode slurry and the processing parameters. CMC-Na, the solvent and SBR were also found to be important for the adhesion of the electrode coating on the current collector. The worst cycling performance was obtained for electrodes containing 15 wt% silicon, a solvent amount below 65 wt% and a binder ratio of CMC-Na:SBR below 1:1. Different rheological behaviour for different silicon particles was found to depend on the surface area of the particles.

    Fulltekst tilgjengelig fra 2020-06-01 08:00
  • 21.
    Arkhypchuk, Anna I.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Mihali, Viorica Alina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Ehlers, Andreas
    Lammertsma, Koop
    Ott, Sascha
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Oxaphospholes and Bisphospholes from Phosphinophosphonates and alpha,beta-Unsaturated Ketones2013Inngår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, nr 41, s. 13692-13704Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The reaction of a {W(CO)(5)}-stabilized phosphinophosphonate 1, (CO)(5)WPH(Ph)P(O)(OEt)(2), with ethynyl- (2a-f) and diethynylketones (7-11, 18, and 19) in the presence of lithium diisopropylamide (LDA) is examined. Lithiated 1 undergoes nucleophilic attack in the Michael position of the acetylenic ketones, as long as this position is not sterically encumbered by bulky (iPr)(3)Si substituents. Reaction of all other monoacetylenic ketones with lithiated 1 results in the formation of 2,5-dihydro-1,2-oxaphospholes 3 and 4. When diacetylenic ketones are employed in the reaction, two very different product types can be isolated. If at least one (Me)(3)Si or (Et)(3)Si acetylene terminus is present, as in 7, 8, and 19, an anionic oxaphosphole intermediate can react further with a second equivalent of ketone to give cumulene-decorated oxaphospholes 14, 15, 24, and 25. Diacetylenic ketones 10 and 11, with two aromatic acetylene substituents, react with lithitated 1 to form exclusively ethenyl-bridged bisphospholes 16 and 17. Mechanisms that rationalize the formation of all heterocycles are presented and are supported by DFT calculations. Computational studies suggest that thermodynamic, as well as kinetic, considerations dictate the observed reactivity. The calculated reaction pathways reveal a number of almost isoenergetic intermediates that follow after ring opening of the initially formed oxadiphosphetane. Bisphosphole formation through a carbene intermediate G is greatly favored in the presence of phenyl substituents, whereas the formation of cumulene-decorated oxaphospholes is more exothermic for the trimethylsilyl-containing substrates. The pathway to the latter compounds contains a 1,3-shift of the group that stems from the acetylene terminus of the ketone substrates. For silyl substituents, the 1,3-shift proceeds along a smooth potential energy surface through a transition state that is characterized by a pentacoordinated silicon center. In contrast, a high-lying transition state TS(E-F)(R=Ph) of 37kcalmol(-1) is found when the substituent is a phenyl group, thus explaining the experimental observation that aryl-terminated diethynylketones 10 and 11 exclusively form bisphospholes 16 and 17.

  • 22.
    Asfaw, Habtom D.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Maibach, Julia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Ångström, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tai, Cheuk-Wai
    Bacsik, Zoltan
    Sahlberg, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Boosting the thermal stability of emulsion–templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams2016Inngår i: ChemistrySelect, ISSN 2365-6549, Vol. 1, nr 4, s. 784-792Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hierarchically porous carbon foams with specific surface areas exceeding 600 m2 g−1 can be derived from polystyrene foams that are synthesized via water-in-oil emulsion templating. However, most styrene-based polymers lack strong crosslinks and are degraded to volatile products when heated above 400 oC. A common strategy employed to avert depolymerization is to introduce potential crosslinking sites such as sulfonic acids by sulfonating the polymers. This article unravels the thermal and chemical processes leading up to the conversion of sulfonated high internal phase emulsion polystyrenes (polyHIPEs) to sulfur containing carbon foams. During pyrolysis, the sulfonic acid groups (-SO3H) are transformed to sulfone (-C-SO2-C-) and then to thioether (-C−S-C-) crosslinks. These chemical transformations have been monitored using spectroscopic techniques: in situ IR, Raman, X-ray photoelectron and X-ray absorption near edge structure spectroscopy. Based on thermal analyses, the formation of thioether links is associated with increased thermal stability and thus a substantial decrease in volatilization of the polymers.

  • 23.
    Asfaw, Habtom Desta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Multifunctional Carbon Foams by Emulsion Templating: Synthesis, Microstructure, and 3D Li-ion Microbatteries2017Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Carbon foams are among the existing electrode designs proposed for use in 3D Li-ion microbatteries. For such electrodes to find applications in practical microbatteries, however, their void sizes, specific surface areas and pore volumes need be optimized. This thesis concerns the synthesis of highly porous carbon foams and their multifunctional applications in 3D microbatteries. The carbon foams are derived from polymers that are obtained by polymerizing high internal phase water-in-oil emulsions (HIPEs).

    In general, the carbonization of the sulfonated polymers yielded hierarchically porous structures with void sizes ranging from 2 to 35 µm and a BET specific surface area as high as 630 m2 g-1. Thermogravimetric and spectroscopic evidence indicated that the sulfonic acid groups, introduced during sulfonation, transformed above 250 oC to thioether (-C-S-) crosslinks which were responsible for the thermal stability and charring tendency of the polymer precursors. Depending on the preparation of the HIPEs, the specific surface areas and void-size distributions were observed to vary considerably. In addition, the pyrolysis temperature could also affect the microstructures, the degree of graphitization, and the surface chemistry of the carbon foams.

    Various potential applications were explored for the bespoke carbon foams. First, their use as freestanding active materials in 3D microbatteries was studied. The carbon foams obtained at 700 to 1500 oC suffered from significant irreversible capacity loss during the initial discharge. In an effort to alleviate this drawback, the pyrolysis temperature was raised to 2200 oC. The resulting carbon foams were observed to deliver high, stable areal capacities over several cycles. Secondly, the possibility of using these structures as 3D current collectors for various active materials was investigated in-depth. As a proof-of-concept demonstration, positive active materials like polyaniline and LiFePO4 were deposited on the 3D architectures by means of electrodeposition and sol-gel approach, respectively. In both cases, the composite electrodes exhibited reasonably high cyclability and rate performance at different current densities. The syntheses of niobium and molybdenum oxides and their potential application as electrodes in microbatteries were also studied. In such applications, the carbon foams served dual purposes as 3D scaffolds and as reducing reactants in the carbothermal reduction process. Finally, a facile method of coating carbon substrates with oxide nanosheets was developed. The approach involved the exfoliation of crystalline VO2 to prepare dispersions of hydrated V2O5, which were subsequently cast onto CNT paper to form oxide films of different thicknesses.

    Delarbeid
    1. Boosting the thermal stability of emulsion–templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams
    Åpne denne publikasjonen i ny fane eller vindu >>Boosting the thermal stability of emulsion–templated polymers via sulfonation: an efficient synthetic route to hierarchically porous carbon foams
    Vise andre…
    2016 (engelsk)Inngår i: ChemistrySelect, ISSN 2365-6549, Vol. 1, nr 4, s. 784-792Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Hierarchically porous carbon foams with specific surface areas exceeding 600 m2 g−1 can be derived from polystyrene foams that are synthesized via water-in-oil emulsion templating. However, most styrene-based polymers lack strong crosslinks and are degraded to volatile products when heated above 400 oC. A common strategy employed to avert depolymerization is to introduce potential crosslinking sites such as sulfonic acids by sulfonating the polymers. This article unravels the thermal and chemical processes leading up to the conversion of sulfonated high internal phase emulsion polystyrenes (polyHIPEs) to sulfur containing carbon foams. During pyrolysis, the sulfonic acid groups (-SO3H) are transformed to sulfone (-C-SO2-C-) and then to thioether (-C−S-C-) crosslinks. These chemical transformations have been monitored using spectroscopic techniques: in situ IR, Raman, X-ray photoelectron and X-ray absorption near edge structure spectroscopy. Based on thermal analyses, the formation of thioether links is associated with increased thermal stability and thus a substantial decrease in volatilization of the polymers.

    Emneord
    Emulsion-templated polymer, sulfonation, pyrolysis, spectroscopy, carbon foam
    HSV kategori
    Forskningsprogram
    Kemi med inriktning mot materialkemi
    Identifikatorer
    urn:nbn:se:uu:diva-283174 (URN)10.1002/slct.201600139 (DOI)000395395900026 ()
    Prosjekter
    3D microbatteries
    Tilgjengelig fra: 2016-04-11 Laget: 2016-04-11 Sist oppdatert: 2017-10-30bibliografisk kontrollert
    2. Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries
    Åpne denne publikasjonen i ny fane eller vindu >>Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries
    2013 (engelsk)Inngår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 1, nr 44, s. 13750-13758Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    High surface area carbon foams were prepared and characterized for use in 3D structured batteries. Twopotential applications exist for these foams: firstly as an anode and secondly as a current collector supportfor electrode materials. The preparation of the carbon foams by pyrolysis of a high internal phase emulsionpolymer (polyHIPE) resulted in structures with cage sizes of 25 mm and a surface area enhancement pergeometric area of approximately 90 times, close to the optimal configuration for a 3D microstructuredbattery support. The structure was probed using XPS, SEM, BET, XRD and Raman techniques; revealingthat the foams were composed of a disordered carbon with a pore size in the <100 nm range resultingin a BET measured surface area of 433 m2 g-1. A reversible capacity exceeding 3.5 mA h cm2 at acurrent density of 0.37 mA cm-2 was achieved. SEM images of the foams after 50 cycles showed thatthe structure suffered no degradation. Furthermore, the foams were tested as a current collector bydepositing a layer of polyaniline cathode over their surface. High footprint area capacities of500 mA h cm-2 were seen in the voltage range 3.8 to 2.5 V vs. Li and a reasonable rate performancewas observed.

    sted, utgiver, år, opplag, sider
    United Kingdom: , 2013
    Emneord
    Carbon foam, High internal phase emulsion polymer, microbattery, 3D microbattery, Lithium ion
    HSV kategori
    Forskningsprogram
    Materialvetenskap; Kemi; Materialvetenskap; Fysikalisk kemi
    Identifikatorer
    urn:nbn:se:uu:diva-210659 (URN)10.1039/C3TA12680C (DOI)000326463400009 ()
    Prosjekter
    STEM-VR-Microbattery
    Forskningsfinansiär
    Swedish Energy AgencySwedish Research Council
    Tilgjengelig fra: 2013-11-12 Laget: 2013-11-12 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    3. Emulsion-templated graphitic carbon foams with optimum porosity for 3D Li-ion microbatteries
    Åpne denne publikasjonen i ny fane eller vindu >>Emulsion-templated graphitic carbon foams with optimum porosity for 3D Li-ion microbatteries
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Emneord
    carbon, foam, graphitic, anode, three-dimensional, microbattery, lithium
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-312893 (URN)
    Forskningsfinansiär
    Swedish Research Council, 2012–4681StandUp
    Tilgjengelig fra: 2017-01-14 Laget: 2017-01-14 Sist oppdatert: 2017-12-30
    4. Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance
    Åpne denne publikasjonen i ny fane eller vindu >>Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance
    Vise andre…
    2014 (engelsk)Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, nr 15, s. 8804-8813Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.

    sted, utgiver, år, opplag, sider
    Royal Society of Chemistry: , 2014
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-228630 (URN)10.1039/C4NR01682C (DOI)000339861500051 ()
    Prosjekter
    STEM-VR-Microbattery
    Tilgjengelig fra: 2014-07-18 Laget: 2014-07-18 Sist oppdatert: 2017-12-05bibliografisk kontrollert
    5. Surface-oxidized NbO2 nanoparticles for high performance lithium microbatteries
    Åpne denne publikasjonen i ny fane eller vindu >>Surface-oxidized NbO2 nanoparticles for high performance lithium microbatteries
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Emneord
    niobium, oxide, nanoparticle, power, energy, carbon, foam, lithium, microbattery
    HSV kategori
    Forskningsprogram
    Kemi med inriktning mot materialkemi
    Identifikatorer
    urn:nbn:se:uu:diva-312894 (URN)
    Prosjekter
    3D Lithium-ion microbattery
    Forskningsfinansiär
    Swedish Research Council, 2012–4681StandUp
    Tilgjengelig fra: 2017-01-14 Laget: 2017-01-14 Sist oppdatert: 2017-12-30
    6. A one-step water based strategy for synthesizing hydrated vanadium pentoxide nanosheets from VO2(B) as free-standing electrodes for lithium battery applications
    Åpne denne publikasjonen i ny fane eller vindu >>A one-step water based strategy for synthesizing hydrated vanadium pentoxide nanosheets from VO2(B) as free-standing electrodes for lithium battery applications
    Vise andre…
    2016 (engelsk)Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, nr 46, s. 17988-18001Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The synthesis of two dimensional (2D) materials from transition metal oxides, chalcogenides, and carbides mostly involve multiple exfoliation steps in which hazardous solvents and reagents are used. In this study, hydrated vanadium pentoxide (V2O5[middle dot]nH2O) nanosheets with a thickness of a few nanometers were prepared via a facile environmentally friendly water based exfoliation technique. The exfoliation process involved refluxing the precursor, vanadium dioxide (VO2(B)), in water for a few days at 60 [degree]C. The proposed exfoliation mechanism is based on the intercalation/insertion of water molecules into the VO2(B) crystals and the subsequent cleavage of the covalent bonds holding the layers of VO2(B) together. The thermal and chemical analyses showed that the approximate chemical composition of the nanosheets is H0.4V2O5[middle dot]0.55H2O, and the percentage of VV content to that of VIV in the nanosheets is about 80(3)% to 20(3)%. The exfoliated aqueous suspension of the V2O5[middle dot]0.55H2O nanosheets was successfully deposited onto multi-walled carbon nanotube (MW-CNT) paper to form free-standing electrodes with a thickness of the V2O5[middle dot]0.55H2O layer ranging between 45 and 4 [small mu ]m. A series of electrochemical tests were conducted on the electrodes to determine the cyclability and rate capability of lithium insertion into V2O5[middle dot]0.55H2O nanosheets. The electrodes with the thinnest active material coating ([similar]4 [small mu ]m) delivered gravimetric capacities of up to 480 and 280 mA h g-1 when cycled at current densities of 10 and 200 mA g-1, respectively.

    Emneord
    2D materials, vanadium oxides, free-standing, battery, lithium
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-311357 (URN)10.1039/C6TA06571F (DOI)000388505400010 ()
    Forskningsfinansiär
    Swedish Research Council, 2012-4681Swedish Energy AgencyBerzelii Centre EXSELENTStandUp
    Tilgjengelig fra: 2016-12-24 Laget: 2016-12-24 Sist oppdatert: 2017-12-30
  • 24.
    Asfaw, Habtom Desta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Kotronia, Antonia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tai, Cheuk-Wai
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Tailoring the Microstructure and Electrochemical Performance of 3D Microbattery Electrodes Based on Carbon Foams2019Inngår i: Energy Technology, ISSN 0829-7681, E-ISSN 2057-4215Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three‐dimensional (3D) carbon electrodes with suitable microstructural features and stable electrochemical performance are required for practical applications in 3D lithium (Li)‐ion batteries. Herein, the optimization of the microstructures and electrochemical performances of carbon electrodes derived from emulsion‐templated polymer foams are dealt with. Exploiting the rheological properties of the emulsion precursors, carbon foams with variable void sizes and specific surface areas are obtained. Carbon foams with an average void size of around 3.8 μm are produced, and improvements are observed both in the coulombic efficiency and the cyclability of the carbon foam electrodes synthesized at 2200 °C. A stable areal capacity of up to 1.22 mAh cm−2 (108 mAh g−1) is achieved at a current density of 50 μA cm−2. In addition, the areal capacity remains almost unaltered, i.e., 1.03 mAh cm−2 (91 mAh g−1), although the cycling current density increases to 500 μA cm−2 indicating that the materials are promising for power demanding applications.

  • 25.
    Asfaw, Habtom Desta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Roberts, Matthew R.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Tai, Cheuk-Wai
    Stockholm University.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. DTU.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance2014Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, nr 15, s. 8804-8813Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol–gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm−2 at 0.1 mA cm−2 (lowest rate) and 1.1 mA h cm−2 at 6 mA cm−2(highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.

  • 26.
    Asfaw, Habtom Desta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Roberts, Matthew R.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. St. Andrews.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. DTU.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries2013Inngår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 1, nr 44, s. 13750-13758Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High surface area carbon foams were prepared and characterized for use in 3D structured batteries. Twopotential applications exist for these foams: firstly as an anode and secondly as a current collector supportfor electrode materials. The preparation of the carbon foams by pyrolysis of a high internal phase emulsionpolymer (polyHIPE) resulted in structures with cage sizes of 25 mm and a surface area enhancement pergeometric area of approximately 90 times, close to the optimal configuration for a 3D microstructuredbattery support. The structure was probed using XPS, SEM, BET, XRD and Raman techniques; revealingthat the foams were composed of a disordered carbon with a pore size in the <100 nm range resultingin a BET measured surface area of 433 m2 g-1. A reversible capacity exceeding 3.5 mA h cm2 at acurrent density of 0.37 mA cm-2 was achieved. SEM images of the foams after 50 cycles showed thatthe structure suffered no degradation. Furthermore, the foams were tested as a current collector bydepositing a layer of polyaniline cathode over their surface. High footprint area capacities of500 mA h cm-2 were seen in the voltage range 3.8 to 2.5 V vs. Li and a reasonable rate performancewas observed.

  • 27.
    Asfaw, Habtom Desta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tai, Cheuk-Wai
    Stockholm University.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Emulsion-templated graphitic carbon foams with optimum porosity for 3D Li-ion microbatteriesManuskript (preprint) (Annet vitenskapelig)
  • 28.
    Asfaw, Habtom Desta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tai, Cheuk-Wai
    Stockholm Univ, Arrhenius Lab, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Over-Stoichiometric NbO2 Nanoparticles for a High Energy and Power Density Lithium Microbattery2017Inngår i: CHEMNANOMAT, ISSN 2199-692X, Vol. 3, nr 9, s. 646-655Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Effective utilization of active materials in microbatteries can be enhanced by rational design of the electrodes. There is an increasing trend of using 3D electrodes that are coated in nanosized active materials to boost both energy and power densities. This article focuses on the fabrication of 3D electrodes based on monolithic carbon foams coated in over-stoichiometric NbO2 nanoparticles. The electrodes exhibit remarkable energy and power densities at various current densities when tested in lithium microbatteries. An areal capacity of around 0.7mAhcm(-2) and energy density up to 45mWhcm(-3) have been achieved. More than half of the areal capacity can be accessed at a current density of about 11mAcm(-2), with the corresponding energy and power densities being 21mWhcm(-3) and 1349mWcm(-3). These values are comparable to those of microsupercapacitors containing carbon and MnO2 nanomaterials. Furthermore, the electrochemical reversibility improves progressively upon cycling along with substantial increase in the charge transfer kinetics of the electrode. Based on impedance analyses almost a fourfold decrease in the charge transfer resistance has been observed over 25 cycles. Such enhancement of the electronic properties of NbO2 can account for the high electrochemical rate performance of the 3D electrodes.

  • 29.
    Asfaw, Habtom Desta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tai, Cheuk-Wai
    Stockholm University.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Surface-oxidized NbO2 nanoparticles for high performance lithium microbatteriesManuskript (preprint) (Annet vitenskapelig)
  • 30.
    Asfaw, Habtom
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Tai, Cheuk-Wai
    Stockholm University.
    Nyholm, Leif
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Surface-oxidized NbO2 nanoparticles for high performance lithium microbatteriesManuskript (preprint) (Annet vitenskapelig)
  • 31.
    Bakó, Imre
    et al.
    Hungarian Academy of Sciences, Budapest, Hungary.
    Lábas, Anikó
    Budapest University of Technology and Economics, Budapest, Hungary.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Oláh, Julianna
    Budapest University of Technology and Economics, Budapest, Hungary.
    How can we detect hydrogen bond local cooperativity in liquid water: A simulation study2017Inngår i: Journal of Molecular Liquids, ISSN 0167-7322, E-ISSN 1873-3166, Vol. 245, s. 140-146Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The significant cooperative effect between water molecules substantially affects the properties of liquid water. The cooperativity of hydrogen bonds means that the hydrogen bond strength is influenced by the neighboring water molecules. Another descriptor related to cooperativity is degree correlation (or static correlation) describing the probability of hydrogen-bonded molecule pairs participating in additional hydrogen-bonds. Herein we analyze the latter one in liquid water at various temperatures and densities in a series of molecular dynamics simulations with the help of knowledge from network science. We investigated how the applied hydrogen bond criteria (energetic or geometric) influence the obtained results, and showed that the energetic criterion is much more rigorous and reliable, therefore should be used for similar studies. We found that the structure of the subsystems of water molecules with 3 and 4 hydrogen-bonds is distinctly different at low temperature, 3‑hydrogen-bonded water molecules form branched chain structures at all temperature. Deconvolution of the descriptors of the mixing pattern of water molecules according to their donor and acceptor numbers showed that species with complementary hydrogen bonding properties are likely to correlate and form H-bonds with each other, while species with similar H-bond pattern tend to avoid each other. Pearson's coefficient (global descriptor of the local cooperativity) of the studied networks suggests that at normal density the H-bonded network in liquid water can be described by an uncorrelated network.

  • 32.
    Barcaro, Giovanni
    et al.
    CNR, IPCF, Inst Chem & Phys Proc, Via G Moruzzi 1, I-56124 Pisa, Italy.
    Sernenta, Luca
    CNR, IPCF, Inst Chem & Phys Proc, Via G Moruzzi 1, I-56124 Pisa, Italy.
    Monti, Susanna
    CNR, ICCOM, Inst Chem Organometall Cpds, Via G Moruzzi 1, I-56124 Pisa, Italy.
    Carravetta, Vincenzo
    CNR, IPCF, Inst Chem & Phys Proc, Via G Moruzzi 1, I-56124 Pisa, Italy.
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Kullgren, Jolla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hermansson, Kersti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Dynamical and Structural Characterization of the Adsorption of Fluorinated Alkane Chains onto CeO22018Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 41, s. 23405-23413Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The widespread use of ceria-based materials and the need to design suitable strategies to prepare eco-friendly CeO2 supports for effective catalytic screening induced us to extend our computational multiscale protocol to the modeling of the hybrid organic/oxide interface between prototypical fluorinated linear alkane chains (polyethylene-like oligomers) and low-index ceria surfaces. The combination of quantum chemistry calculations and classical reactive molecular dynamics simulations provides a comprehensive picture of the interface and discloses, at the atomic level, the main causes of typical adsorption modes. The data show that at room temperature. a moderate. percentage` of fluorine atoms (around 25%) can enhance the interaction of the organic chains by anchoring strongly pivotal fluorines to the channels of the underneath ceria (100) surface, whereas an excessive content can remarkably reduce this interaction because of the repulsion between fluorine and the negatively charged oxygen of the surface.

  • 33.
    Behrouznejad, F.
    et al.
    Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 14588, Iran..
    Taghavinia, N.
    Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 14588, Iran.;Sharif Univ Technol, Dept Phys, Tehran 14588, Iran..
    Pazoki, Meysam
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Tajabadi, F.
    Mat & Energy Res Ctr, Nanotechnol & Adv Mat Dept, Karaj 31787316, Iran..
    Metal-based bracken-like single-sided dye-sensitized solar cells with horizontal separation2016Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, nr 7, s. 5244-5252Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the drawbacks of typical dye-sensitized solar cells (DSCs) is their high cost and the high electrical resistance of the transparent conducting substrate. In conventional sandwich-type DSCs, only one of the FTO substrates can be replaced by a metal substrate. We investigated an all-metal-electrode single-sided DSC in which interpenetrated bracken-like Cr electrodes were created using photolithography; mesoporous TiO2 and Pt films were deposited on the laterally separated electrodes. Thermal Pt deposition and electrodeposition methods were investigated and it was found that a cyclic electrodeposition method resulted in selective Pt deposition at room temperature with a higher device performance. Cu or ZnO sacrificial layers and TiO2 or TiO2/SiO2 porous layers were used for the spacer layer that keeps the Pt electrode away from the TiO2 mesoporous layer and the optimum results were obtained when a TiO2/SiO2 layer was used. The best device had a current density of 8.47 mA cm(-2), an open circuit voltage of 0.685 V and an efficiency of 2.44%. The results of open circuit voltage decay and electrochemical impedance spectrometry showed the formation of a high-resistivity blocking layer, which was attributed to the Cr oxide formed during thermal treatment. The efficiency may be improved further by developing low-temperature fabrication processes.

  • 34.
    Beinik, Igor
    et al.
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark..
    Hellström, Matti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Jensen, Thomas N.
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark..
    Broqvist, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lauritsen, Jeppe V.
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark..
    Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies2015Inngår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, artikkel-id 8845Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Metal adhesion on metal oxides is strongly controlled by the oxide surface structure and composition, but lack of control over the surface conditions often limits the possibilities to exploit this in opto- and micro-electronics applications and heterogeneous catalysis where nanostructural control is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface- directed migration of subsurface defects affects the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies that defect concentrations in the bulk are an important, and possibly controllable, parameter for the metal-on-oxide growth.

  • 35.
    Bengtsson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Investigation of Galvanic Corrosion between Graphite Gaskets and Stainless Steel Flanges2015Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
    Abstract [en]

    At Forsmark, several cases of suspected galvanic corrosion have been detected and

    believed to be caused by an inappropriate use of graphite gaskets in brackish water.

    This report studies the likelihood of galvanic corrosion between the graphite gasket

    and stainless steels and aims to be a reference when investigating galvanic corrosion in

    the future. To evaluate galvanic corrosion, several electrochemical experiments were

    studied, such as galvanic series, polarization curves, and galvanic current

    measurements with a ZRA.

    The electrochemical results showed that when immersing the stainless steel (254

    SMO) and the graphite gasket (Novatec) into brackish water, there was a current

    flowing between the electrodes. However, the current was very small, which could be

    explained by the protection from a passive film on the stainless steel. The difference

    in corrosion potential between the two materials was measured and compared to

    results from polarization curves. It appeared that 254 SMO would be protected by a

    passive film at the measured potential. Galvanic current measurements also indicated

    the presence of a passive film under the investigated conditions.

    The results indicate that galvanic corrosion itself should not have caused the

    corrosion attacks at Forsmark. The found corrosion is more likely due to crevice

    corrosion that was accelerated by the combination of a crevice, a welded flange

    surface, chlorides in water and possibly a graphite gasket.

  • 36.
    Berastegui, Pedro
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Tai, Cheuk-Wai
    Stockholm University.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries2018Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 401, s. 386-396Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    AgFeO2 nanoparticles synthesized via precipitation at room temperature are investigated in Li- and Na-ion cells through electrode coatings with an alginate binder. The electrochemical reactions of AgFeO2 with Li+ and Na+ions, as well as its role as alternative negative electrode in these cell systems are carefully evaluated. Initial Li uptake causes irreversible amorphization of the AgFeO2 structure with concomitant formation of Ag0 nanoparticles. Further Li incorporation results in conversion into Fe0 nanoparticles and Li2O, together with Li-alloying of these Ag0 clusters. Similar mechanisms are also found upon Na uptake, although such processes are hindered by overpotentials, the capacity and reversibility of the reactions with Na+ ions being not comparablewith those of their Li+ counterparts. The behaviour of AgFeO2 at low potentials vs. Li+/Li displays a synergic pseudo-capacitive charge storage overlapping Li-Ag alloying/de-alloying. This feature is exploited in full cells having deeply lithiated AgFeO2 and LiFePO4 as negative and positive electrodes, respectively. These environmentally friendly iron-based full cells exhibit attractive cycle performances with ≈80% capacity retention after 1000 cycles without any electrolyte additive, average round trip efficiency of ≈89% and operational voltage of 3.0 V combined with built-in pseudo-capacitive characteristics that enable high cycling rates up to≈25C.

  • 37.
    Bergfelt, Andreas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Lacey, Matthew J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hedman, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Sångeland, Christofer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Bowden, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization2018Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, nr 30, s. 16716-16725Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, three types of polymers based on epsilon-caprolactone have been synthesized: poly(epsilon-caprolactone), polystyrene-poly(epsilon-caprolactone), and polystyrene-poly(epsilon-caprolactone-r-trimethylene carbonate) (SCT), where the polystyrene block was introduced to improve the electrochemical and mechanical performance of the material. Solid polymer electrolytes (SPEs) were produced by blending the polymers with 10-40 wt% lithium bis(trifluoromethane) sulfonimide (LiTFSI). Battery devices were thereafter constructed to evaluate the cycling performance. The best performing battery half-cell utilized an SPE consisting of SCT and 17 wt% LiTFSI as both binder and electrolyte; a Li vertical bar SPE vertical bar LiFePO4 cell that cycled at 40 degrees C gave a discharge capacity of about 140 mA h g(-1) at C/5 for 100 cycles, which was superior to the other investigated electrolytes. Dynamic mechanical analysis (DMA) showed that the storage modulus E' was about 5 MPa for this electrolyte.

  • 38.
    Bergfelt, Andreas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Mogensen, Ronnie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Lacey, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Guiomar, Hernández
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Bowden, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Mechanically Robust and Highly Conductive Di-Block Copolymers as Solid Polymer Electrolytes for Room Temperature Li-ion Batteries2018Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Alternative solid polymer electrolytes (SPEs) hosts to the archetype poly(ethylene oxide) are gaining attention thanks to their appealing properties, such as higher cation transport number, thermal stability and electrochemical stability [1]. In addition, high mechanical stability is required in order to integrate easy-to-use materials into flexible or ‘structural’ batteries [2, 3].

     In this work, a solid polymer electrolyte (SPE) featuring high ionic conductivity and mechanical robustness at room temperature is presented. The SPE consists of a di-block copolymer, poly(benzyl methacrylate)-poly(ε-caprolactone-r-trimethylene carbonate) (BCT), mixed with different loadings of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest ionic conductivity achieved for these SPEs was found with 16.7 wt% LiTFSI loading (BCT17), reaching 9.1 x 10-6 S cm-1 at 30 °C. The limited current fraction (F+) for the BCT17 electrolyte was calculated to be 0.64 with the Bruce-Vincent method. Furthermore, dynamic mechanical analysis showed a storage modulus (E’) of 0.2 GPa below 40 °C and 1 MPa above 50 °C. These results indicate that BCT with LiTFSI is a competitive electrolyte, combining high ionic conductivity and modulus at ambient temperatures.

     LiFePO4|BCT17|Li half-cells showed good cycling performance at 60 °C. At 30 °C, where the SPE possessed significantly higher modulus, decent cell performance could still be achieved after several optimization steps. These included incorporating a SPE as binder, and infiltration cast the SPE on the electrode to maximize the contact between both components, thereby improving the interfacial contact and decreasing the cell resistance and overpotential when cycling the battery device.

     References

    [1] J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell. Prog Polym Sci, (2018). DOI: 10.1016/j.progpolymsci.2017.12.004.

    [2] J.F. Snyder, R.H. Carter, E.D. Wetzel. Chem Mater, 19 (2007) 3793-801.

    [3] W.S. Young, W.F. Kuan, Thomas H. Epps. J Polym Sci, Part B: Polym Phys, 52 (2014) 1-16.

  • 39.
    Bergfelt, Andreas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Rubatat, Laurent
    CNRS/UNIV Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l´ Environnement et les Materiaux, Pau, France.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Bowden, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Poly(benzyl methacrylate)-Poly[(oligo ethylene glycol) methyl ether methacrylate] Triblock-Copolymers as Solid Electrolyte for Lithium Batteries2018Inngår i: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 321, s. 55-61Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A triblock copolymer of benzyl methacrylate and oligo(ethylene glycol) methyl ether methacrylate was polymerized to form the general structure PBnMA-POEGMA-PBnMA, using atom transfer radical polymerization (ATRP). The block copolymer (BCP) was blended with lithium bis(trifluoro methylsulfonate) (LiTFSI) to form solid polymer electrolytes (SPEs). AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 °C to 90 °C. Small-angle X-ray scattering (SAXS) was used to study the morphology of the electrolytes in the temperature interval 30 °C to 150 °C. By using benzyl methacrylate as a mechanical block it was possible to tune the microphase separation by the addition of LiTFSI, as proven by SAXS. By doing so the ionic conductivity increased to values higher than ones measured on a methyl methacrylate triblock copolymer-based electrolyte in the mixed state, which was investigated in an earlier paper by our group. A Li|SPE|LiFePO4 half-cell was constructed and cycled at 60 °C. The cell produced a discharge capacity of about 100 mAh g−1 of LiFePO4 at C/10, and the half-cell cycled for more than 140 cycles.

  • 40.
    Bergfelt, Andreas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Rubatat, Laurent
    Univ Pau & Pays Adour, CNRS, Inst Sci Analyt & Physicochim Environm & Mat, UMR5254, F-64000 Pau, France.
    Mogensen, Ronnie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Bowden, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    d8-poly(methyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] tri-block-copolymer electrolytes: Morphology, conductivity and battery performance2017Inngår i: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 131, s. 234-242Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A series of deuterated tri-block copolymers with the general structure d(8)-PMMA-POEGMA-d(8)-PMMA, with variation in d(8)-PMMA chain length, were synthesized using sequential controlled radical polymerization (ATRP). Solid polymer electrolytes (SPEs) were produced by blending tri-block copolymers and lithium bis(trifluoro methylsulfonate) (LiTFSI). Small-angle neutron scattering (SANS) was used to study the bulk morphology of the deuterated tri-block copolymer electrolyte series at 25 degrees C, 60 degrees C and 95 degrees C. The lack of a second T-g in DSC analysis together with modelling with the random phase approximation model (RPA) confirmed that the electrolytes are in the mixed state, with negative Flory-Huggins interaction parameters. AC impedance spectroscopy was used to study the ionic conductivity of the SPE series in the temperature interval 30 degrees C-90 degrees C, and a battery device was constructed to evaluate a 25 wt% d(8)-PMMA electrolyte. The Li | SPE | LiFePO4 cell cycled at 60 degrees C, giving a discharge capacity of 120 mAh g(-1), while cyclic voltammetry showed that the SPE was stable at 60 degrees C.

  • 41.
    Berglund, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Simulating Li-ion battery ageing through solid electrolyte interphase growth in graphite/NMC cells2017Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
    Abstract [en]

    Ageing mechanisms of graphite/NMC Li-ion batteries have been studied using computational methods. The purpose of the project was to investigate solid electrolyte interphase (SEI) formation and growth during cycling of the battery. The SEI layer formation was considered to be a reason for capacity fade of the battery. Irreversible consumption of cyclable Li-ions and increased resistance in the layer was considered to be the result of solid electrolyte layer formation and these two effects were studied more closely using cell modelling. The battery cycled with three cases of fast charge rates (2C, 4C and 6C) and the same discharge rate (1C) showed a thick film formation on the anode side and a higher film resistance when compared to the battery cycled with the same charge/discharge rate (1C). All investigated batteries were affected by the studied ageing mechanism, and in the case of batteries cycled with fast charge rates, the ageing was even more pronounced. The report includes a general description of Li-ion battery functionality, a summary of ageing mechanisms and a mathematical description of the electrochemistry governing the battery and implemented in the software.

  • 42.
    Bergman, Martin
    et al.
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Bergfelt, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Sun, Bing
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Bowden, Tim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden..
    Johansson, Patrik
    Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden..
    Graft copolymer electrolytes for high temperature Li-battery applications, using poly(methyl methacrylate) grafted poly(ethylene glycol)methyl ether methacrylate and lithium bis(trifluoromethanesulfonimide)2015Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 175, s. 96-103Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    For successful hybridization of heavy vehicles, high temperature batteries might be the solution. Here, high temperature solid polymer electrolytes (SPE's) based on different ratios of poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA), with LiTFSI salt (at a fixed ether oxygen (EO):Li ratio of 20:1) have been prepared and investigated. The copolymers comprise PMMA backbones with grafted PEGMA side-chains containing 9 EO units. The SPE systems were characterized using Raman spectroscopy, broadband dielectric spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and electrochemical cycling in prototype cells, with a particular focus on the 83 wt% PEGMA system. The electrolytes have good thermal stabilities and dissociate the LiTFSI salt easily, while at the same time maintaining low glass transition temperatures (T-g's). Depending on the polymeric structure, ionic conductivities >1 mS cm(-1) at 110 degrees C are detected, thus providing ion transport properties for a broad range of electrochemical applications. Prototype Li vertical bar polymer electrolyte vertical bar LiFePO4 cells utilizing the SPE at 60 degrees C showed surprisingly low capacities (<20 mA h g(-1) LiFePO4), which could be due to poor electrode/electrolyte contacts.

  • 43.
    Bertrand, Philippe
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Doubaji, Siham
    LCME, University Cadi Ayyad, Marrakech, Morocco.
    Saadoune, Ismael
    LCME, University Cadi Ayyad, Marrakech, Morocco.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin.
    Gustafsson, Torbjörn
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Solhy, Solhy
    Center for Advanced Materials Université Mohammed VI Polytechnique, Lot 660-Hay Moulay Rachid Ben Guerir, Morocco.
    Valvo, Mario
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Rensmo, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES  2017Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    In this presentation, we will present a recent example on electrode/electrolyte interfaces of materials for energy storage devices using hard X-rays photoelectron spectroscopy (HAXPES). A nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). [1]

     

    While electrode/electrolyte study has been performed widely on Li-ion battery, not so much attention as been addressed to the Na-ion technology so far. We will focus in this presentation to NaxCo2/3Mn2/9Ni1/9O2, a novel intercalation material that could be be used as cathode in Na-ion batteries. [2] During a typical charge/discharge cycle (i.e. extraction/insertion of Na+ ions), the oxidation state of the various transition metals in the compound changes in a reversible way. A step by step analysis of the first electrochemical cycle was carried out by HAXPES providing unique information on the oxidation state of Ni, Co and Mn as well as a very interesting insight into the passivation layer present at the surface of the electrode, which results from the degradation of the electrolyte components upon reaction. This investigation shows the role of the SPI and the complexity of the redox reactions. [3]

     

     

    [1] B. Philippe, M. Hahlin, K. Edström, T. Gustafsson, H. Siegbahn, H. Rensmo, J. Electrochem. Soc, 2016, 163, A178-A191

    [2] S. Doubaji, M. Valvo, I. Saadoune, M. Dahbi, K.Edström, J. Power Sources, 2014, 266, 275-281

    [3] S. Doubaji, B. Philippe, I. Saadoune, M. Gorgoi, T. Gustafsson, A. Solhy, M. Valvo, H. Rensmo, K. Edström, ChemSusChem, 2016, 9, 97-108

  • 44.
    Biendicho, Jordi Jacas
    et al.
    The ISIS Facility, STFC Rutherford Appleton Laboratory, Oxfordshire 11 0QX, United Kingdom; and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
    Roberts, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Noreus, Dag
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
    Lagerqvist, Ulrika
    Nilar Svenska AB, Gavle 800 08, Sweden.
    Smith, Ronald I.
    The ISIS Facility, STFC Rutherford Appleton Laboratory, Oxfordshire 11 0QX, UK.
    Svensson, Gunnar
    Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
    Norberg, Stefan T.
    Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden 412 96, Sweden.
    Eriksson, Sten G.
    Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden 412 96, Sweden.
    Hull, Stephen
    The ISIS Facility, STFC Rutherford Appleton Laboratory, Oxfordshire 11 0QX, UK.
    In situ investigation of commercial Ni(OH)(2) and LaNi5-based electrodes by neutron powder diffraction2015Inngår i: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 30, nr 3, s. 407-416Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrochemical reactions at both positive and negative electrodes in a nickel metal hydride (Ni-MH) battery during charge have been investigated by in situ neutron powder diffraction. Commercially available beta-Ni(OH)(2) and LaNi5-based powders were used in this experiment as positive and negative electrodes, respectively. Exchange of hydrogen by deuterium for the beta-Ni(OH)(2) electrode was achieved by ex situ cycling of the cell prior to in situ measurements. Neutron diffraction data collected in situ show that the largest amount of deuterium contained at the positive electrode is de-intercalated from the electrode with no phase transformation involved up to similar to 100 mA h/g and, in addition, the 110 peak width for the positive electrode increases on charge. The negative electrode of composition MmNi(3.6)Al(0.4)Mn(0.3)Co(0.7), where Mm = Mischmetal, exhibits a phase transformation to an intermediate hydride gamma phase first and then to the beta phase on charge. Unit cell dimensions and phase fractions have been investigated by Rietveld refinement of the crystal structure.

  • 45.
    Biendicho, Jordi Jacas
    et al.
    ISIS Runtherford Appleton Laboratory.
    Roberts, Matthew
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Offer, Colin
    ISIS Runtherford Appleton Laboratory.
    Noreus, Dag
    Stockholm University.
    Widenkvist, Erika
    Nilar.
    Smith, Ronald I.
    ISIS Runtherford Appleton Laboratory.
    Svensson, Gunnar
    Stockholm University.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Norberg, Stefan T.
    Eriksson, Sten G.
    Hull, Stephen
    New in-situ neutron diffraction cell for electrode materials2014Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 248, s. 900-904Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the beta-phase (charged) MH electrode obtained by Rietveld refinement are presented.

  • 46.
    Björklund, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi. Uppsala universitet.
    Avoiding ageing: Surface degradation of commercial electrode materials in lithium-ion batteries2019Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The battery market today expands rapidly, not least for electric vehicles. But to compete against the combustion engine, the cost of batteries must be reduced. After years of usage, the batteries degrade and need to be exchanged, increasing the cost over the vehicle lifecycle. This can be mitigated by tailoring the usage conditions and the battery materials. Understanding and avoiding ageing can be key to a more sustainable transport system. This thesis contains studies on degradation processes in Li-ion batteries utilizing the LiNixMnyCozO2 (NMC) cathode material, and suggests strategies for the improvement of battery life time.

    When cycling different negative electrodes – including graphite, lithium foil and lithium titanium oxide (LTO) – against NMC electrodes, only minor capacity fading was observed in the NMC-LTO and NMC-graphite cells, in contrast to the NMC-Li-metal cells. The capacity fading for Li-metal cells was determined to be caused by degradation products formed at the lithium foil which thereafter diffused to the NMC electrode, leading to a higher resistance. Commercial NMC/LiMn2O4-graphite cells were also investigated after cycling in limited state of charge (SOC)-intervals. The cycle life was far longer in the low-SOC cell than in the high-SOC cell. Photoelectron spectroscopy revealed increased manganese dissolution in the high-SOC cell, likely causing a less stable solid electrolyte interphase layer on the negative electrode. This, in turn, limits the capacity. How temperature influence ageing in NMC-LTO was analysed in cells cycled at -10 °C, 30 °C and 55 °C. It was found that the initial side reactions at the LTO electrode limited the cell capacity, but that these also stabilized the NMC electrode. At 55 °C, excessive side reactions at LTO caused capacity fading due to loss of active lithium. At -10 °C, high cell resistance limited the capacity. Switching to a PC based electrolyte allowed stable low temperature cycling, although it was found that PC degraded and formed thick electrode surface layers. Also sulfolane-based electrolytes were investigated, showing thinner surface layers than the EC containing reference electrolyte at high potentials, thus indicating a more stable electrolyte system.

    Delarbeid
    1. How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries
    Åpne denne publikasjonen i ny fane eller vindu >>How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries
    Vise andre…
    2017 (engelsk)Inngår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, nr 13, s. A3054-A3059Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The cycle life of LiNi1/3Co1/3Mn1/3O2 (NMC) based cells are significantly influenced by the choice of the negative electrode. Electrochemical testing and post mortem surface analysis are here used to investigate NMC electrodes cycled vs. either Li-metal, graphite or Li4Ti5O12 (LTO) as negative electrodes. While NMC-LTO and NMC-graphite cells show small capacity fading over 200 cycles, NMC-Li-metal cell suffers from rapid capacity fading accompanied with an increased voltage hysteresis despite the almost unlimited access of lithium. X-ray absorption near edge structure (XANES) results show that no structural degradation occurs on the positive electrode even after >200 cycles, however, X-ray photoelectron spectroscopy (XPS) results shows that the composition of the surface layer formed on the NMC cathode in the NMC-Li-metal cell is largely different from that of the other NMC cathodes (cycled in the NMC-graphite or NMC-LTO cells). Furthermore, it is shown that the surface layer thickness on NMC increases with the number of cycles, caused by continuous electrolyte degradation products formed at the Li-metal negative electrode and then transferred to NMC positive electrode.

    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-338161 (URN)10.1149/2.0711713jes (DOI)000418409800021 ()
    Forskningsfinansiär
    Swedish Energy Agency, 37725-1; 40495-1StandUp
    Tilgjengelig fra: 2018-01-08 Laget: 2018-01-08 Sist oppdatert: 2019-04-11bibliografisk kontrollert
    2. Temperature dependence of electrochemical degradation in LiNi0.33Mn0.33Co0.33O2/Li4Ti5O12 cells
    Åpne denne publikasjonen i ny fane eller vindu >>Temperature dependence of electrochemical degradation in LiNi0.33Mn0.33Co0.33O2/Li4Ti5O12 cells
    Vise andre…
    2019 (engelsk)Inngår i: Energy Technology, ISSN 2194-4288, Vol. 7, nr 9Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Aging mechanisms in lithium-ion batteries are dependent on the operational temperature, but the detailed mechanisms on what processes take place at what temperatures are still lacking. The electrochemical performance and capacity fading of the common cell chemistry LiNi1/3Mn1/3Co1/3O2 (NMC)/Li4Ti5O12 (LTO) pouch cells are studied at temperatures 10, 30, and 55 degrees C. The full cells are cycled with a moderate upper cutoff potential of 4.3 V versus Li+/Li. The electrode interfaces are characterized postmortem using photoelectron spectroscopy techniques (soft X-ray photoelectron spectroscopy [SOXPES], hard X-ray photoelectron spectroscopy [HAXPES], and X-ray absorption near edge structure [XANES]). Stable cycling at 30 degrees C is explained by electrolyte reduction forming a stabilizing interphase, thereby preventing further degradation. This initial reaction, between LTO and the electrolyte, seems to be beneficial for the NMC-LTO full cell. At 55 degrees C, continuous electrolyte reduction and capacity fading are observed. It leads to the formation of a thicker surface layer of organic species on the LTO surface than at 30 degrees C, contributing to an increased voltage hysteresis. At 10 degrees C, large cell-resistances are observed, caused by poor electrolyte conductivity in combination with a relatively thicker and LixPFy-rich surface layer on LTO, which limit the capacity.

    Emneord
    aging, lithium-ion batteries, photoelectron spectroscopy
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-381545 (URN)10.1002/ente.201900310 (DOI)
    Tilgjengelig fra: 2019-04-11 Laget: 2019-04-11 Sist oppdatert: 2019-10-10bibliografisk kontrollert
    3. Investigation of dimethyl carbonate and propylene carbonate mixtures for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 cells
    Åpne denne publikasjonen i ny fane eller vindu >>Investigation of dimethyl carbonate and propylene carbonate mixtures for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 cells
    Vise andre…
    2019 (engelsk)Inngår i: Chemelectrochem, E-ISSN 2196-0216, Vol. 6, nr 13, s. 3429-3436Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    It has recently been shown that ethylene carbonate (EC) experience poor stability at high potentials in lithium-ion batteries, and development of electrolytes without EC, not least using ethyl methyl carbonate (EMC), has therefore been suggested in order to improve the capacity retention. In this context, we here explore another alternative electrolyte system consisting of propylene carbonate (PC) and dimethyl carbonate (DMC) mixtures in NMC-LTO (LiNi0.6Mn0.2Co0.2O2, Li4Ti5O12) cells cycled up to 2.95 V. While PC experience wettability problems and DMC has difficulties dissolving LiPF6 salt, blends between these could possess complementary properties. The electrolyte blend showed superior cycling performance at sub-zero temperatures compared to EC-containing counterparts. At 30 degrees C, however, the PC-DMC electrolyte did not show any major improvement in electrochemical properties for the NMC-LTO cell chemistry. Photoelectron spectroscopy measurements showed that thin surface layers were detected on both NMC (622) and LTO electrodes in all investigated electrolytes. The results suggest that both PC and EC will react on the electrodes, but with EC forming thinner layers comprising more carbonates. Moreover, the electrochemical stability at high electrochemical potentials is similar for the studied electrolytes, which is surprising considering that most are free from the reactive EC component.

    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-381546 (URN)10.1002/celc.201900672 (DOI)000475512500026 ()
    Forskningsfinansiär
    Swedish Energy Agency, 37725-1StandUp
    Tilgjengelig fra: 2019-04-11 Laget: 2019-04-11 Sist oppdatert: 2019-08-19bibliografisk kontrollert
    4. Sulfolane based EC-free electrolytes in high voltage cells
    Åpne denne publikasjonen i ny fane eller vindu >>Sulfolane based EC-free electrolytes in high voltage cells
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-381547 (URN)
    Tilgjengelig fra: 2019-04-11 Laget: 2019-04-11 Sist oppdatert: 2019-04-11
    5. Influence of state-of-charge in commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite cells analyzed by synchrotron-based photoelectron spectroscopy
    Åpne denne publikasjonen i ny fane eller vindu >>Influence of state-of-charge in commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-graphite cells analyzed by synchrotron-based photoelectron spectroscopy
    Vise andre…
    2018 (engelsk)Inngår i: Journal of Energy Storage, ISSN 2352-152X, Vol. 15, s. 172-180Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Degradation mechanisms in 26 Ah commercial Li-ion battery cells comprising graphite as the negative electrode and mixed metal oxide of LiMn2O4 (LMO) and LiNi1/3Mn1/3Co1/3O2 (NMC) as the positive electrode are here investigated utilising extensive cycling at two different state-of-charge (SOC) ranges, 10–20% and 60–70%, as well as post-mortem analysis. To better analyze these mechanisms electrochemically, the cells were after long-term cycling reassembled into laboratory scale “half-cells” using lithium metal as the negative electrode, and thereafter cycled at different rates corresponding to 0.025 mA/cm2 and 0.754 mA/cm2. The electrodes were also analyzed by synchrotron-based hard x-ray photoelectron spectroscopy (HAXPES) using two different excitation energies to determine the chemical composition of the interfacial layers formed at different depth on the respective electrodes. It was found from the extensive cycling that the cycle life was shorter for the cell cycled in the higher SOC range, 60–70%, which is correlated to findings of an increased cell resistance and thickness of the SEI layer in the graphite electrode as well as manganese dissolution from the positive electrode.

    Emneord
    Li-ion battery, Commercial cells, Battery ageing, Photoelectron spectroscopy
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-338184 (URN)10.1016/j.est.2017.11.010 (DOI)000426619500015 ()
    Tilgjengelig fra: 2018-01-08 Laget: 2018-01-08 Sist oppdatert: 2019-04-11bibliografisk kontrollert
  • 47.
    Björklund, Erik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hahlin, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries2017Inngår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, nr 13, s. A3054-A3059Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The cycle life of LiNi1/3Co1/3Mn1/3O2 (NMC) based cells are significantly influenced by the choice of the negative electrode. Electrochemical testing and post mortem surface analysis are here used to investigate NMC electrodes cycled vs. either Li-metal, graphite or Li4Ti5O12 (LTO) as negative electrodes. While NMC-LTO and NMC-graphite cells show small capacity fading over 200 cycles, NMC-Li-metal cell suffers from rapid capacity fading accompanied with an increased voltage hysteresis despite the almost unlimited access of lithium. X-ray absorption near edge structure (XANES) results show that no structural degradation occurs on the positive electrode even after >200 cycles, however, X-ray photoelectron spectroscopy (XPS) results shows that the composition of the surface layer formed on the NMC cathode in the NMC-Li-metal cell is largely different from that of the other NMC cathodes (cycled in the NMC-graphite or NMC-LTO cells). Furthermore, it is shown that the surface layer thickness on NMC increases with the number of cycles, caused by continuous electrolyte degradation products formed at the Li-metal negative electrode and then transferred to NMC positive electrode.

  • 48.
    Björklund, Erik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hahlin, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    The influence of counter electrode on the capacity fading in LiNi0.33Mn0.33Co0.33O2-based Li-ion battery cells2017Konferansepaper (Annet vitenskapelig)
  • 49.
    Björklund, Erik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Göttlinger, Mara
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Investigation of dimethyl carbonate and propylene carbonate mixtures for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 cells2019Inngår i: Chemelectrochem, E-ISSN 2196-0216, Vol. 6, nr 13, s. 3429-3436Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    It has recently been shown that ethylene carbonate (EC) experience poor stability at high potentials in lithium-ion batteries, and development of electrolytes without EC, not least using ethyl methyl carbonate (EMC), has therefore been suggested in order to improve the capacity retention. In this context, we here explore another alternative electrolyte system consisting of propylene carbonate (PC) and dimethyl carbonate (DMC) mixtures in NMC-LTO (LiNi0.6Mn0.2Co0.2O2, Li4Ti5O12) cells cycled up to 2.95 V. While PC experience wettability problems and DMC has difficulties dissolving LiPF6 salt, blends between these could possess complementary properties. The electrolyte blend showed superior cycling performance at sub-zero temperatures compared to EC-containing counterparts. At 30 degrees C, however, the PC-DMC electrolyte did not show any major improvement in electrochemical properties for the NMC-LTO cell chemistry. Photoelectron spectroscopy measurements showed that thin surface layers were detected on both NMC (622) and LTO electrodes in all investigated electrolytes. The results suggest that both PC and EC will react on the electrodes, but with EC forming thinner layers comprising more carbonates. Moreover, the electrochemical stability at high electrochemical potentials is similar for the studied electrolytes, which is surprising considering that most are free from the reactive EC component.

  • 50.
    Björklund, Erik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Hahlin, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Younesi, Reza
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    The influence of counter electrode on the capacity fading in LiNi0.33Mn0.33Co0.33O2-based Li-ion battery cells2017Konferansepaper (Annet vitenskapelig)
1234567 1 - 50 of 839
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf