uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Gao, Alex Yuan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Barendregt, Wolmet
    Castellano, Ginevra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Personalised human-robot co-adaptation in instructional settings using reinforcement learning2017Konferensbidrag (Övrigt vetenskapligt)
  • 2.
    Gao, Alex Yuan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Glowacka, Dorota
    Deep gate recurrent neural network2016Ingår i: Proc. 8th Asian Conference on Machine Learning, 2016, s. 350-365Konferensbidrag (Refereegranskat)
  • 3.
    Gao, Yuan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Barendregt, Wolmet
    Gothenburg Univ, Dept Appl IT, Gothenburg, Sweden.
    Obaid, Mohammad
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Castellano, Ginevra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    When robot personalisation does not help: Insights from a robot-supported learning study2018Ingår i: Proc. 27th International Symposium on Robot and Human Interactive Communication, IEEE, 2018, s. 705-712Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the domain of robotic tutors, personalised tutoring has started to receive scientists' attention, but is still relatively underexplored. Previous work using reinforcement learning (RL) has addressed personalised tutoring from the perspective of affective policy learning. However, little is known about the effects of robot behaviour personalisation on user's task performance. Moreover, it is also unclear if and when personalisation may be more beneficial than a robot that adapts to its users and the context of the interaction without personalising its behaviour. In this paper we build on previous work on affective policy learning that used RL to learn what robot's supportive behaviours are preferred by users in an educational scenario. We build a RL framework for personalisation that allows a robot to select verbal supportive behaviours to maximise the user's task progress and positive reactions in a learning scenario where a Pepper robot acts as a tutor and helps people to learn how to solve grid-based logic puzzles. A between-subjects design user study showed that participants were more efficient at solving logic puzzles and preferred a robot that exhibits more varied behaviours compared with a robot that personalises its behaviour by converging on a specific one over time. We discuss insights on negative effects of personalisation and report lessons learned together with design implications for personalised robots.

  • 4.
    Gao, Yuan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Sibirtseva, Elena
    Robotics, Perception and Learning Lab, EECS at KTH Royal Institute of Technology, Stockholm, Sweden.
    Castellano, Ginevra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Kragic, Danica
    Robotics, Perception and Learning Lab, EECS at KTH Royal Institute of Technology, Stockholm, Sweden.
    Fast Adaptation with Meta-Reinforcement Learning for Trust Modelling in Human–Robot Interaction2019Konferensbidrag (Refereegranskat)
    Abstract [en]

    In socially assistive robotics, an important research area is the development of adaptation techniques and their effect on human-robot interaction. We present a meta-learning based policy gradient method for addressing the problem of adaptation in human-robot interaction and also investigate its role as a mechanism for trust modelling. By building an escape room scenario in mixed reality with a robot, we test our hypothesis that bi-directional trust can be influenced by different adaptation algorithms. We found that our proposed model increased the perceived trustworthiness of the robot and influenced the dynamics of gaining human's trust. Additionally, participants evaluated that the robot perceived them as more trustworthy during the interactions with the meta-learning based adaptation compared to the previously studied statistical adaptation model.

  • 5.
    Gao, Yuan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wallkötter, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Obaid, Mohammad
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Castellano, Ginevra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Investigating deep learning approaches for human-robot proxemics2018Ingår i: Proc. 27th International Symposium on Robot and Human Interactive Communication, IEEE, 2018, s. 1093-1098Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we investigate the applicability of deep learning methods to adapt and predict comfortable human-robot proxemics. Proposing a network architecture, we experiment with three different layer configurations, obtaining three different end-to-end trainable models. Using these, we compare their predictive performances on data obtained during a human-robot interaction study. We find that our long short-term memory based model outperforms a gated recurrent unit based model and a feed-forward model. Further, we demonstrate how the created model can be used to create customized comfort zones that can help create a personalized experience for individual users.

  • 6.
    Obaid, Mohammad
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Gao, Alex Yuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Barendregt, Wolmet
    Department of Applied IT, Gothenburg University, Gothenburg, Sweden.
    Castellano, Ginevra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Exploring users' reactions towards tangible implicit probes for measuring human-robot engagement2017Ingår i: Social Robotics, Springer, 2017, s. 402-412Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we present an exploratory study of the use of tangible implicit probes to gauge the user's social engagement with a robot. Our results show that users' paying attention to the robot's implicit probes is related to higher social engagement, but also that introducing implicit probes can lead to a more positive interaction with a robot. As we observed that users in our study started paying more attention to the implicit probes after they had encountered them, the need for careful design to capture changes in social engagement over time is justified here. Finally, we discuss some of the user recommendations to design better implicit probes.

  • 7. Zhang, Peilin
    et al.
    Gao, Alex Yuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Theel, Oliver
    Bandit learning with concurrent transmissions for energy-efficient flooding in sensor networks2018Ingår i: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, ISSN 2410-0218, Vol. 4, nr 13, artikel-id e4Artikel i tidskrift (Refereegranskat)
  • 8. Zhang, Peilin
    et al.
    Gao, Alex Yuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Theel, Oliver
    Less is More: Learning more with concurrent transmissions for energy-efficient flooding2017Ingår i: Proc. 14th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, New York: ACM Press, 2017Konferensbidrag (Refereegranskat)
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf