uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1 - 50 of 50
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Dahlstrand, Christian
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Jahn, Burkhard O.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Villaume, Sebastien
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Polyfulvenes: Polymers with "Handles" That Enable Extensive Electronic Structure Tuning2015Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, nr 46, s. 25726-25737Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The fundamental electronic structure properties of substituted poly(penta)fulvenes and pentafulvene-based polymers are analyzed through qualitative molecular orbital (MO) theory combined with calculations at the B3LYP and HSE06 hybrid density functional theory (DFT) levels. We argue that the pentafulvene monomer unit has a unique character because electron density in the exocyclic C=C double bond can be polarized into and out of the five-membered ring, a feature that is not available to other more commonly used monomers. It is investigated how the energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively), as approximate band gaps, are influenced by exocyclic substitution, introduction of linker groups, benzannulation, and ring substitution. In particular, the exocyclic positions of the fulvene act as handles by which the electronic structure of the polymer can be tuned between the quinoid and fulvenoid valence bond isomers; electron-withdrawing exocyclic substituents lead to polyfulvenes in the quinoid form while those with electron-donating substituents prefer the fulvenoid. Taken together, the HOMO-LUMO gaps of polyfulvenes can be tuned extensively, varying in ranges 0.77-2.44 eV (B3LYP) and 0.35-2.00 eV (HSE06) suggesting that they are a class of polymers with highly interesting, yet nearly unexplored, properties.

  • 2.
    Emanuelsson, Rikard
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi. Institut für Anorganische Chemie, Technische Universität Graz.
    Nauroozi, Djawed
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Baumgartner, Judith
    Institut für Anorganische Chemie, Technische Universität Graz.
    Marschner, Christoph
    Institut für Anorganische Chemie, Technische Universität Graz.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ott, Sascha
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Configuration- and Conformation-Dependent Electronic Structure Variations in 1,4-Disubstituted Cyclohexanes Enabled by a Carbon-to-Silicon Exchange2014Inngår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, nr 30, s. 9304-9311Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    Cyclohexane, with its well-defined conformers, could be an ideal force-controlled molecular switch if it were to display substantial differences in electronic and optical properties between its conformers. We utilize sigma conjugation in heavier analogues of cyclohexanes (i.e. cyclohexasilanes) and show that 1,4-disubstituted cyclohexasilanes display configuration-and conformation-dependent variations in these properties. Cis- and trans-1,4-bis(trimethylsilylethynyl)-cyclohexasilanes display a 0.11 V difference in their oxidation potentials (computed 0.11 V) and a 0.34 eV difference in their lowest UV absorption (computed difference between first excitations 0.07 eV). This is in stark contrast to differences in the corresponding properties of analogous all-carbon cyclohexanes (computed 0.02 V and 0.03 eV, respectively). Moreover, the two chair conformers of the cyclohexasilane trans isomer display large differences in electronic-structure-related properties. This enables computational design of a mechanically force-controlled conductance switch with a calculated single-molecule ON/OFF ratio of 213 at zero-bias voltage.

  • 3.
    Emanuelsson, Rikard
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Zhu, Jun
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi. State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    In Search of Flexible Molecular Wires with Near Conformer-Independent Conjugation and Conductance: A Computational Study2014Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, nr 11, s. 5637-5649Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oligomers of 1,4-disila/germa/stannacyclohexa-2,5-dienes as well as all-carbon 1,4-cyclohexadienes connected via E—E single bonds (E = C, Si, Ge, or Sn) were studied through quantum chemical calculations in an effort to identify conformationally flexible molecular wires that act as molecular “electrical cords” having conformer-independent conjugative and conductive properties. Our oligomers display neutral hyperconjugative interactions (σ/π-conjugation) between adjacent σ(E—E) and π(C═C) bond orbitals, and these interactions do not change with conformation. The energies and spatial distributions of the highest occupied molecular orbitals of methyl-, silyl-, and trimethylsilyl (TMS)-substituted 1,4-disilacyclohexa-2,5-diene dimers, and stable conformers of trimers and tetramers, remain rather constant upon Si–Si bond rotation. Yet, steric congestion may be a concern in some of the oligomer types. The calculated conductances for the Si-containing tetramers are similar to that of a σ-conjugated linear all-anti oligosilane (a hexadecasilane) with equally many bonds in the conjugated paths. Moreover, the Me-substituted 1,4-disilacyclohexadiene tetramer has modest conductance fluctuations with Si–Si bond rotations when the electrode–electrode distance is locked (variation by factor 30), while the fluctuations under similar conditions are larger for the analogous TMS-substituted tetramer. When the electrode–electrode distance is changed several oligomers display small conductance variations within certain distance intervals, e.g., the mean conductance of TMS-substituted 1,4-disilacyclohexa-2,5-diene tetramer is almost unchanged over 9 Å of electrode–electrode distances.

  • 4.
    Grigoriev, Anton
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Skorodumova, Natalia V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Simak, S. I.
    Wendin, G.
    Johansson, Börje
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Electron transport in stretched monoatomic gold wires2006Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 97, nr 23, s. 236807-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The conductance of monoatomic gold wires containing 3-7 gold atoms has been obtained from ab initio calculations. The transmission is found to vary significantly depending on the wire stretching and the number of incorporated atoms. Such oscillations are determined by the electronic structure of the one-dimensional (1D) part of the wire between the contacts. Our results indicate that the conductivity of 1D wires can be suppressed without breaking the contact.

  • 5. He, Haiying
    et al.
    Scheicher, Ralph H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysik IV.
    Pandey, Ravindra
    Rocha, Alexandre Reily
    Sanvito, Stefano
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysik IV.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysik IV.
    Karna, Shashi P.
    Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing2008Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 112, nr 10, s. 3456-3459Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    With the aim of improving nanopore-based DNA sequencing, we explored the effects of functionalizing the embedded gold electrodes with purine and pyrimidine molecules. Hydrogen bonds formed between the molecular probe and target bases stabilize the scanned DNA unit against thermal fluctuations and thus greatly reduce noise in the current signal. The results of our first-principles study indicate that this proposed scheme could allow DNA sequencing with a robust and reliable yield, producing current signals that differ by at least 1 order of magnitude for the different bases.

  • 6. He, Yuhui
    et al.
    Scheicher, Ralph
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Long, Shibing
    Huo, Zongliang
    Liu, Ming
    DNA sequencing with nanopore-embedded bilayer-graphene nanoelectrodes2010Inngår i: ICSICT-2010 - 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Proceedings, s. 1483-1485Artikkel i tidsskrift (Fagfellevurdert)
  • 7. He, Yuhui
    et al.
    Scheicher, Ralph
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Long, Shibing
    Ji, Zhuoyu
    Yu, Zhaoan
    Liu, Ming
    Fast DNA sequencing via transverse differential conductance2010Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We propose using characteristic transverse differential conductance for solid-state nanopore-based DNA sequencing and have explored this idea by performing molecular dynamics simulations on the translocation progress of single-stranded DNA molecule through the nanopore, and calculating the associated transverse differential conductance. Our results show that measurement of the transverse differential conductance is suitable to successfully discriminate between the four nucleotide types, and we show that this identification could even withstand electrical noise caused by fluctuations due to changes in the DNA orientation. Our findings demonstrate several compelling advantages of the differential conductance approach, which may lead to important applications in rapid genome sequencing.

  • 8.
    He, Yuhui
    et al.
    Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
    Scheicher, Ralph H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Long, Shibing
    Laboratory of Nano-Fabrication and Novel Devices Integrated, Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
    Huo, ZongLiang
    Laboratory of Nano-Fabrication and Novel Devices Integrated, Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
    Liu, Ming
    Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
    Enhanced DNA Sequencing Performance Through Edge-Hydrogenation of Graphene Electrodes2011Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 21, nr 14, s. 2674-2679Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The use of graphene electrodes with hydrogenated edges for solid-state nanopore-based DNA sequencing is proposed, and molecular dynamics simulations in conjunction with electronic transport calculations are performed to explore the potential merits of this idea. The results of the investigation show that, compared to the unhydrogenated system, edge-hydrogenated graphene electrodes facilitate the temporary formation of H-bonds with suitable atomic sites in the translocating DNA molecule. As a consequence, the average conductivity is drastically raised by about 3 orders of magnitude while exhibiting significantly reduced statistical variance. Furthermore, the effect of the distance between opposing electrodes is investigated and two regimes identified: for narrow electrode separation, the mere hindrance due to the presence of protruding hydrogen atoms in the nanopore is deemed more important, while for wider electrode separation, the formation of H-bonds becomes the dominant effect. Based on these findings, it is concluded that hydrogenation of graphene electrode edges represents a promising approach to reduce the translocation speed of DNA through the nanopore and substantially improve the accuracy of the measurement process for whole-genome sequencing.

  • 9. He, Yuhui
    et al.
    Shao, Lubing
    Scheicher, Ralph
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Long, Shibing
    Ji, Zhuoyu
    Yu, Zhaoan
    Liu, Ming
    Differential conductance as a promising approach for rapid DNA sequencing with nanopore-embedded electrodes2010Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 97, nr 4, s. 043701-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We propose an approach for nanopore-based DNA sequencing using characteristic transverse differential conductance. Molecular dynamics and electron transport simulations show that thetransverse differential conductance during the translocation of DNA through the nanopore isdistinguishable enough for the detection of the base sequence and can withstand electrical noisecaused by DNA structure fluctuation. Our findings demonstrate several advantages of the transverseconductance approach, which may lead to important applications in rapid genome sequencing.

  • 10.
    Jafri, Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jonas, Fransson
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Fysikalisk-organisk kemi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy2013Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 5, nr 11, s. 4673-4677Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Short chains containing a series of metal- molecule-nanoparticle nanojunctions are a nano-materials system with the potential to give electrical signatures close to those from single molecule experiments while enabling to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing of typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signature of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing few 1,8-octanedithiol (ODT) molecules into a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.

  • 11.
    Jafri, S. Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Assessment of a nanoparticle bridge platform for molecular electronics measurements2010Inngår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 21, nr 43, s. 435204-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles in order to make electrical measurements and assess the platform under ambient conditions. Non-functionalized electrodes were tested to determine the intrinsic response of the platform and it was found that creating devices in ambient conditions requires careful cleaning and awareness of the contributions contaminants may make to measurements. The platform was then used to make measurements on octanethiol (OT) and biphenyldithiol (BPDT) molecules by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal–molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density functional theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve under ambient conditions. Significant hysteresis in the IV curves of BPDT was also observed, which was attributed primarily to voltage induced changes at the interface between the molecule and the metal.

  • 12.
    Jafri, S. Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Department of Electrical Engineering, Mirpur University of Science and Technology, Pakistan.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC. Uppsala Univ, Dept Chem BMC, SE-75123 Uppsala, Sweden..
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds2015Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, artikkel-id 14431Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with omega-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  • 13.
    Jafri, S.Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Control of junction resistances in molecular electronic devices fabricated by FIB2010Inngår i: 36th International Conference on Micro and Nano Engineering, MNE2010, Italy (2010), 2010Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Molecules provide an opportunity to fabricate electronic devices with much smaller basic unit in size i.e. 1-5 nm as compared to today’s silicon based electronics. Furthermore, molecules can be synthesized withalmost unlimited variation of their electronic structure. Theoretically, molecules in various configurations were demonstrated as rectifiers, transistors or memories, but experimentally it is still very difficult to obtaina  stable and reproducible molecular based device [1]. A major hurdle to realize such devices is to make reliable electrical contacts to a single or a few molecules. Here, we show the first reproducible and systematic evaluation of a nanogap-nanoparticle bridge set-up that can be used as base for development of few molecule molecular electronics under ambient conditions. We have developed a nano-contact platform by top-down approach [2] with a gap size of 20-30nm using combined techniques of photolithography, electron beam lithography and focused ion beam milling (Fig 1). These gaps demonstrate excellent resistance in order of 1000 TΩ enabling us to carry out electrical characterization of highly resistive nanomaterials.However, compared to the size of molecules these gaps are quite big. In this study, we used metallic nanoparticles to bridge the gap and thus obtain electrical contacts with 1-2nm long molecules in the junction between the nanoelectrodes and the nanoparticles. The nanoparticles are assembled in the gap  by a bottom-up approach using dielectrophrosis trapping process. Prior to introduction of molecules in such devices, we found that the trapping of gold nanoparticles (AuNP) in between clean nanoelectrodes without presence of molecules often gave resistance in order of mega-ohms to giga-ohms due to presence of a non conductive barrier. However, it was observed that cleaning protocols of both the gold contacts and nanoparticles in solution lead to resistance of less than a few hundreds of ohms (Fig 2). Molecules were introduced both by functionalizing the electrode gap and the the nanoparticles and the results of both functionalisation protocols are compared. By optimizing the electrode cleaning as well as the functionalisation of the metallic surfaces, we obtain reproducible electrical measurements. We fabricated such devices either by depositing a Self Assembled Monolayer (SAM) of molecules on the nano-contacts and bridging the gap by AuNP or by bridging the clean nano-contacts with molecule-coated-AuNP (Fig 3). Here we utilized a model molecules octanethiol (OT), octanedithiol and biphenyldithiol in fabrication of devices and study of metal molecule junction resistance. IV characterization of OT molecules (Fig 4) showed linear response where current levels varied between picoamps and femtoamps with an applied voltage of 1-3V. OT in this setup had one physisorbed contact with gold, which resulted in much less wave function mixing at the molecule-metal interface, and consequently decreased the transmission probability at the molecule-electrode interface. As a result, in the evaluation of more than 50 devices, a considerable variation of resistance between different devices due to the lack of covalent binding, the variation in number of trapped AuNPs, incomplete coverage of OT on the uneven surface of nanoelectrodes and variation in contact surface geometry. Density functional theory is used to understand the origin of the resistance fluctuation. We were able to estimate the average resistance per octanethiol molecule for such device in order of 175GΩ, in good agreement with other published results. Our results with the measurements on OT in such devices demonstrate that it is possible to fabricate stable electronic devices having relatively small numbers of molecules with reliable metal molecule junction by combing top-down and bottom-up approaches. By functionalizing the nanoparticles, we obtained a strong decrease of the resistance spread of such devices from 3 orders of magnitude to about 1 order of magnitude, making this technology a potential approach for molecular devices operating at ambient conditions.

     

  • 14.
    Jafri, S.Hassan M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Realization of highly reproducible molecular junctions in a nanoparticle-alkanedithiol-nanoelectrode bridge platformManuskript (preprint) (Annet vitenskapelig)
  • 15.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Use of a nanoelectrode nanoparticle bridge platform in molecular electronics2010Inngår i: ElecMol’10, 5th International Meeting on Molecular Electronics, Grenoble, France, December 6-10, 2010, 2010, s. 116-116Konferansepaper (Fagfellevurdert)
  • 16.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.H. M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Coronel, E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Molecular electronics on non-perfect electrode surfaces2010Inngår i: International Conference on Molecular Electronics, Emmetten, Switzerland, 2010Konferansepaper (Fagfellevurdert)
  • 17.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.Hassan M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    FIB Fabrication and use of high resistance nanogaps for application in molecular electronics2010Inngår i: 17th International Microscopy Congress, IMC17, Brazil, 2010Konferansepaper (Fagfellevurdert)
  • 18.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.Hassan M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Agustsson, J.
    University Basel, Department of Physics, CH-4056 Basel, Switzerland.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Fransson, J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Calame, M.
    University Basel, Department of Physics, CH-4056 Basel, Switzerland.
    Vibrational signatures in inelastic tunneling spectroscopy from short molecule-nanoparticle chains trapped in versatile nanoelectrodesManuskript (preprint) (Annet vitenskapelig)
  • 19.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Alvi, Muhammad Rouf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    The [1,3]-Si→O Silyl Shift from a Nonconducting Acylsilane to a Conducting Brook-Silene as Basis for a Molecular SwitchManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    By usage of density functional theory (DFT) calculations we explored if the [1,3]-silyl shift leading from an acylsilane with two p-conjugated substituents to a silene (a Si=C double bonded compound) can be used as a basis for a molecular conductance switch. In such a switch, the acylsilane, with a tetrahedral saturated silicon atom disrupting the conjugation through the molecule, acts as the OFF state, whereas the silene with a conjugated path running through the complete molecule represents the ON state. Our requirements are (i) the silenes should be slightly higher in relative energy than the acylsilane so as to promote a thermal backrearragment, (ii) the barrier for the backtransfer of the silyl group should be 25-30 kcal/mol, (iii) the ON/OFF conductance ratio should be high, and (iv) the switch should be realistic. According to our calculations using non-equilibrium Green’s function theory, a 1,2-bis(4-thiophenylethynyl)silene has a conductance which is 270 times higher than that of the corresponding acylsilane at zero bias voltage. However, at a voltage of +1 V the ON/OFF ratio decreases to ~40.

  • 20.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Conductance through Carbosilane Cage Compounds: A Computational Investigation2013Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, nr 42, s. 21692-21699Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Silicon is still the dominating material in microelectronics, yet primarily π-conjugated hydrocarbons are investigated in the field of single-molecule electronics even though linear oligosilanes are σ-conjugated. A drawback with the latter is their high conformational flexibility which strongly affects conductance. Here we report on a first principles density functional theory investigation of a series of rigid [2.2.2]bicyclic carbosilanes with 3, 2, 1, or 0 disilanylene bridges, providing all-silicon paths for charge transport. It is explored if these paths can be seen as independent and equivalent current paths acting as parallel resistors. For high conductance through the carbosilanes they need to be anchored to the gold electrodes via groups that are matched with the σ-conjugated paths of the oligosilane cage segment, and we find that silyl (SiH3) groups are better matched than thiophenol groups. Even for the carbosilane with three disilanylene bridges we find that the most transmitting conductance channel is not equally distributed on the three parallel bridges. In addition, there is significant communication between the various pathways, which results in destructive interference lowering the conductance. Taken together, the different disilanylene bridges in the cage compounds do not act as parallel resistors.

  • 21.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Isberg, Jan
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Computational Study of the Chaotic Behavior in Single-molecule Conduction2013Inngår i: 2013 MRS Spring Meeting: Electrical Contacts to Nanomaterials and Nanodevices, 2013Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Recently we have seen great advances in synthesis and fabrication of nanostructures. However, there is still no consensus on the conductance of small organic molecules, where different values of the conductance are often attributed to differences in metal-molecule interface structure or different molecular conformations[1,2]. Control and characterization of the metal-molecule interface during formation of the junction is in practice an impossible task. To get insight into this highly dynamic process, computer simulations are needed; here we are going to show a combination of ab-initio molecular dynamics (MD)-simulations and conductance calculations to address this problem.The conductance of a junction is mainly determined by the relative position of the energy level closest to the Fermi level of the electrodes and by the coupling of the corresponding electronic state to the electrodes[2]. These parameters are greatly influenced by the nature of the interaction and/or chemical bond between electrodes and the molecule. Information about the nature of this interaction and its variation with different binding sites can be extracted from the conduction spectra. Here we are using MD-simulations to get an unbiased set of geometries, thus mimicking the randomness of a real junction under thermal fluctuations. From the obtained geometries the zero-bias conductance is calculated and used for histograms to investigate the statistics of the junction.The obtained histograms for the thiol-bonded molecules are fitted with probability distributions for different Gaussian ensembles and we show that the interaction between the electrode and the molecule gives rise to quantum chaos in the junction. The effect of quantum chaos have earlier been found experimentally for quantum dots[3] and nanowires[4]. By removing the symmetry in the junction the chaotic behavior can be increased. We also compare the thiol anchoring groups with amines and we can see that the weaker coupling to the gold for the amines increases the conductance fluctuations in the junctions by one to two orders of magnitude. By tuning the ratio of the coupling between the electrodes and the molecular state we show, that the junction can be switched from a chaotic behavior to a case with a normal distributed conductance spectrum where only temperature fluctuations are present.[1] S. L. Bernasek, Angew. Chem. Int. Ed. 51, 9737 (2012).[2] A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).[3] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).[4] J. L. Costa-Krämer, N. García, P. García-Mochales, P. A. Serena, M. I. Marqués, and A. Correia, Phys. Rev. B 55, 5416 (1997).

  • 22.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Isberg, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation2011Inngår i: AIP Advances, ISSN 2158-3226, Vol. 1, nr 3, s. 032139-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present calculated interband transitions and effective masses for diamond from first principles including electron correlation effects via the GW-approximation. Our findings are in agreement with experiments, already the first iteration of the GW-scheme gives a direct gap at the gamma-point of 7.38 eV and a indirect gap of 5.75 eV close to experimental values. For deeper bands a quasiparticle self-consistent method is necessary to accurately reproduce the valence band width to 23.1 eV. We also obtain effective hole masses along different symmetry axes and electron conduction masses, ml = 1.1m0 and mt = 0.22m0

  • 23.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Isberg, Jan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Elektricitetslära.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Transport coefficients in diamond from ab-initio calculations2013Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 102, nr 9, s. 092106-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S-2 sigma, in the range 0.004-0.16 mu W/cm K-2.

  • 24.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jahn, B. O.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Wärnå, John
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Emanuelsson, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    A computational study of potential molecular switches that exploit Baird's rule on excited-state aromaticity and antiaromaticity2014Inngår i: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 174, s. 105-124Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A series of tentative single-molecule conductance switches which could be triggered by light were examined by computational means using density functional theory (DFT) with non-equilibrium Green's functions (NEGF). The switches exploit the reversal in electron counting rules for aromaticity and antiaromaticity upon excitation from the electronic ground state (S0) to the lowest [small pi][small pi]* excited singlet and triplet states (S1 or T1), as described by Huckel's and Baird's rules, respectively. Four different switches and one antifuse were designed which rely on various photoreactions that either lead from the OFF to the ON states (switches 1, 2 and 4, and antifuse 5) or from the ON to the OFF state (switch 3). The highest and lowest ideal calculated switching ratios are 1175 and 5, respectively, observed for switches 1 and 4. Increased thermal stability of the 1-ON isomer is achieved by benzannulation (switch 1B-OFF/ON). The effects of constrained electrode-electrode distances on activation energies for thermal hydrogen back-transfer from 1-ON to 1-OFF and the relative energies of 1-ON and 1-OFF at constrained geometries were also studied. The switching ratio is strongly distance-dependent as revealed for 1B-ON/OFF where it equals 711 and 148 when the ON and OFF isomers are calculated in electrode gaps with distances confined to either that of the OFF isomer or to that of the ON isomer, respectively.

  • 25.
    Löfås, Henrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Jahn, Burkhard O.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Rouf, Alvi M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ott, Sascha
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    New Class of Molecular Conductance Switches Based on the [1,3]-Silyl Migration from Silanes to Silenes2013Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, nr 21, s. 10909-10918Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Based on first principles density functional theory calculations we propose a new molecularphotoswitch which exploits a photochemical [1,3]-silyl(germyl) shift leading from a silane to asilene (a Si=C double bonded compound). The silanes investigated herein act as the OFF state,with tetrahedral saturated silicon atoms disrupting the conjugation through the molecules. Thesilenes, on the other hand, have conjugated paths spanning over the complete molecules, andthus act as the ON state. We calculate ON/OFF conductance ratios in the range of 10 - 50at a voltage of +1 V. In the low bias regime the ON/OFF ratio increases to a range of 200 -1150. The reverse reaction could be triggered thermally or photolytically, with the silenebeing slightly higher in relative energy than the silane. The calculated activation barriers forthe thermal back-rearrangement of the migrating group can be tuned, and are in the range 108 -171 kJ/mol for the switches examined herein. The first principles calculations together witha simple one-level model shows that the high ON/OFF ratio in the molecule assembled in asolid state device is due to changes in the energy position of the frontier molecular orbitalscompared to the Fermi energy of the electrodes, in combination with an increased effectivecoupling between the molecule and the electrodes for the ON state.

  • 26.
    Orthaber, Andreas
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Öberg, Elisabet
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Jafri, S.Hassan M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Santoni, Marie-Pierre
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Ott, Sascha
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Cooperative Gold Nanoparticle Stabilization by Acetylenic Phosphaalkenes2015Inngår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 54, nr 36, s. 10634-10638Artikkel i tidsskrift (Fagfellevurdert)
  • 27. Parlak, O.
    et al.
    Kumar Mishra, Y.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Mecklenburg, M.
    Luo, W.
    Keene, S.
    Salleo, A.
    Schulte, K.
    Ahuja, R.
    Adelung, R.
    Turner, A. P. F.
    Tiwari, A.
    Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor2017Inngår i: Nano Energy, Vol. 34, nr April, s. 570-577Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A great deal of interest has been paid to the application of carbon-based nano- and microstructured materials as electrodes due to their relatively low-cost production, abundance, large surface area, high chemical stability, wide operating temperature range, and ease of processing including many more excellent features. The nanostructured carbon materials usually offer various micro-textures due to their varying degrees of graphitisation, a rich variety in terms of dimensionality as well as morphologies, extremely large surface accessibility and high electrical conductivity, etc. The possibilities of activating them by chemical and physical methods allow these materials to be produced with further higher surface area and controlled distribution of pores from nanoscale upto macroscopic dimensions, which actually play the most crucial role towards construction of the efficient electrode/electrolyte interfaces for capacitive processes in energy storage applications. Development of new carbon materials with extremely high surface areas could exhibit significant potential in this context and motivated by this in present work, we report for the first time the utilization of ultralight and extremely porous nano-microtubular Aerographite tetrapodal network as a functional interface to probe the electrochemical properties for capacitive energy storage. A simple and robust electrode fabrication strategy based on surface functionalized Aerographite with optimum porosity leads to significantly high specific capacitance (640 F/g) with high energy (14.2 Wh/kg) and power densities (9.67×103 W/kg) which has been discussed in detail.

  • 28.
    Parlak, Onur
    et al.
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.;Linkoping Univ, IFM, Biosensors & Bioelect Ctr, S-58183 Linkoping, Sweden..
    Mishra, Yogendra Kumar
    Univ Kiel, Funct Nanomat, Inst Mat Sci, Kaiserstr 2, D-24143 Kiel, Germany..
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Mecklenburg, Matthias
    Hamburg Univ Technol, Inst Polymers & Composites, Denickestr 15, D-21073 Hamburg, Germany..
    Luo, Wei
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Keene, Scott
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Salleo, Alberto
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Schulte, Karl
    Hamburg Univ Technol, Inst Polymers & Composites, Denickestr 15, D-21073 Hamburg, Germany..
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Adelung, Rainer
    Univ Kiel, Funct Nanomat, Inst Mat Sci, Kaiserstr 2, D-24143 Kiel, Germany..
    Turner, Anthony P. F.
    Linkoping Univ, IFM, Biosensors & Bioelect Ctr, S-58183 Linkoping, Sweden..
    Tiwari, Ashutosh
    Linkoping Univ, IFM, Biosensors & Bioelect Ctr, S-58183 Linkoping, Sweden.;UCS, Inst Adv Mat, IAAM, Mjardevi Sci Pk,Teknikringen 4A, S-58330 Linkoping, Sweden..
    Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor2017Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 34, s. 570-577Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A great deal of interest has been paid to the application of carbon-based nano-and microstructured materials as electrodes due to their relatively low-cost production, abundance, large surface area, high chemical stability, wide operating temperature range, and ease of processing including many more excellent features. The nanostructured carbon materials usually offer various micro-textures due to their varying degrees of graphitisation, a rich variety in terms of dimensionality as well as morphologies, extremely large surface accessibility and high electrical conductivity, etc. The possibilities of activating them by chemical and physical methods allow these materials to be produced with further higher surface area and controlled distribution of pores from nanoscale upto macroscopic dimensions, which actually play the most crucial role towards construction of the efficient electrode/electrolyte interfaces for capacitive processes in energy storage applications. Development of new carbon materials with extremely high surface areas could exhibit significant potential in this context and motivated by this in present work, we report for the first time the utilization of ultralight and extremely porous nano-microtubular Aerographite tetrapodal network as a functional interface to probe the electrochemical properties for capacitive energy storage. A simple and robust electrode fabrication strategy based on surface functionalized Aerographite with optimum porosity leads to significantly high specific capacitance (640 F/g) with high energy (14.2 Wh/kg) and power densities (9.67x103 W/kg) which has been discussed in detail.

  • 29.
    Pathak, Biswarup
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Prasongkit, Jariyanee
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Scheicher, Ralph H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Double-functionalized nanopore-embedded gold electrodes for rapid DNA sequencing2012Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 2, s. 023701-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have studied the effect of double-functionalization on gold electrodes for improving nanopore-based DNA sequencing. The functionalizing molecular probes are, respectively, capable of temporarily forming hydrogen bonds with both the nucleobase part and the phosphate group of the target DNA, thus potentially minimizing the structural fluctuations of a single-stranded DNA molecule passing between the gold electrodes. The results of our first-principles study indicate that the proposed setup yields current signals that differ by at least 1 order of magnitude for the four different nucleic acid bases, thus offering the possibility to electrically distinguish them.

  • 30.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Conductance of linear carbon wires bridging carbon nanotubesManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The cumulenes bridging two-dimensional electrodes provide a model for interconnecting molecular electronics circuit with one of the most conductive molecular wires known. In recent experiments cumulene molecules bridging graphene sheets were observed [PRL 102, 205501 (2009)], thus demonstrating the mechanical way of producing cumulenes. Appearance of carbon wires: cumulenes and polynes, is also feasible between graphene sheets or carbon nanotubes (CNTs). In this work, we study structure and conductance of these wires  suspended between CNTs of different chirality (zigzag and armchair), and graphene sheets (infinite radii CNTs) and corresponding conductance variation upon stretching. We find the geometrical structures of the carbon wire bridging CNT similar to the experimentally observed in the carbon wires obtained between graphene electrodes. We show a capability to modulate the conductance by changing bridging sites between the carbon wire and CNT without breaking the wire. Observed current modulation via cumulene wire stretching/elongation together with CNT stability makes it a promising candidate for mechano-switching device in molecular nanoelectronics.

  • 31.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Mechano-switching devices from carbon wire-carbon nanotube junctions2013Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 87, nr 15, s. 155434-155442Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Well-known conductive molecular wires, such as cumulene or polyyne, provide a model for interconnectingmolecular electronics circuits. In recent experiments, the appearance of carbon wire bridging between twodimensional electrodes, i.e., graphene sheets, was observed [C. Jinet al.,Phys. Rev. Lett.102, 205501 (2009)], thusdemonstrating a mechanical way of producing cumulene. In this work, we studied the structure and conductanceof carbon wire suspended between carbon nanotubes (CNTs) of different chiralities (zigzag and armchair), andcorresponding conductance variation upon stretching. We found that the geometric structure of the carbon wirebridging CNTs was similar to the experimentally observed structures in carbon wire obtained between grapheneelectrodes. We show a way to modulate conductance by changing bridging sites between carbon wire and CNTswithout breaking the wire. Observed current modulation via cumulene wire stretching or elongation together withCNT junction stability makes this a promising candidate for use in mechano-switching devices for molecularnanoelectronics.

  • 32.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Pathak, Biswarup
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Scheicher, Ralph H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap2013Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, nr 29, s. 15421-15428Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Graphene nanogaps and nanopores show potential for the purpose of electrical DNA sequencing, in particular because single-base resolution appears to be readily achievable. Here, we evaluated from first principles the advantages of a nanogap setup with functionalized graphene edges. To this end, we employed density functional theory and the non-equilibrium Green's function method to investigate the transverse conductance properties of the four nucleotides occurring in DNA when located between opposing functionalized graphene electrodes. In particular, we determined the electrical tunneling current variation as a function of the applied bias and analyzed the associated differential conductance at a voltage which appears suitable to distinguish between the four nucleotides. Intriguingly, we predict for one of the nucleotides (deoxyguanosine monophosphate) a negative differential resistance effect.

  • 33.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Pathak, Biswarup
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Scheicher, Ralph H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles2011Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 11, nr 5, s. 1941-1945Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The fabrication of nanopores in atomically thin graphene has recently been achieved, and translocation of DNA has been demonstrated. Taken together with an earlier proposal to use graphene nanogaps for the purpose of DNA sequencing, this approach can resolve the technical problem of achieving single-base resolution in electronic nucleobase detection. We have theoretically evaluated the performance of a graphene nanogap setup for the purpose of whole-genome sequencing, by employing density functional theory and the nonequilibrium Green's function method to investigate the transverse conductance properties of nucleotides inside the gap. In particular, we determined the electrical tunneling current variation at finite bias due to changes in the nucleotides orientation and lateral position. Although the resulting tunneling current is found to fluctuate over several orders of magnitude, a distinction between the four DNA bases appears possible, thus ranking the approach promising for rapid whole-genome sequencing applications.

  • 34.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Scheicher, Ralph
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Transport properties of nucleotides in a graphene nanogap for DNA sequencing2010Inngår i: ElecMol’10 5th International Meeting on Molecular Electronics December 6-10, 2010, 2010, s. 86-86Konferansepaper (Annet vitenskapelig)
  • 35.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wendin, G.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Cumulene molecular wire conductance from first principles2010Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, nr 11, s. 115404-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present first principles calculations of current-voltage characteristics (IVC) and conductance of Au(111):S-2-cumulene-S-2:Au(111) molecular wire junctions with realistic contacts. The transport properties are calculated using full self-consistent ab initio nonequilibrium Green's function density-functional theory methods under external bias. The conductance of the cumulene wires shows oscillatory behavior depending on the number of carbon atoms (double bonds). Among all conjugated oligomers, we find that cumulene wires with odd number of carbon atoms yield the highest conductance with metalliclike ballistic transport behavior. The reason is the high density of states in broad lowest unoccupied molecular orbital levels spanning the Fermi level of the electrodes. The transmission spectrum and the conductance depend only weakly on applied bias, and the IVC is nearly linear over a bias region of +/- 1 V. Cumulene wires are therefore potential candidates for metallic connections in nanoelectronic applications.

  • 36.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wendin, Goran
    Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Interference effects in phtalocyanine controlled by H-H tautomerization: Potential two-terminal unimolecular electronic switch2011Inngår i: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 84, nr 16, s. 165437-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate the electrical transport properties of two hydrogen tautomer configurations of phthalocyanine (H2Pc) connected to cumulene and gold leads. Hydrogen tautomerization affects the electronic state of H2Pc by switching the character of molecular orbitals with the same symmetry close to the Fermi level. The near degeneracy between the HOMO and HOMO-1 leads to pronounced interference effects, causing a large change in current for the two tautomer configurations, especially in the low-bias regime. Two types of planar junctions are considered: cumulene-H2Pc-cumulene and gold-H2Pc-gold. Both demonstrate a prominent difference in molecular conductance between ON and OFF states. In addition, junctions with gold leads show pronounced negative differential resistance (NDR) at high bias voltage, as well as weak NDR at intermediate bias.

  • 37.
    Prasongkit, Jariyanee
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Shukla, Vivekanand
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Amornkitbamrung, Vittaya
    Division of Physics, Faculty of Science, Nakhon Phanom University.
    Ultrahigh-sensitive gas sensors based on doped phosphorene: A First-principles investigationManuskript (preprint) (Annet vitenskapelig)
  • 38.
    Renault, Stéven
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Oltean, Viorica Alina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Araujo, C. Moyses
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Edström, Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Brandell, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Strukturkemi.
    Superlithiation of Organic Electrode Materials: The Case of Dilithium Benzenedipropiolate2016Inngår i: Chemistry of Materials, Vol. 28, nr 6, s. 1920-1926Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dilithium benzenedipropiolate was prepared and investigated as a potential negative electrode material for secondary lithium-ion batteries. In addition to the expected reduction of its carbonyls, this material can reduce and reversibly oxidize its unsaturated carbon–carbon bonds leading to a Li/C ratio of 1/1 and a specific capacity as high as 1363 mAh g–1: the highest ever reported for a lithium carboxylate. Density functional theory calculations suggest that the lithiation is preferential on the propiolate carbons.

  • 39.
    Scheicher, Ralph H.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    DNA sequencing with nanopores from an ab initio perspective2012Inngår i: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 47, nr 21, s. 7439-7446Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Advances in materials research means that we find ourselves at the verge of constructing nano-scale devices capable of electrically addressing individual molecules in order to identify or utilize their electrical or electromechanical properties. An important application in life sciences would be electromechanical translocation of a DNA molecule through a nanopore, between nano-scale electrodes, allowing to electrically read out the base sequence (genome). This approach promises to drastically lower the cost per genome, allowing for extensive application in medical diagnostics. Owing to the involved extremely small dimensions which require nanometer-resolution in the fabrication, atomistic modeling plays a crucial role in testing hypothetical device architectures for their performance in nucleobase distinction. First-principles simulations are ideally suited to explore the interactions involved in such scenarios and lay the foundation for electronic transport calculations. This role of computations is even more important here, since it is experimentally not possible to observe directly the kinetics occurring during translocation of a DNA molecule through a nanopore. Here, we provide a brief review of the state of the field, focusing on ab initio studies of nanopore-based DNA sequencing, in particular on the promising recent development regarding graphene nanopores and nanogaps.

  • 40.
    Schiessling, Joachim
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Fasel, R
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Bruhwiler, P. A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Interplay of covalent bonding and correlation effects at molecule-metal contacts2009Inngår i: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 478, nr 4-6, s. 191-194Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We compare photoelectron spectra (PES) and theoretical densities-of-states of C-60/Al(111), C-60/Al(110) and C-60/Al(100). The splitting observed on all three surfaces is attributed to final state charging. This splitting can also be used to improve estimates of the charging energy U of adsorbed molecules and as a criterion for the existence of strong covalent bonding to the electrode. Au exhibits weak bonding in available data, whereas Ag(100), with measurable charge transfer, appears qualitatively similar to Al. (C) 2009 Elsevier B. V. All rights reserved.

  • 41.
    Schiessling, Joachim
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Yt- och gränsskiktsvetenskap.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Stener, Mauro
    Kjeldgaard, Lisbeth
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Yt- och gränsskiktsvetenskap.
    Balasubramanian, Thiagarajan
    Decleva, Piero
    Ahuja, Rajeev
    Nordgren, Joseph
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Mjukröntgenfysik.
    Brühwiler, Paul A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Yt- och gränsskiktsvetenskap.
    The Role of Charge-Charge Correlations and Covalent Bonding in the Electronic Structure of Adsorbed C-60: C-60/A12010Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, nr 43, s. 18686-18692Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Aromatic molecules are central components of model systems for molecular electronics, with C-60 one of the most studied. Upon adsorption on (metallic) substrates a splitting of the frontier orbitals is commonly observed, with a strong dependence on substrate material, but little dependence on substrate structure. We report the detailed photoelectron angle dependence of C-60/A1(110) over a wide range of energy, finding a strong remnant molecular character. In particular, certain HOMO-derived suborbitals couple strongly, and others weakly, with the metal, which results in final state charging for those weakly coupled. C Is data correlate well with the assignments made on this basis, as does the comparison of ground state partial densities-of-states (PDOS) to photoelectron spectra. Detailed analysis of the PDOS supports a rough division into surface-near and surface-far components, in agreement with the molecular picture. The component spectral widths are attributed to intramolecular vibrational coupling, which is suggested to aid in the electronic decoupling of certain suborbitals from the substrate, facilitating the observed final state charging.

  • 42.
    Shukla, Vivekanand
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Rectifying properties in 90º rotated bilayer black phosphorus nanojunction: A first principle studyManuskript (preprint) (Annet vitenskapelig)
  • 43.
    Shukla, Vivekanand
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jena, Naresh K.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden.
    Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets2018Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 35, s. 22952-22960Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two recent reports on realization of an elemental 2D analogue of graphene:borophene (Science, 2015, 350, 1513-1516; Nat. Chem., 2016, 8, 563-568) focus on the inherent anisotropy and directional dependence of the electronic properties of borophene polymorphs. Achieving stable 2D borophene structures may lead to some degree of strain in the system because of the substrate-lattice mismatch. We use first principles density functional theory (DFT) calculations to study the structural, electronic and transport properties of (12) and -borophene polymorphs. We verified the directional dependency and found the tunable anisotropic behavior of the transport properties in these two polymorphs. We find that strain as low as 6% brings remarkable changes in the properties of these two structures. We further investigate current-voltage (I-V) characteristics in the low bias regime after applying a strain to see how the anisotropy of the current is affected. Such observations like the sizeable tuning of transport and I-V characteristics at the expense of minimal strain suggest the suitability of 2D borophene for futuristic device applications.

  • 44.
    Shukla, Vivekanand
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jena, Naresh K.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. KTH, Stockholm, Sweden.
    Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 46, s. 39945-39952Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent advances in solid-state nano-device-based DNA sequencing are at the helm of the development of a new paradigm, commonly referred to as personalized medicines. Paying heed to a timely need for standardizing robust nanodevices for cheap, fast, and scalable DNA detection, in this article, the nanogap formed by the lateral heterostructure of graphene and hexagonal boron nitride (hBN) is explored as a potential architecture. These heterostructures have been realized experimentally, and our study boasts the idea that the passivation of the edge of the graphene electrode with hBN will solve many of practical problems, such as high reactivity of the graphene edge and difficulty in controlled engineering of the graphene edge structure, while retaining the nanogap setup as a useful nanodevice for sensing applications. Employing first-principle density-functional-theory-based nonequilibrium Greens function methods, we identify that the DNA building blocks, nucleobases, uniquely couple with the states of the nanogap, and the resulting induced states can be attributed as leaving a fingerprint of the DNA sequence in the computed current-voltage (I-V) characteristic. Two bias windows are put forward: lower (1-1.2 V) and higher (2.7-3 V), where unique identification of all four bases is possible from the current traces, although higher sensitivity is obtained at the higher voltage window. Our study can be a practical guide for experimentalists toward development of a nanodevice DNA sensor based on graphene-hBN heterostructures.

  • 45.
    Shukla, Vivekanand
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wärnå, John
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jena, Naresh K.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden..
    Toward the Realization of 2D Borophene Based Gas Sensor2017Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 48, s. 26869-26876Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To the league of rapidly expanding 2D materials, borophene is a recent addition. Herein, a combination of ab initio density functional theory (DFT) and nonequilibrium Green's function (NEGF) based methods is used to estimate the prospects of this promising elemental 2D material for gas sensing applications. We note that the binding of target gas molecules such as CO, NO, NO2, NH3, and CO2 is quite strong on the borophene surface. Interestingly, our computed binding energies are far stronger than several other reported 2D materials like graphene, MoS2, and phosphorene. Further rationalization of stronger binding is made with the help of charge transfer analysis. The sensitivity of the borophene for these gases is also interpreted in terms of computing the vibrational spectra of the adsorbed gases on top of borophene, which show dramatic shift from their gas phase reference values. The metallic nature of borophene enables us to devise a setup considering the same substrate as electrodes. From the computation of the transmission function of system (gas + borophene), appreciable changes in the transmission functions are noted compared to pristine borophene surface. The measurements of current-voltage (I-V) characteristics unambiguously demonstrate the presence and absence of gas molecules (acting as ON and OFF states), strengthening the plausibility of a borophene based gas sensing device. As we extol the extraordinary sensitivity of borophene, we assert that this elemental 2D material is likely to attract subsequent interest.

  • 46.
    Wani, Ishtiaq Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Han, Yuanyuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Calard, Francois
    Niebel, C
    Jarrosson, T
    Serein-Spirau, Francoise
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    LEIFER, KLAUS
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Investigation of the factors that affect the fabrication of highly conducting NP-molecule junctions inside sub 20 nm molecular electronic devices.Manuskript (preprint) (Annet vitenskapelig)
  • 47.
    Wani, Ishtiaq Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, S.H.M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Grigoriev, Anton
    Synthesis of nanoscale electronic device by molecular place exchange reaction in the nanoparticle nanoelectrode bridge platform.: Synthesis of nanoscale electronic device by molecular place exchange reaction in the nanoparticle-nanoelectrodebridge platform2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    For reducing the size and power consumption of electronic devices, building components with molecules is one alternative1. This has not been a success yet due to difficulty in creating stable molecular junctions2, 3. In efforts of creating molecular devices, we have developed the nanoparticle-nanoelectrode-molecule-bridge platform4  which has been employed to prepare 1,8 octanedithiol based molecular devices with stable metal molecule junctions5 and enabled us to observe the vibrational signals from inelastic electron tunneling spectroscopy (IETS) measurements6. The platform is electrically and mechanically stable over periods of months7.

    Nanoparticle-nanoelectrode-molecule bridge platform is fabricated by the standard cleanroom techniques; where 150 nm wide patterns are developed using combination of Electron beam lithography and Photolithography. Gold is deposited using standard resistive evaporation. A very fine cut is made in the gold line using Focused Beam of Gallium ions that results in less than 20 nm separation (nanogap) between the electrodes. Gold nanoparticles (AuNPs) coated with stopper ligands and alkane thiols are synthesized by wet chemistry. Proportions of stoppers and alkane monothiols is controlled and nano particles with 5% to 10% stopper coverage (90% to 95% monothiols)  are synthesized and used in present work. These functionalized AuNPs are trapped in the nanogaps using dielectrophoretic trapping technique.

    Here we present fabrication of molecular electronic nano devices based on biphenyl-4,4′-dithiol  and TBTs by molecular place exchange reaction in nano sized devices. The devices are prepared by replacing the stopper ligand attached to the surface of the AuNPs with the active molecules, using ligand exchange reaction which is carried out in inert atmosphere by placing trapped nanogaps in solution of target molecules. The reaction can take upto 100 hours to reach equilibrium. Electrical characterization before and after ligand exchange shows resistance change of more than 2 orders of magnitude which is considered as a clear signature of success of formation of molecular electronic device. 

  • 48.
    Wani, Ishtiaq Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Department of Electrical Engineering, Mirpur University of Science and Technology (MUST) Mirpur Azad Kashmir, Pakistan.
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Department of Electrical Engineering, Mirpur University of Science and Technology (MUST) Mirpur Azad Kashmir, Pakistan.
    Wärnå, John
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Hayat, Aqib
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Shukla, Vivek A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    A sub 20 nm metal-conjugated molecule junction acting as a nitrogen dioxide sensor2019Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 14, s. 6571-6575Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interaction of a gas molecule with a sensing material causes the highest change in the electronic structure of the latter, when this material consists of only a few atoms. If the sensing material consists of a short, conductive molecule, the sensing action can be furthermore probed by connecting such molecules to nanoelectrodes. Here, we report that NO2 molecules that adhere to 4,4'-biphenyldithiol (BPDT) bound to Au surfaces lead to a change of the electrical transmission of the BPDT. The related device shows reproducible, stable measurements and is so far the smallest (<20 nm) gas sensor. It demonstrates modulation of charge transport through molecules upon exposure to nitrogen dioxide down to concentrations of 55 ppb. We have evaluated several devices and exposure conditions and obtained a close to linear dependence of the sensor response on the gas concentration.

  • 49.
    Wani, Ishtiaq Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Wärnå, John
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Hayat, Aqib
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Shukla, Vivekanand
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    LEIFER, KLAUS
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Sub 20 nm metal-conjugated molecule junctions acting as a nitrogen dioxide sensorManuskript (preprint) (Annet vitenskapelig)
  • 50.
    Wani, Ishtiaq Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    LEIFER, KLAUS
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Change of random telegraph conductance signal in different gas atmospheres in a nano molecular electronic deviceManuskript (preprint) (Annet vitenskapelig)
1 - 50 of 50
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf