uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
123 1 - 50 of 145
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bilousov, Oleksandr V.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ren, Yi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Donzel-Gargand, Olivier
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ericson, Tove
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Hägglund, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    ALD of phase controlled tin monosulfide thin films2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Tin monosulfide (SnS) is a promising semiconductor material for low-cost conversion of solar energy, playing the role of absorber layer in photovoltaic devices. SnS is, due to its high optical damping, also an excellent semiconductor candidate for the realization of ultrathin (nanoscale thickness) plasmonic solar cells [1].

    Here, we present an important step to further control and understand SnS film properties produced using low temperature ALD with Sn(acac)2 and H2S as precursors. We show that the SnS film properties vary over a rather wide range depending on substrate temperature and reaction conditions, and that this is connected to the growth of cubic (π-SnS) and orthorhombic SnS phases. The optical properties of the two polymorphs differ significantly, as demonstrated by spectroscopic ellipsometry [2].

    1. C. Hägglund, G. Zeltzer, R. Ruiz, A. Wangperawong, K. E. Roelofs, S. F. Bent, ACS Photonics 3 (3) (2016) 456–463.

    2. O. V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-Gargand , T. Ericson, C. Platzer-Björkman, M. Edoff, and C. Hägglund, ACS Chemistry of Materials  29 (7) (2017) 2969–2978.

  • 2.
    Bilousov, Oleksandr V.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ren, Yi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Donzel-Gargand, Olivier
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ericson, Tove
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Hägglund, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Atomic Layer Deposition of Cubic and Orthorhombic Phase Tin Monosulfide2017Inngår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, nr 7, s. 2969-2978Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tin monosulfide (SnS) is a promising light-absorbing material with weak environmental constraints for application in thin film solar cells. In this paper, we present low-temperature atomic layer deposition (ALD) of high-purity SnS of both cubic and orthorhombic phases. Using tin(II) 2,4-pentanedionate [Sn(acac)(2)] and hydrogen sulfide (H2S) as precursors, controlled growth of the two polymorphs is achieved. Quartz crystal microbalance measurements are used to establish saturated conditions and show that the SnS ALD is self-limiting over temperatures from at least 80 to 160 degrees C. In this temperature window, a stable mass gain of 19 ng cm(-2) cycle(-1) is observed. The SnS thin film crystal structure and morphology undergo significant changes depending on the conditions. High-resolution transmission electron microscopy and X-ray diffraction demonstrate that fully saturated growth requires a large H2S dose and results in the cubic phase. Smaller H2S doses and higher temperatures favor the orthorhombic phase. The optical properties of the two polymorphs differ significantly, as demonstrated by spectroscopic ellipsometry. The orthorhombic phase displays a wide (0.3-0.4 eV) Urbach tail in the near-infrared region, ascribed to its nanoscale structural disorder and/or to sulfur vacancy-induced gap states. In contrast, the cubic phase is smooth and void-free and shows a well-defined, direct forbidden-type bandgap of 1.64 eV.

  • 3.
    Böhnke, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Copper indium gallium diselenide thin films for sun angle detectors in space applications2009Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 517, nr 6, s. 2063-2068Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This work reports on processing, analysis and characterization of copper indium gallium diselenide (CIGS)used as a photosensitive layer for sensors such as sun angle detectors in space applications. CIGS-based solarcell devices with different CIGS layer thicknesses and the pn-junction located on the opposite side of theincidence of light were illuminated through their ultra-thin transparent molybdenum back contacts. Theresults from the current density versus voltage and quantum efficiency measurement indicate that the CIGSabsorber layer may not exceed 750 nm at backside illumination, due to the limited CIGS diffusion length.

  • 4.
    Böhnke, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Stenmark, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Materialvetenskap.
    Development of a MOEMS sun sensor for space applications2006Inngår i: Sensors & Actuators A, Vol. 130-131, s. 28-36Artikkel i tidsskrift (Fagfellevurdert)
  • 5.
    Böhnke, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära och åskforskning.
    Kratz, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrostrukturteknik.
    Hultåker, Annette
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Köhler, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära och åskforskning.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Roos, Arne
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Ribbing, Carl-Gustaf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Thornell, Greger
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrostrukturteknik.
    Surfaces with high solar reflectance and high thermal emittance on structured silicon for spacecraft thermal control2008Inngår i: Optical materials (Amsterdam), ISSN 0925-3467, E-ISSN 1873-1252, Vol. 30, nr 9, s. 1410-1421Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Presented here is an examination of unstructured and structured (by anisotropic etching), monocrystalline silicon wafers coated with sputter deposited aluminum and chemical vapor deposited silicon dioxide for high solar reflectance and high thermal emittance, respectively. The topography of the samples was characterized with optical and scanning electron microscopy. Optical properties were examined with reflectance and transmittance spectroscopy, partly by usage of an integrating sphere. The measurement results were used to estimate the equilibrium temperature of the surfaces in space. The suitability of the surfaces with high solar reflectance and high thermal emittance to aid in the thermal control of miniaturized, highly integrated components for space applications is discussed. A silicon dioxide layer on a metal layer results in a slightly lower reflectance when compared to surfaces with only a metal layer, but might be beneficial for miniaturized space components and modules that have to dissipate internally generated heat into open space. Additionally, it is an advantage to microstructure the emitting surface for enhanced radiation of excess heat.

  • 6.
    Campa, A.
    et al.
    University of Ljubljana, Faculty of Electrical Engineering.
    Krc, J.
    University of Ljubljana, Faculty of Electrical Engineering.
    Malmström, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Smole, F.
    University of Ljubljana, Faculty of Electrical Engineering.
    Topic, M.
    University of Ljubljana, Faculty of Electrical Engineering.
    The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells2007Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 15, s. 5968-5972Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The role of additionally textured front transparent conductive oxide − TCO (ZnO:Al) and flat TCO/metal contact on optical improvements in thin Cu(In,Ga)Se2 (CIGS) solar cells are investigated by means of numerical simulations. A de-coupled analysis of two effects related to additional texturing of front surface of ZnO:Al TCO − (i) enhancement of light scattering and (ii) decreased total reflectance (antireflective effect) − reveals that the improvements in quantum efficiency, QE, and short-circuit current, JSC, of the solar cell originate from an antireflective effect only. In order to improve optical properties of the back contact the introduction of a TCO layer (undoped ZnO) between CIGS and back metal contact is investigated from the optical point of view. In addition to ZnO/Mo, a highly reflective ZnO/Ag contact (ZnO is also assumed to work as a protection layer for Ag) is also included in simulations. Results show significant increase in reflectance related to introduced ZnO in front of Mo. Drastically increased reflectance is obtained if ZnO/Mo is substituted with ZnO/Ag. The improvements in QE and JSC of a thin CIGS solar cell, related to ZnO/metal contacts are presented.

  • 7. Campa, Andrej
    et al.
    Cernivec, Gregor
    Schleussner, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Krc, Janez
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Topic, Marko
    Potential of optical improvements of the back contact in thin Cu(In,Ga)Se2 solar cells2007Inngår i: Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milano, 2007 : 3CO.9.2, 2007Konferansepaper (Fagfellevurdert)
  • 8. Campa, Andrej
    et al.
    Krc, Janez
    Malmström, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Smole, Franc
    Topic, Marko
    Optical potential of TCO/metal back contact and of textured substrate in thin Cu(In,Ga)Se2 solar cells2006Konferansepaper (Fagfellevurdert)
  • 9.
    Coronel, Ernesto
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Microstructural characterization of Zn1-XMgXO buffers layer in CIGS solar cells2007Konferansepaper (Annet vitenskapelig)
  • 10.
    Donzel-Gargand, Olivier
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Thersleff, T.
    Stockholm University, Department of Materials and Environmental Chemistry 106 91 Stockholm.
    Keller, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wallin, E.
    Solibro Research AB, Vallvägen 5, Uppsala, Sweden.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Research AB, Vallvägen 5, Uppsala, Sweden.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Cu-depleted patches induced by presence of K during growth of CIGS absorbers2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The conversion efficiency of the CIGS thin film solar cells has rapidly increased since introduction of the heavier alkali-doping (K, Rb, Cs). While the exclusive introduction of Na in the CIGS films has led to efficiencies up to 20,4% 1, the latest K, Rb or Cs post deposition treatments (PDT) have increased the efficiency to 22,6% 2. The exact role of this heavy-alkali PDT is still under discussion but three explanations have been discussed in the literature. First, that the heavy alkali PDT facilitates CdCu substitution, that results in an enhanced absorber type inversion, moving the p-n junction further into the CIGS bulk 3. Second, that the main effect from heavy alkali PDT is due to the formation of a K-In-Se2 layer, that passivates defects at the CIGS surface, reducing interface recombination 4. And third, that the heavy alkali PDT induces a Cu depletion at the surface of the CIGS which, by increasing the local Fermi level, increases the band bending; thus creating a higher potential barrier for holes to recombine 5.

  • 11.
    Donzel-Gargand, Olivier
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Thersleff, Thomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Fourdrinier, Lionel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Surface defect passivation by a thin metallic barrier for Cu(InxGa1-x)Se2 co-evaporation on Cr-steel substrates2016Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 619, s. 220-226Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of Cr-steel substrates for the fabrication of Cu(In,Ga)Se2 (CIGS) solar cells is highly desirable and is a topic of considerable research interest. However, solar cells on non-treated steel substrates often exhibit decreased performance compared to their homologues on soda lime glass substrates. This is partly attributed to out-diffusion of steel components (Fe, Cr, Mn, etc.) into the solar cell. To avoid this contamination, thin film barriers can be added on top of the steel surface, but they do not always prevent the diffusion completely. In this paper we study the potential of using Cr and Ti as thin barrier layers. We find that local surface defects on the steel, several micrometers in height, lead to cracks in the back contact as well as in the barrier layers. Advanced transmission electron microscopy (TEM) techniques reveal that elemental diffusion and chemical reactions occur at these openings during heat treatments in Se atmosphere. TEM-energy dispersive X-ray spectroscopy (TEM-EDX) analysis in combination with calculation of the solid state diffusion coefficient demonstrate that a Cr-barrier sacrificially protects the Cr-steel substrate, blocking most of the Fe out-diffusion, whereas a Ti-barrier is less efficient.

  • 12.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Thin Film Solar Cells: Research in an Industrial Perspective2012Inngår i: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 41, nr Suppl 2, s. 112-118Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se-2 and Cu2ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  • 13.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Jarmar, Tobias
    Solibro Res AB, S-75651 Uppsala, Sweden..
    Shariati Nilsson, Nina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wallin, Erik
    Solibro Res AB, S-75651 Uppsala, Sweden..
    Hogstrom, Daniel
    Solibro Res AB, S-75651 Uppsala, Sweden..
    Stolt, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Lundberg, Olle
    Solibro Res AB, S-75651 Uppsala, Sweden..
    Shafarman, William
    Univ Delaware, Inst Energy Convers, Newark, DE 19716 USA..
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Res AB, S-75651 Uppsala, Sweden..
    High Voc in (Cu,Ag)(In,Ga)Se2 Solar Cells2017Inngår i: IEEE Journal of Photovoltaics, ISSN 2156-3381, E-ISSN 2156-3403, Vol. 7, nr 6, s. 1789-1794Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this contribution, we show that silver substitution for copper in Cu(In,Ga)Se-2 (CIGS) to form (Ag,Cu)(In, Ga)Se-2 (ACIGS) leads to a reduction of the voltage loss expressed as E-g/q-V-oc. This, in turn, leads to higher device efficiencies as compared to similar CIGS devices without Ag. We report V-oc at 814 mV at a conversion efficiency of 21% for our best ACIGS device with 20% of the group I element consisting of silver. Comparing ACIGS and CIGS devices with the same Ga/(Ga+ In) ratio, the ACIGS devices exhibit about 0.05 eV higher bandgap. Alkali postdeposition treatment with KF leads to improvements in efficiency both for CIGS and ACIGS, but we find that the dose of KF needed for optimum device for ACIGS is 10-20% of the dose used for CIGS.

  • 14.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Joel, Jonathan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Vermang, Bart
    IMEC, Kapeldreef 75, B-3001 Leuven, Belgium..
    Hägglund, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Back Contact Passivation Effects in Bi-Facial Thin CIGS Solar Cells2016Inngår i: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), IEEE , 2016, s. 3527-3529Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Bi-facial solar cells with ultrathin CIGS solar cells are fabricated to investigate the influence of back contact passivation. Solar cells with CIGS thicknesses of 300 and 500 nm and with an ultrathin transparent Mo layer are characterized using EQE measurements from both the front and the rear side as well as with I-V measurements. Back contact passivation consisting of Al2O3 deposited by atomic layer deposition and nano-sized point contact openings is used. The results are compared to cells with only the transparent Mo layer as back contact. We find a significant effect of the passivation manifested as an increase in the current density of the solar cells with the passivation.

  • 15.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Lindahl, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wätjen, Timo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Nyberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Gas flow sputtering of Cu(In,Ga)Se-2 for thin film solar cells2015Inngår i: 2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Gas flow sputtering of Cu(In,Ga)Se-2 (CIGS) from two opposing Cu(In,Ga)Se-2 targets with slightly Cu-poor stoichiometry was performed, using i) selenium only provided by the target and ii) using additional selenium from an elemental source inside the sputtering system. In both cases the composition of the sputtered CIGS film was similar to the target. A sputter process without additional selenium supply led to poor cell results at about 2 % efficiency. After introducing a posttreatment in selenium atmosphere immediately after the sputter deposition, the cell results were dramatically improved to 12 %. With selenium added during the sputtering process, 13.7 % conversion efficiency was obtained without any post treatment. Gas flow sputtering uses a high gas flow to transport the material from the plasma to the growing film, thereby the atoms will be thermalized, similarly to in an evaporation process. Reactant gases can be supplied close to the substrate, outside the plasma, thereby reducing the risk for sputter damage.

  • 16.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Malmberg, Lina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Malm, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Influence of CBD-deposited CdS on the carrier collection in CIGS-based solar cells2006Konferansepaper (Fagfellevurdert)
  • 17.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Schleussner, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wallin, Erik
    Solibro Research AB.
    Lundberg, Olle
    Solibro Research AB.
    Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules2011Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, nr 21, s. 7530-7533Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reducing the Cu(In,Ga)Se2 (CIGS) thickness is one way of improving the throughput and capacity in existing production, provided that the efficiency can be kept at a high level. Our experimental results from an in-line co-evaporation process show that it is possible to produce CIGS solar cells with good efficiency at a CIGS thickness of less than 1 µm. An efficiency of 14.4% was obtained for an evaporation time of 8 min and a resulting CIGS thickness of only 0.8 [mu]m. The quantum efficiency measurements show only a minor reduction of the collection in the infrared region that can be related to losses caused by reduced absorption. Passivation of the back contact has been found to be important for thin devices and one way of obtaining good back contact properties, or to reduce the impact of back contact recombination is to use an increased Ga content near the back contact. We have found that Ga grading is feasible also in the three stage process, i.e. a Ga-rich layer near the back contact from stage one is to a high degree retained also after stages two and three. In this paper we discuss the implication of efficiency reduction for the economy of the production and how high efficiency loss that can be tolerated, provided that the output is doubled at equal production cost for the CIGS layer.

  • 18.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Viard, Nicolas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wätjen, Jörn Timo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Schleussner, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Westin, Per-Oskar
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Sputtering of highly adhesive Mo back contact layers for Cu(In,Ga)Se2 solar cells2009Konferansepaper (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    In this work the sputter process for back contact Mo layers was adjusted to increase the adhesive strength of the Mo layers to the glass substrate, while keeping a high deposition rate and high conductivity. Mo layers were fabricated using DC magnetron sputtering in an in-line sputtering system. The adhesive strength was tested with ultrasonic agitation. The combination of good adhesion and high deposition rate was obtained by using a double layer, where the thickness of the first adhesion layer was varied between 25 and 100 nm and sputtered at 15 mTorr, whereas the second bulk layer was varied between 300 and 600 nm and sputtered at 6 mTorr. Solar cells were prepared for all different thicknesses of the adhesive layer and showed similar performance.

  • 19.
    Edoff, Marika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Woldegiorgis, Sara
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Neretnicks, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Ruth, Marta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Kessler, John
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    CIGS Submodules with High Performance and High Manufacturability2004Inngår i: 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, 7-11 June, 2004Konferansepaper (Annet vitenskapelig)
  • 20.
    Fjällström, Viktor
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Salome, P. M. P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Hultqvist, Adam
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Jarmar, T.
    Aitken, B. G.
    Zhang, K.
    Fuller, K.
    Williams, C. Kosik
    Potential-Induced Degradation of CuIn1-xGaxSe2 Thin Film Solar Cells2013Inngår i: IEEE Journal of Photovoltaics, ISSN 2156-3381, Vol. 3, nr 3, s. 1090-1094Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of Na-free or low Na content glass substrates is observed to enhance the resiliency to potential-induced degradation, as compared with glass substrates with high Na content, such as soda lime glass (SLG). The results from stress tests in this study suggest that degradation caused by a combination of heat and bias across the SLG substrate is linked to increased Na concentration in the CdS and Cu(In,Ga)Se-2 (CIGS) layers in CIGS-based solar cells. The degradation during the bias stress is dramatic. The efficiency drops to close to 0% after 50 h of stressing. On the other hand, cells on Na-free and low Na content substrates exhibited virtually no efficiency degradation. The degraded cells showed partial recovery by resting at room temperature without bias; thus, the degradation is nonpermanent and may be due to Na migration and accumulation rather than chemical reaction.

  • 21.
    Fjällström, Viktor
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Szaniawski, Piotr
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Vermang, Bart
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Salome, Pedro M. P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Rostvall, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zimmermann, Uwe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Recovery After Potential-Induced Degradation of CuIn1-xGaxSe2 Solar Cells With CdS and Zn(O,S) Buffer Layers2015Inngår i: IEEE Journal of Photovoltaics, ISSN 2156-3381, E-ISSN 2156-3403, Vol. 5, nr 2, s. 664-669Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study deals with potential-induced degradation (PID) of Cu(In,Ga)Se-2-based solar cells and different approaches to subsequent recovery of efficiency. Three different recovery methods were studied: 1) etch recovery, 2) accelerated recovery, and 3) unaccelerated recovery. After being completely degraded, the solar cells with CdS buffer layers recovered their efficiencies at different rates, depending on the method which was used. On the other hand, if Zn(O,S) was used as a buffer layer instead of CdS, the recovery rate was close to zero. The buffer layer type clearly influenced the sodium distribution during PID stressing and recovery, as well as the possibilities for recovery of the electrical performance.

  • 22.
    Frisk, Christopher
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Olsson, Jörgen
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Szaniawski, Piotr
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Wätjen, Timo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Fjällström, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Salome, P.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Optimizing Ga-profiles for highly efficient Cu(In,Ga)Se2 thin film solar cells in simple and complex defect models2014Inngår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 47, nr 48, s. 485104-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Highly efficient Cu(In,Ga)(S,Se)2 photovoltaic thin film solar cells often have a compositional variation of Ga to In in the absorber layer, here described as a Ga-profile. In this work we have studied the role of Ga-profiles in four different models, based on input data from electrical and optical characterizations of an in-house state-of-the-art Cu(In,Ga)Se2 (CIGS) solar cell with power conversion efficiency above 19 %. A simple defect model with mid-gap defects in the absorber layer was compared with models with Ga-dependent defect concentrations and amphoteric defects. In these models optimized single-graded Ga-profiles have been compared with optimized double-graded Ga-profiles. It was found that the defect concentration for effective Shockley-Read-Hall recombination is low for high efficiency CIGS devices and that the doping concentration of the absorber layer, chosen according to the defect model, is paramount when optimizing Ga-profiles. For optimized single-graded Ga-profiles the simulated power conversion efficiency, depending on the model, is 20.5-20.8 %, and the equivalent double-graded Ga-profiles yield 20.6-21.4 %, indicating that the bandgap engineering of the CIGS device structure can lead to improvements in efficiency. Apart from the effects of increased doping in the complex defect models, the results are similar when comparing the complex defect models to the simple defect models. 

  • 23.
    Frisk, Christopher
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Fjällström, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Salomé, Pedro
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Olsson, Jörgen
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Modeling Ga-profiles for Cu(In,Ga)Se2 thin film solar cells with varying defect density2013Inngår i: 23rd International Photovoltaic Science and Engineering Conference; Taipei, Taiwan; October 28 - Nov 1, 2013: Proceedings, 2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The very best Cu(In,Ga)(S,Se)2 solar cells have a double graded band gap in the absorber, i.e. a notch profile, formed by varying the ratio of Ga to In. If this is a prerequisite or a consequence of high quality deposition methods is something yet of discussion. In this work we have constructed a high efficiency model (HE-T61) based on in-house state-of-the art Cu(In,Ga)Se2 solar cells, with efficiencies above 19 %, and investigated the role of the Ga-profile. Notch-type Ga-profiles have been compared with single graded profiles, and the influence of Ga-dependent defect distribution and metastable defects have been investigated showing that the optimum Ga-profile is dependent on such defect variations. It is also shown that within the HE-T61 model the optimized Ga-profile yields up to 3 % absolute efficiency gain, indicating that there is potential in band gap engineering.

  • 24. Holt, A.
    et al.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Lund, P.
    Lauritzen, H.
    Reenaas, T. W.
    Mellikov, E.
    Lantratov, V. M.
    Nordic Centre of Excellence in Photovoltaics (NCOE in PV)2008Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A NCoE in PV has been formed by seven research institutions in the Nordic region. The centre is funded by Nordic Energy Research, Renewable Energy Corporation ASA, Elkem Solar AS, Solibro Research AB, Topsil A/S, Energinet.dk, and Luvata as well as the participating research organisations. The main objective is to strengthen the already formed Nordic R&D network and to serve the fast-growing and demanding Nordic PV industry. This will be achieved by educating PhD students with compulsory mobility of the students, arranging general workshops within solar cell research, organizing in-depth workshops on selected topics, giving hands-on workshops on processing of solar cells, and actively disseminate results both in public and scientific media channels.

  • 25.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Aitola, Kerttu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Sveinbjörnsson, Kári
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Saki, Zahra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Sharif Univ Technol, Tehran, Iran.
    Larsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Johansson, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Boschloo, Gerrit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 35, s. 29707-29716Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH2)(2), CH3NH3)Pb(I,Br)(3) (FAPbI(3):MAPbBr(3)) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnOx. Exposing the samples to the heat, the vacuum, and even the counter reactant of H2O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C2H5)(2) either by itself or in combination with H2O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH3)(2))(4) does not seem to degrade the bulk of the perovskite film, and conformal SnOx films can successfully be grown on top of it using atomic layer deposition. Using this SnOx film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C-70-butyric acid methyl ester. However, the devices with SnOx show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnOx films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnOx interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnOx growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  • 26.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Evaluation of Zn-Sn-O buffer layers for CuIn0.5Ga0.5Se2 solar cells2011Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 19, nr 4, s. 478-481Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thin Zn-Sn-O films are evaluated as new buffer layer material for Cu(In,Ga)Se-2-based solar cell devices. A maximum conversion efficiency of 13.8% (V-oc = 691 mV, J(sc)(QE) = 27.9 mA/cm(2), and FF = 71.6%) is reached for a solar cell using the Zn-Sn-O buffer layer which is comparable to the efficiency of 13.5% (V-oc - 706 mV, J(sc)(QE) - 26.3 mA/cm(2), and FF = 72.9%) for a cell using the standard reference CdS buffer layer. The open circuit voltage (V-oc) and the fill factor (FF) are found to increase with increasing tin content until an optimum in both parameters is reached for Sn/(Zn+Sn) values around 0.3-0.4.

  • 27.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Ruth, Marta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Optimization of i-ZnO window layers for Cu(In,Ga)Se2 solar cells with ALD buffers2007Konferansepaper (Fagfellevurdert)
  • 28.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Coronel, Ernesto
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Experimental investigation of Cu(In1-x,Ga-x)Se-2/Zn(O1-z,S-z) solar cell performance2011Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 95, nr 2, s. 497-503Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study we investigate the performance of Cu(In1-x,Ga-x)Se-2/Zn(O1-z,S-z) solar cells by changing the gallium content of the absorber layer in steps from CuInSe2 to CuGaSe2 and at each step vary the sulfur content of the Zn(O,S) buffer layer. By incorporating more or less sulfur into the Zn(O,S) buffer layer it is possible to change its morphology and band gap energy. Surprisingly, the best solar cells with Zn(O,S) buffer layers in this study are found for close to or the same Zn(O,S) buffer layer composition for all absorber Ga compositions. In comparison to their CdS references the best solar cells with Zn(O,S) buffer layers have slightly lower open circuit voltage, V-oc, lower fill factor, FF, and higher short circuit current density, J(sc), which result in comparable or slightly lower conversion efficiencies. The exception to this trend is the CuGaSe2 solar cells, where the best devices with Zn(O,S) have substantially lowered efficiency compared with the CdS reference, because of lower V-oc, FF and J(sc). X-ray photon spectroscopy and X-ray diffraction measurements show that the best Zn(O,S) buffer layers have similar properties independent of the Ga content. In addition, energy dispersive spectroscopy scans in a transmission electron microscope show evidence of lateral variations in the Zn(O,S) buffer layer composition at the absorber/buffer layer interface. Finally, a hypothesis based on the results of the buffer layer analysis is suggested in order to explain the solar cell parameters.

  • 29.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Pettersson, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    CuGaSe2 solar cells using atomic layer deposited Zn(O,S) and (Zn,Mg)O buffer layers2008Konferansepaper (Fagfellevurdert)
  • 30.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Pettersson, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    CuGaSe2 solar cells using atomic layer deposited Zn(O,S) and (Zn,Mg)O buffer layers2009Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 517, nr 7, s. 2305-2308Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The band gap of Zn(O,S) and (Zn,Mg)O buffer layers are varied with the objective of changing the conduction band alignment at the buffer layer/CuGaSe2 interface. To achieve this, alternative buffer layers are deposited using atomic layer deposition. The optimal compositions for CuGaSe2 solar cells are found to be close to the same for (Zn,Mg)O and the same for Zn(O,S) as in the CuIn0.7Ga0.3Se2 solar cell case. At the optimal compositions the solar cell conversion efficiency for (Zn,Mg)O buffer layers is 6.2% and for Zn(O,S) buffer layers it is 3.9% compared to the CdS reference cells which have 5-8% efficiency.

  • 31.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zimmermann, Uwe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Fasta tillståndets elektronik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik.
    Growth kinetics, properties, performance and stability of ALD Zn-Sn-O buffer layers for Cu(In,Ga)Se2 solar cellsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    A new ALD process is developed for deposition of Zn-Sn-O buffer layers for Cu(In,Ga)Se2 solar cells with tetrakis(dimethylamino) tin, Sn(N(CH3)2)4, diethyl zinc, Zn(C5H5)2 and water, H2O. The new process gives excellent control of thickness and [Sn]/([Sn]+[Zn]) ratio of the films. The Zn-Sn-O films are amorphous as found by grazing incidence x-ray diffraction, have a high resistivity, show a low density compared to ZnO and SnOx and have a transmittance loss that is smeared out over a wide wavelength interval. Good solar cell performance is achieved for [Sn]/([Sn]+[Zn]) ratios determined to be 0.15 – 0.21 by Rutherford backscattering. The champion solar cell with a Zn-Sn-O buffer layer has an efficiency of 15.3 % (Voc = 653 mV, Jsc(QE) = 31.8 mA/cm2 and FF = 73.8 %)  compared to 15.1 % (Voc = 663 mV, Jsc(QE) = 30.1 mA/cm2 and FF = 75.8 %) of the best reference solar cell with a CdS buffer layer. There is a strong lightsoaking effect that saturates after a few minutes for solar cells with Zn-Sn-O buffer layers after storage in the dark. Stability was tested by 1000 h of dry heat storage in darkness at 85 °C, where Zn-Sn-O buffer layers with a thickness of 76 nm, did retain their initial value after a few minutes of light soaking.

  • 32.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zimmermann, Uwe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Growth kinetics, properties, performance, and stability of atomic layer deposition Zn–Sn–O buffer layers for Cu(In,Ga)Se2 solar cells2012Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 20, nr 7, s. 883-891Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new atomic layer deposition process was developed for deposition of Zn–Sn–O buffer layers for Cu(In,Ga)Se2 solar cells with tetrakis(dimethylamino) tin, Sn(N(CH3)2)4, diethyl zinc, Zn(C2H5)2, and water, H2O. The new processgives good control of thickness and [Sn]/([Sn]+[Zn]) content of the films. The Zn–Sn–O films are amorphous as foundby grazing incidence X-ray diffraction, have a high resistivity, show a lower density compared with ZnO and SnOx, andhave a transmittance loss that is smeared out over a wide wavelength interval. Good solar cell performance was achievedfor a [Sn]/([Sn]+[Zn]) content determined to be 0.15–0.21 by Rutherford backscattering. The champion solar cell with aZn–Sn–O buffer layer had an efficiency of 15.3% (Voc=653mV, Jsc(QE)=31.8mA/cm2, and FF=73.8%) compared with15.1% (Voc=663mV, Jsc(QE)=30.1mA/cm2, and FF=75.8%) of the best reference solar cell with a CdS buffer layer. Thereis a strong light-soaking effect that saturates after a few minutes for solar cells with Zn–Sn–O buffer layers after storage in thedark. Stability was tested by 1000h of dry heat storage in darkness at 85°C, where Zn–Sn–O buffer layers with a thicknessof 76nm retained their initial value after a few minutes of light soaking.

  • 33.
    Hultqvist, Adam
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Salomé, Pedro M. P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Fjällström, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Aitken, B.
    Zhang, K.
    Shi, Y.
    Fuller, K.
    Williams, C. Kosik
    Performance of Cu(In,Ga)Se-2 solar cells using nominally alkali free glass substrates with varying coefficient of thermal expansion2013Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 114, nr 9, s. 094501-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this report, Cu(In,Ga)Se-2, CIGS, solar cell devices have been fabricated on nominally alkali free glasses with varying coefficients of thermal expansion (CTE) from 50 to 95* 10(-7)/degrees C. A layer of NaF deposited on top of the Mo was used to provide Na to the CIGS film. Increasing the glass CTE leads to a change of stress state of the solar cell stack as evidenced by measured changes of stress state of the Mo layer after CIGS deposition. The open circuit voltage, the short circuit current density, and the fill factors, for solar cells made on the various substrates, are all found to increase with CTE to a certain point. The median energy conversion efficiency values for 32 solar cells increases from 14.6% to the lowest CTE glass to 16.5% and 16.6%, respectively, for the two highest CTE glasses, which have CTE values closest to that of the soda lime glass. This is only slightly lower than the 17.0% median of soda lime glass reference devices. We propose a model where an increased defect density in the CIGS layer caused by thermal mismatch during cool-down is responsible for the lower efficiency for the low CTE glass substrates.

  • 34.
    Igalson, M.
    et al.
    Faculty of Physics, Warsaw University of Technology.
    Cwil, M.
    Faculty of Physics, Warsaw University of Technology.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Metastabilities in the electrical characteristics of CIGS devices: Experimental results vs theoretical predictions2007Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 15, s. 6142-6146Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent theoretical calculations have traced an origin of light- and voltage bias-induced metastabilities in Cu(In,Ga)Se2-based solar cells to negative-U properties of the VSe–VCu complex. In this paper we compare experimental findings with theoretically predicted properties of these defects and calculated values of parameters characteristic for transitions between their different states. Profiles of net acceptor concentrations in the relaxed and metastable states obtained by capacitance profiling have been studied, as well as annealing kinetics of the persistent defect distributions by thermally stimulated capacitance and conductivity. Good qualitative and quantitative agreement are found between theory of VSe-related defects and experimental results. The consequences from the point of view of photovoltaic efficiency of the Cu(In,Ga)Se2-based solar cells are discussed.

  • 35. Igalson, M
    et al.
    Cwil, M
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Persistent Capture and Release of Electrons in CIGSe Solar Cells2005Inngår i: Conf Proc of the 20th EUPVSEC (European Photovoltaic Solar Energy Conference, 2005Konferansepaper (Annet vitenskapelig)
  • 36. Igalson, M
    et al.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektronik. Fasta tillståndets elektronik.
    Compensating donors in Cu(In,Ga)Se2 absorbers of solar cells2005Inngår i: Thin Solid Films, Vol. 480-481, s. 322-326Artikkel i tidsskrift (Fagfellevurdert)
  • 37.
    Igalson, M
    et al.
    Faculty of Physics, Warsaw University of Technology, Warszawa, Polen.
    Urbaniak, A
    Faculty of Physics, Warsaw University of Technology, Warszawa, Polen.
    Krysztopa, A
    Faculty of Physics, Warsaw University of Technology, Warszawa, Polen.
    Aida, Y
    Device Development center, TDK Corporation, Chiba, Japan, and, Laboratory of Photovoltaic, University of Luxembourg, Belvaux, Luxembourg.
    Caballero, R
    Helmholtz Zenterum Berlin für Materialien und Energie, Berlin, Tysklan.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Siebentritt, S
    Device Development center, TDK Corporation, Chiba, Japan.
    Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices2011Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, nr 21, s. 7489-7492Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Photoconductivity and photocapacitance of Cu(In,Ga)Se(2) and CuGaSe(2) thin films and devices induced by sub-bandgap illumination are investigated. Both effects have been attributed to the optical transition from valence band to the same empty levels situated around 0.8-0.9 eV above the valence band. The influence of the metastable states created by illumination and voltage bias on the sub-bandgap response has been studied. The experimental results are discussed in the framework of a model based on negative-U property of a native defect in chalcopyrites, i.e. V(Se)-V(Cu) divacancy. The arguments are presented that the levels involved in the optical transition observed in photoconductivity and photocapacitance might be antibonding levels of the acceptor configuration of this defect.

  • 38. Igalson, M.
    et al.
    Urbaniak, A.
    Krysztopa, A.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Metastable Defect Distributions and Spectral Photoresponse of CIGS Devices2010Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Metastable changes of photovoltaic parameters in baseline CIGS devices are investigated. In order to gain more insight into origin of these changes induced in particular by the reverse bias stress, quantum efficiency distribution together with current-voltage chracteristics are investigated with and without presence of blue illumination absorbed in CdS buffer. We show that photocurrent is affected by two barriers: one located in the absorber and related to the p+ layer enhanced by reverse bias treatment under elevated temperatures, and second related to negative charge accumulated most probably at CdS/i-ZnO interface. While the second barrier causes severe fill factor losses only under red illumination but is easily reduced by blue photons present in white light, the first one impedes current transport also under full spectrum. The results and simulations performed by using SCAPS software show the relation between both barriers: the more charge is accumulated in the p+ layer the more detrimental is the effect of the second barrier.

  • 39. Igalson, Malgorzata
    et al.
    Zabierowski, Pawel
    Przado, Daniel
    Urbaniak, Aleksander
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Shafarman, N
    Understanding defect-related issues limiting efficiency of CIGS solar cells2009Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 93, nr 8, s. 1290-1295Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Many electrical characteristics of Cu(In,Ga)Se-2-based solar cells, including current-voltage characteristics, are affected by specific properties of negative-U defects in the absorber. We present these characteristics and discuss them in the framework of a V-Se-V-Cu defect model proposed by Lany and Zunger. We show how these defects influence photocarrier transport and the dominant recombination mechanism, and hence also the photovoltaic parameters of the cells. Numerical simulations validating our approach will also be presented. (C) 2009 Elsevier B.V. All rights reserved.

  • 40.
    Igalson, Margaret
    et al.
    Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00 662 Warszawa, Poland.
    Urbaniak, Alexander
    Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00 662 Warszawa, Poland.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Reinterpretation of defect levels derived from capacitance spectroscopy of CIGSesolar cells2009Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 517, nr 7, s. 2153-2157Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work we make an attempt to clarify ambiguities and to present our present understanding of defectsand defect-related phenomena affecting the capacitance characteristics of Cu(In,Ga)Se2-based solar cells. Wediscuss deep defect levels derived from admittance and deep level transient spectroscopy, as well as shallowlevels affecting the charge distributions by capacitance–voltage profiling. The discussion includes two typesof metastable effects affecting capacitance characteristics: one induced at room temperature by light orvoltage bias, and one created at low temperature by red illumination of reverse-biased junction (ROB effect).Recent theoretical achievements on negative-U properties of such intrinsic defects as selenium vacancies andInCu antisites are used to explain the experimental data. We show that the most prominent level in theadmittance spectra is due to the response of interface states combined with contribution of deep VSe–VCu−/2−acceptor level. We attribute the ROB metastability to the relaxation of InCu defects upon electron capture.Finally we discuss the influence of these defects on the device efficiency.

  • 41.
    Jacobsson, Jesper T.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Fjällström, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Sahlberg, Martin Häggblad
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency2013Inngår i: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 6, nr 12, s. 3676-3683Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Efficient production of hydrogen from solar energy is anticipated to be an important component in a future sustainable post-carbon energy system. Here we demonstrate that series interconnected absorbers in a PV-electrolysis configuration based on the compound semiconductor CIGS, CuInxGa1-xSe2, are a highly interesting concept for solar water splitting applications. The band gap energy of CIGS can be adjusted to a value close to optimum for efficient absorption of the solar spectrum, but is too low to drive overall water splitting. Therefore we connect three cells in series, into a monolithic device, which provides sufficient driving force for the full reaction. Integrated with a catalyst this forms a stable PV/photo-electrochemical device, which when immersed in water reaches over 10% solar-to-hydrogen efficiency for unassisted water splitting. The results show that series interconnected device concepts, which enable use of a substantial part of the solar spectrum, provide a simple route towards highly efficient water splitting and could be used also for other solar absorbers with similar electro-optical properties. We discuss how the efficiency could be increased for this particular device, as well as the general applicability of the concepts used in this work. We also briefly discuss advantages and disadvantages of photo-electrochemical cells in relation to PV-electrolysis with respect to our results.

  • 42.
    Jacobsson, Jesper T.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Platzer-Björkman, Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    CuInxGa1-xSe2 as an efficient photocathode for solar hydrogen generation2013Inngår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 38, nr 35, s. 15027-15035Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Utilizing the energy in the sun to efficiently split water into hydrogen and oxygen can have a huge beneficial impact on a future post-carbon energy system. There is still, however, some way to go before this concept will be fully competitive. At the heart of the problem is finding and designing materials that can drive the photoreaction in an efficient and stable way. In this work we demonstrate how CIGS (CuInxGa1-xSe2), can be used for photo reduction of water into hydrogen. CIGS, which is a proven good solar cell material, does not in itself have the appropriate energetics to drive the reaction to any larger extent. Here we show that by utilizing a solid state pn-junction for charge separation and a catalyst deposited on the surface, the efficiency is significantly improved and photocurrents of 6 mA/cm(2) are demonstrated for the reduction reaction in the configuration of a photo-electrochemical cell. The stability of CIGS in water under illumination turns out to be a problem. In our present set-up, we demonstrate that separation between the charge carrier generation, which takes place in the solar cell, from the catalysis, which takes place in the electrolyte leads to improved stability, while keeping the essential functions of the processes. By incorporating appropriate charge separation layers and optimizing the catalytic conditions at the surface of the electrodes, photocurrents in excess of 20 mA/cm2 are reached for the reduction half reaction, demonstrating how essentially the full potential of GIGS as an efficient absorber material can be utilized in photocatalytic reduction of water into hydrogen.

  • 43.
    Jacobsson, Jesper
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Viktor, Fjällström
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Marika, Edoff
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Tomas, Edvinsson
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Sustainable Solar Hydrogen Production: From Photo-Electrochemical Cells to PV-Electrolysis and Back Again2014Inngår i: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sustainable hydrogen production could, in principle, be accomplished along several different routes, where some of the most promising approaches involve utilization of solar energy. Photoelectrochemical cells (PEC-cells) and PV-electrolyzers for solar hydrogen production are here analyzed and compared. The analysis is performed by theoretically designing a number of intermediate devices, successively going from PEC-cells to PV-electrolyzers. The main physical processes: absorption, charge carrier separation, charge carrier transport, and catalysis are analyzed in the different devices. This demonstrates how the two concepts are related, and how one could easily be transformed and converted into the other. The awareness of the close relationship between PEC-cells and PV-electrolyzers is not as widely recognized as it should be. Traditionally, these two approaches have often been considered as fundamentally different, and are far too seldom analyzed in the same context. We argue that the different device designs for solar hydrogen production are best seen as essentially equivalent approaches, and as topological variations of the same basic theme, and can in many cases be unified under the acronym photo driven catalytic (PDC) devices. We further argue that much is to gain by acknowledging the similarities between PEC water splitting and PV-electrolysis, and that one concept alone should not be considered without also considering the other. The analysis and discussion presented could potentially lead to an increased fruitful crossbreeding of the accumulated knowledge in the respective sub-discipline, and aid in realizing solar hydrogen production as a sustainable and economically compatible energy alternative.

  • 44.
    Jacobsson, T. Jesper
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Fjällstrom, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    A theoretical analysis of optical absorption limits and performance of tandem devices and series interconnected architectures for solar hydrogen production2015Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 138, s. 86-95Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Photo-driven catalytic (PDC) water splitting, using either photoelectrochemical cells (PEC-cells), PV-electrolyzers, or some hybrid system in-between, has attracted a lot of attention. In single-cell device architectures for solar hydrogen production, based on single band gap photoabsorbers, there is a fundamental efficiency problem originating from the energy distribution of the solar spectrum and the thermodynamic and kinetic requirements for splitting water. The minimum band gap for a single-junction device in order to withhold unbiased overall water splitting is considered to be at least 2.0 eV. This is far from the 1.35 eV which is the optimal band gap of a semiconductor for maximum power conversion of light in the solar spectrum. This discrepancy has been termed as the solar spectrum mismatch problem (the SSM-problem). The standard solution to this problem is to construct tandem devices, whereas an alternative is to interconnect several one band gap cells in series, side by side. Both approaches enable the use of low energy photons in the solar spectrum while still providing a sufficiently high photopotential for driving the full reaction, without seriously compromising with the area efficiency. In this paper, the tandem and serial architectures for handling the SSM-problem are analyzed and compared. The analysis is focused towards differences in the limits of optical absorption, the optimal number of optical. absorbers, and their corresponding band gaps. Taking losses due to charge carrier separation and catalysis into account, the maximum STH-efficiency for a series interconnected solar splitting device was found to be 24.6%, compared to 32.0% for an optimum tandem device at 1 Sun (air mass 1.5, 1000 W m(-2)). This can be compared with the maximum efficiency of 18.0% for an ideal single band gap photoabsorber in single junction device. The analysis shows that the maximum STH efficiency limits for series interconnected architectures for unassisted solar water splitting are not particularly far behind the more commonly studied tandem devices. They could then be an interesting alternative given the simplicity and versatility of series interconnected device architectures. The analysis also compares how tandem devices and series interconnected devices can differ in terms of charge carrier separation, charge carrier transport, catalysis, overall efficiency, device architecture, and expected cost.

  • 45.
    Jacobsson, T. Jesper
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Fjällstrom, Viktor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edvinsson, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    CIGS based devices for solar hydrogen production spanning from PEC-cells to PV-electrolyzers: a comparison of efficiency, stability and device topology2015Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 134, s. 185-93Artikkel i tidsskrift (Fagfellevurdert)
  • 46.
    Joel, Jonathan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Vermang, Bart
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Larsen, Jes
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Donzel-Gargand, Olivier
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    On the assessment of CIGS surface passivation by photoluminescence2015Inngår i: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 9, nr 5, s. 288-292Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An optimized test structure to study rear surface passivation in Cu(In,Ga)Se-2 (CIGS) solar cells by means of photoluminescence (PL) is developed and tested. The structure - illustrated in the abstract figure - is examined from the rear side. To enable such rear PL assessment, a semi-transparent ultrathin Mo layer has been developed and integrated in place of the normal rear contact. The main advantages of this approach are (i) a simplified representation of a rear surface passivated CIGS solar cell is possible, (ii) it is possible to assess PL responses originating close to the probed rear surface, and (iii) a stable PL response as a function of air exposure time is obtained. In this work, PL measurements of such structures with and without rear surface passivation layers have been compared, and the measured improvement in PL intensity for the passivated structures is associated with enhanced CIGS rear interface properties. [GRAPHICS] Transmission electron microscope (TEM) bright field cross-section image of the rear illuminated test structure fabricated for PL characterization.

  • 47.
    Johansson, Joar
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Zimmermann, Uwe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Modelling and Optimization of CIGS Modules2007Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A  computer  model  for  Cu(In,Ga)Se2 (CIGS)  based,  monolithic  solar  cell  modules  was  derived  and calibrated using measurement data from an actual mini-module with an aperture area of 80 cm2. Simulations using this model accurately reproduce the measurement results on mini-modules with different cell widths to within ±3% of the parameters Voc, Isc, fill-factor and efficiency. The optical and electrical properties of the transparent front-contact were  obtained  from  quantum  efficiency  measurements  on  a  series  of  solar  cells  with  ZnO:Al  layers  of  different thicknesses  and  incorporated  into  the  model.  Finally,  computer  simulations  were  used  to  optimize  CIGS  thin-film modules  for  the  application  in  low-concentrating  systems.  Aperture  area  efficiencies  exceeding  14%  at  up  to  10x concentration  are  predicted  by  the  simulations  for  CIGS  thin-film  modules  with  cell  widths  of  w = 2 mm.  These simulation results are supported by preliminary measurements.

  • 48.
    Keller, Jan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Chalvet, Francis
    Solibro Res AB, Vallvagen 5, S-75151 Uppsala, Sweden.
    Joel, Jonathan
    Solibro Res AB, Vallvagen 5, S-75151 Uppsala, Sweden.
    Aijaz, Asim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Kubart, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Riekehr, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik. Solibro Res AB, Vallvagen 5, S-75151 Uppsala, Sweden.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Effect of KF absorber treatment on the functionality of different transparent conductive oxide layers in CIGSe solar cells2018Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 26, nr 1, s. 13-23Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This contribution studies the impact of the KF-induced Cu(In,Ga)Se2 (CIGSe) absorber modification on the suitability of different transparent conductive oxide (TCO) layers in solar cells. The TCO material was varied between ZnO:Al (AZO), ZnO:B (BZO), and In2O3:H (IOH). It is shown that the thermal stress needed for optimized TCO properties can establish a transport barrier for charge carriers, which results in severe losses in fill factor (FF) for temperatures >150°C. The FF losses are accompanied by a reduction in open circuit voltage (Voc) that might originate from a decreased apparent doping density (Nd,app) after annealing. Thermally activated redistributions of K and Na in the vicinity of the CdS/(Cu,K)-In-Se interface are suggested to be the reason for the observed degradation in solar cell performance. The highest efficiency was measured for a solar cell where the absorber surface modification was removed and a BZO TCO layer was deposited at a temperature of 165°C. The presented results highlight the importance of well-designed TCO and buffer layer processes for CIGSe solar cells when a KF post deposition treatment (KF-PDT) was applied.

  • 49.
    Keller, Jan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Gustavsson, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga)Se2 solar cells2017Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 159, s. 189-196Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study reports on the beneficial effect of an absorber surface passivation by Al2O3 on the performance of Cu(In, Ga)Se-2 (CIGSe) solar cells. Here the Al2O3 layer is deposited by atomic layer deposition (ALD) subsequently to a CdS buffer layer. It is shown that a very thin film of about 1 nm efficiently reduces the interface recombination rate if the buffer layer is too thin to not fully cover the CIGSe absorber. An Al2O3 thickness of 1 nm is sufficiently low to allow current transport via tunneling. Increasing the thickness to > 1 nm leads to a detrimental blocking behavior due to an exponentially decreasing tunnel current. Losses in open circuit voltage (V-oc) and fill factor (FF) when reducing the buffer layer thickness are significantly mitigated by implementing an optimized Al2O3 layer. It is further shown, that the heat treatment during the ALD step results in an increase in short circuit current density (J(sc)) of about 2 mA/cm(2). This observation is attributed to a widening of the space charge region in the CIGSe layer that in turn improves the collection probability of electrons. For not fully covering CdS layers the decrease in interface defect density by the passivation contributes as well, leading to a gain of about 5 mA/cm2 for cells without a buffer. Finally, the leakage current of the solar cell devices could be reduced when applying the Al2O3 layer on insufficiently covering CdS films, which proves the capability of mitigating the effect of shunts or bad diodes.

  • 50.
    Keller, Jan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Lindahl, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Edoff, Marika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Stolt, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Törndahl, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Potential gain in photocurrent generation for Cu(In,Ga)Se2 solar cells by using In2O3 as a transparent conductive oxide layer2016Inngår i: Progress in Photovoltaics, ISSN 1062-7995, E-ISSN 1099-159X, Vol. 24, nr 1, s. 102-107Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study highlights the potential of atomic layer deposited In2O3 as a highly transparent and conductive oxide (TCO)layer in Cu(In,Ga)Se2 (CIGSe) solar cells. It is shown that the efficiency of solar cells which use Zn-Sn-O (ZTO) as an alternativebuffer layer can be increased by employing In2O3 as a TCO because of a reduction of the parasitic absorption inthe window layer structure, resulting in 1.7 mA/cm2 gain in short circuit current density (Jsc). In contrast, a degradation ofdevice properties is observed if the In2O3 TCO is combined with the conventional CdS buffer layer. The estimated improvementfor large-scale modules is discussed.

123 1 - 50 of 145
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf