uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1 - 17 of 17
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Avelin, Benny
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och tillämpad matematik.
    Boundary Behavior of p-Laplace Type Equations2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations.

    Paper I concerns solutions to certain p-Laplace type operators with variable coefficients. Suppose that u is a non-negative solution that vanishes on a part Γ of an Ahlfors regular NTA-domain. We prove among other things that the gradient Du of u has non-tangential limits almost everywhere on the boundary piece Γ, and that log|Du| is a BMO function on the boundary.  Furthermore, for Ahlfors regular NTA-domains that are uniformly (N,δ,r0)-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough. 

    Paper II concerns solutions to a p-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough.

    In Paper III we prove that the boundary type Riesz measure associated to an A-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling.

    Paper IV concerns the boundary behavior of solutions to certain parabolic equations of p-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case.

    In Paper V we are concerned with equations of p-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part Γ of an X-NTA-domain, is doubling on Γ.

    Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.

    Delarbeid
    1. Estimates for Solutions to Equations of p-Laplace type in Ahlfors regular NTA-domains
    Åpne denne publikasjonen i ny fane eller vindu >>Estimates for Solutions to Equations of p-Laplace type in Ahlfors regular NTA-domains
    2014 (engelsk)Inngår i: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 266, nr 9, s. 5955-6005Artikkel i tidsskrift (Fagfellevurdert) Published
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-163517 (URN)10.1016/j.jfa.2014.02.027 (DOI)000334652000018 ()
    Tilgjengelig fra: 2011-12-13 Laget: 2011-12-12 Sist oppdatert: 2017-12-08bibliografisk kontrollert
    2. Boundary estimates for solutions to operators of $p$-Laplace type with lower order terms
    Åpne denne publikasjonen i ny fane eller vindu >>Boundary estimates for solutions to operators of $p$-Laplace type with lower order terms
    2011 (engelsk)Inngår i: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 250, nr 1, s. 264-291Artikkel i tidsskrift (Fagfellevurdert) Published
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-163370 (URN)10.1016/j.jde.2010.09.011 (DOI)
    Tilgjengelig fra: 2011-12-12 Laget: 2011-12-12 Sist oppdatert: 2017-12-08bibliografisk kontrollert
    3. Optimal doubling, Reifenberg flatness and operators of p-Laplace type
    Åpne denne publikasjonen i ny fane eller vindu >>Optimal doubling, Reifenberg flatness and operators of p-Laplace type
    2011 (engelsk)Inngår i: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, nr 17, s. 5943-5955Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    In this paper we consider operators of p-Laplace type of the form ∇·A(x,∇u) = 0. ConcerningA we assume, for p ∈ (1,∞) fixed, an appropriate ellipticity type condition, H¨older continuityin x and that A(x, ) = ||p−1A(x, /||) whenever x ∈ Rn and ∈ Rn \ {0}. Let  ⊂ Rn be abounded domain, let D be a compact subset of . We say that ˆu = ˆup,D, is the A-capacitaryfunction for D in  if ˆu ≡ 1 on D, ˆu ≡ 0 on @ in the sense of W1,p0 () and ∇·A(x,∇ˆu) = 0 in \D in the weak sense. We extend ˆu to Rn \  by putting ˆu ≡ 0 on Rn \ . Then there existsa unique finite positive Borel measure ˆμ on Rn, with support in @, such thatZ hA(x,∇ˆu),∇i dx = −Z dˆμ whenever ∈ C∞0 (Rn \ D).In this paper we prove that if  is Reifenberg flat with vanishing constant, thenlimr→0infw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= limr→0supw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= n−1,for every , 0 < ≤ 1. In particular, we prove that ˆμ is an asymptotically optimal doublingmeasure on @.

    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-163435 (URN)10.1016/j.na.2011.05.061 (DOI)
    Tilgjengelig fra: 2012-11-30 Laget: 2011-12-12 Sist oppdatert: 2017-12-08bibliografisk kontrollert
    4. Boundary Estimates for Certain Degenerate and Singular Parabolic Equations
    Åpne denne publikasjonen i ny fane eller vindu >>Boundary Estimates for Certain Degenerate and Singular Parabolic Equations
    2016 (engelsk)Inngår i: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 18, nr 2, s. 381-424Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p-Laplace equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S-T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular parabolic equations of porous medium type.

    Emneord
    Degenerate and singular parabolic equations; Harnack estimates; boundary Harnack inequality; Carleson estimate
    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-186267 (URN)10.4171/JEMS/593 (DOI)000370249100005 ()
    Tilgjengelig fra: 2013-02-12 Laget: 2012-11-28 Sist oppdatert: 2017-12-07bibliografisk kontrollert
    5. Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures
    Åpne denne publikasjonen i ny fane eller vindu >>Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures
    2013 (engelsk)Inngår i: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 85, s. 149-159Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Let be a system of C vector fields in Rn satisfying Hörmander’s finite rank condition and let Ω be a non-tangentially accessible domain with respect to the Carnot–Carathéodory distance d induced by X. We prove the doubling property of certain boundary measures associated to non-negative solutions, which vanish on a portion of Ω, to the equation

    Given p, 1<p<, fixed, we impose conditions on the function A=(A1,…,Am):Rn×RmRm, which imply that the equation is a quasi-linear partial differential equation of p-Laplace type structured on vector fields satisfying the classical Hörmander condition. In the case p=2 and for linear equations, our result coincides with the doubling property of associated elliptic measures. To prove our result we establish, and this is of independent interest, a Wolff potential estimate for subelliptic equations of p-Laplace type.

    HSV kategori
    Identifikatorer
    urn:nbn:se:uu:diva-186268 (URN)10.1016/j.na.2013.02.023 (DOI)000318378700013 ()
    Tilgjengelig fra: 2013-03-26 Laget: 2012-11-28 Sist oppdatert: 2017-12-07bibliografisk kontrollert
    6. On a one-phase free boundary problem
    Åpne denne publikasjonen i ny fane eller vindu >>On a one-phase free boundary problem
    2013 (engelsk)Inngår i: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 38, nr 1, s. 181-191Artikkel i tidsskrift (Annet vitenskapelig) Published
    Abstract [en]

    In this paper we extend a result regarding the free boundary regularity in a one-phaseproblem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

    Emneord
    One-phase, free boundary, NTA, non-divergence, linear
    HSV kategori
    Forskningsprogram
    Matematik
    Identifikatorer
    urn:nbn:se:uu:diva-186265 (URN)10.5186/aasfm.2013.3815 (DOI)000316239200009 ()
    Tilgjengelig fra: 2012-11-30 Laget: 2012-11-28 Sist oppdatert: 2017-12-07bibliografisk kontrollert
  • 2.
    Avelin, Benny
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
    On a one-phase free boundary problem2013Inngår i: Annales Academiae Scientiarum Fennicae Mathematica, ISSN 1239-629X, E-ISSN 1798-2383, Vol. 38, nr 1, s. 181-191Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    In this paper we extend a result regarding the free boundary regularity in a one-phaseproblem, by De Silva and Jerison [DJ], to non-divergence linear equations of second order.Roughly speaking we prove that the free boundary is given by a Lipschitz graph.

  • 3.
    Avelin, Benny
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori. Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland.;Aalto Univ, Inst Math, POB 11100, Aalto 00076, Finland..
    On time dependent domains for the degenerate p-parabolic equation: Carleson estimate and Holder continuity2016Inngår i: Mathematische Annalen, ISSN 0025-5831, E-ISSN 1432-1807, Vol. 364, nr 1-2, s. 667-686Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper we propose a definition of "parabolic NTA" for solutions to the degenerate p-parabolic equation. Given this definition we prove the Carleson estimate, originally proved for this equation in Avelin et al. (J Eur Math Soc, 2015) for cylindrical domains. Moreover we study a non-optimal, stronger "outer corkscrew" condition, such that we obtain Holder continuity up to the boundary, for non-negative solutions vanishing on a part of the boundary.

  • 4.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Gianazza, Ugo
    Dipartimento di Matematica "F. Casorati", Università di Pavia.
    Salsa, Sandro
    Dipartimento di Matematica "F. Brioschi", Politecnico di Milano.
    Boundary Estimates for Certain Degenerate and Singular Parabolic Equations2016Inngår i: Journal of the European Mathematical Society (Print), ISSN 1435-9855, E-ISSN 1435-9863, Vol. 18, nr 2, s. 381-424Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the boundary behavior of non-negative solutions to a class of degenerate/singular parabolic equations, whose prototype is the parabolic p-Laplace equation. Assuming that such solutions continuously vanish on some distinguished part of the lateral part S-T of a Lipschitz cylinder, we prove Carleson-type estimates, and deduce some consequences under additional assumptions on the equation or the domain. We then prove analogous estimates for non-negative solutions to a class of degenerate/singular parabolic equations of porous medium type.

  • 5.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Hed, Lisa
    Persson, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity2015Inngår i: Potential Analysis, ISSN 0926-2601, E-ISSN 1572-929X, Vol. 43, nr 3, s. 531-545Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We show that bounded pseudoconvex domains that are Hölder continuous for all α < 1 are hyperconvex, extending the well-known result by Demailly (Math. Z. 184 1987) beyond Lipschitz regularity. 

  • 6.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
    Hed, Lisa
    Department of mathematics and mathematical statistics, Umeå University.
    Persson, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
    Approximation and Bounded Plurisubharmonic Exhaustion Functions Beyond Lipschitz DomainsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Using techniques from the analysis of PDEs to studythe boundary behaviour of functions on domains with low boundaryregularity, we extend results by Fornaæss-Wiegerinck (1989)on plurisubharmonic approximation and by Demailly (1987) onthe existence on bounded plurisubharmonic exhaustion functionsto domains beyond Lipschitz boundary regularity.

  • 7.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori. Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland.
    Hed, Lisa
    Umeå University.
    Persson, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Approximation of plurisubharmonic functions2016Inngår i: Complex Variables and Elliptic Equations, ISSN 1747-6933, E-ISSN 1747-6941, Vol. 61, nr 1, s. 23-28Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

  • 8.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori. Aalto University, Institute of Mathematics, P.O. Box 11100, FI-00076 Aalto, Finland.
    Julin, Vesa
    Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland..
    A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term2017Inngår i: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 272, nr 8, s. 3176-3215Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper concerns the boundary behavior of solutions of certain fully nonlinear equations with a general drift term. We elaborate on the non-homogeneous generalized Harnack inequality proved by the second author in [26], to prove a generalized Carleson estimate. We also prove boundary Holder continuity and a boundary Harnack type inequality.

  • 9.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
    Kuusi, Tuomo
    Aalto Univ, Dept Math & Syst Anal, POB 11100, Aalto 00076, Finland..
    Mingione, Giuseppe
    Univ Parma, Dipartimento Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy..
    Nonlinear Caldern-Zygmund Theory in the Limiting Case2018Inngår i: Archive for Rational Mechanics and Analysis, ISSN 0003-9527, E-ISSN 1432-0673, Vol. 227, nr 2, s. 663-714Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We prove a maximal differentiability and regularity result for solutions to nonlinear measure data problems. Specifically, we deal with the limiting case of the classical theory of Caldern and Zygmund in the setting of nonlinear, possibly degenerate equations and we show a complete linearization effect with respect to the differentiability of solutions. A prototype of the results obtained here tells for instance that ifwith being a Borel measure with locally finite mass on the open subset and , thenThe case is obviously forbidden already in the classical linear case of the Poisson equation.

  • 10.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Kuusi, Tuomo
    Nyström, Kaj
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Boundary behavior of solutions to the parabolic p-Laplace equation2019Inngår i: Analysis & PDE, ISSN 2157-5045, E-ISSN 1948-206X, Vol. 12, nr 1, s. 1-42Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We establish boundary estimates for non-negative solutions to the $p$-parabolic equation in the degenerate range $p>2$. Our main results include new parabolic intrinsic Harnack chains in cylindrical NTA-domains together with sharp boundary decay estimates. If the underlying domain is $C^{1,1}$-regular, we establish a relatively complete theory of the boundary behavior, including boundary Harnack principles and Hölder continuity of the ratios of two solutions, as well as fine properties of associated boundary measures. There is an intrinsic waiting time phenomena present which plays a fundamental role throughout the paper. In particular, conditions on these waiting times rule out well-known examples of explicit solutions violating the boundary Harnack principle.

  • 11.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Lukkari, Teemu
    Aalto Univ, Finland.
    A comparison principle for the porous medium equation and its consequences2017Inngår i: Revista matemática iberoamericana, ISSN 0213-2230, E-ISSN 2235-0616, Vol. 33, nr 2, s. 573-594Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We prove a comparison principle for the porous medium equation in more general open sets in Rn+1 than space-time cylinders. We apply this result in two related contexts: we establish a connection between a potential theoretic notion of the obstacle problem and a notion based on a variational inequality. We also prove the basic properties of the PME capacity, in particular that there exists a capacitary extremal which gives the capacity for compact sets.

  • 12.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori.
    Lukkari, Teemu
    Lower semicontinuity of weak supersolutions to the porous medium equation2015Inngår i: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 143, nr 8, s. 3475-3486Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Weak supersolutions to the porous medium equation are defined by means of smooth test functions under an integral sign. We show that non-negative weak supersolutions become lower semicontinuous after redefinition on a set of measure zero. This shows that weak supersolutions belong to a class of supersolutions defined by a comparison principle.

  • 13. Avelin, Benny
    et al.
    Lundström, Niklas L. P.
    Nyström, Kaj
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och tillämpad matematik.
    Boundary estimates for solutions to operators of $p$-Laplace type with lower order terms2011Inngår i: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 250, nr 1, s. 264-291Artikkel i tidsskrift (Fagfellevurdert)
  • 14. Avelin, Benny
    et al.
    Lundström, Niklas L.P
    Nyström, Kaj
    Optimal doubling, Reifenberg flatness and operators of p-Laplace type2011Inngår i: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 74, nr 17, s. 5943-5955Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper we consider operators of p-Laplace type of the form ∇·A(x,∇u) = 0. ConcerningA we assume, for p ∈ (1,∞) fixed, an appropriate ellipticity type condition, H¨older continuityin x and that A(x, ) = ||p−1A(x, /||) whenever x ∈ Rn and ∈ Rn \ {0}. Let  ⊂ Rn be abounded domain, let D be a compact subset of . We say that ˆu = ˆup,D, is the A-capacitaryfunction for D in  if ˆu ≡ 1 on D, ˆu ≡ 0 on @ in the sense of W1,p0 () and ∇·A(x,∇ˆu) = 0 in \D in the weak sense. We extend ˆu to Rn \  by putting ˆu ≡ 0 on Rn \ . Then there existsa unique finite positive Borel measure ˆμ on Rn, with support in @, such thatZ hA(x,∇ˆu),∇i dx = −Z dˆμ whenever ∈ C∞0 (Rn \ D).In this paper we prove that if  is Reifenberg flat with vanishing constant, thenlimr→0infw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= limr→0supw∈∂ˆμ(B(w, r))ˆμ(B(w, r))= n−1,for every , 0 < ≤ 1. In particular, we prove that ˆμ is an asymptotically optimal doublingmeasure on @.

  • 15. Avelin, Benny
    et al.
    Nyström, Kaj
    Estimates for Solutions to Equations of p-Laplace type in Ahlfors regular NTA-domains2014Inngår i: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 266, nr 9, s. 5955-6005Artikkel i tidsskrift (Fagfellevurdert)
  • 16.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
    Nyström, Kaj
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
    Wolff-Potential Estimates and Doubling of Subelliptic p-harmonic measures2013Inngår i: Nonlinear Analysis, ISSN 0362-546X, E-ISSN 1873-5215, Vol. 85, s. 149-159Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Let be a system of C vector fields in Rn satisfying Hörmander’s finite rank condition and let Ω be a non-tangentially accessible domain with respect to the Carnot–Carathéodory distance d induced by X. We prove the doubling property of certain boundary measures associated to non-negative solutions, which vanish on a portion of Ω, to the equation

    Given p, 1<p<, fixed, we impose conditions on the function A=(A1,…,Am):Rn×RmRm, which imply that the equation is a quasi-linear partial differential equation of p-Laplace type structured on vector fields satisfying the classical Hörmander condition. In the case p=2 and for linear equations, our result coincides with the doubling property of associated elliptic measures. To prove our result we establish, and this is of independent interest, a Wolff potential estimate for subelliptic equations of p-Laplace type.

  • 17.
    Avelin, Benny
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen, Analys och sannolikhetsteori. Aalto Univ, Dept Math & Syst Anal, Sch Sci, Aalto 00076, Finland..
    Saari, Olli
    Aalto Univ, Dept Math & Syst Anal, Sch Sci, Aalto 00076, Finland..
    Characterizations of interior polar sets for the degenerate p-parabolic equation2017Inngår i: Journal of evolution equations (Printed ed.), ISSN 1424-3199, E-ISSN 1424-3202, Vol. 17, nr 2, s. 827-848Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper deals with different characterizations of sets of nonlinear parabolic capacity zero, with respect to the parabolic p-Laplace equation. Specifically we prove that certain interior polar sets can be characterized by sets of zero nonlinear parabolic capacity. Furthermore we prove that zero capacity sets are removable for bounded supersolutions and that sets of zero capacity have a relation to a certain parabolic Hausdorff measure.

1 - 17 of 17
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf