uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Das, Arkaprava
    et al.
    Inter Univ Accelerator Ctr, Aruna Asaf Ali Marg, New Delhi 110067, India.
    Saini, C. P.
    Inter Univ Accelerator Ctr, Aruna Asaf Ali Marg, New Delhi 110067, India.
    Singh, D.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Kaur, Anumeet
    Guru Nanak Dev Univ, Dept Phys, Amritsar 143005, Punjab, India.
    Aliukov, Sergei
    South Ural State Univ, Chelyabinsk 454080, Russia.
    Shukla, D.
    UGC DAE Consortium Sci Res, Univ Campus,Khandwa Rd, Indore 452017, Madhya Pradesh, India.
    Singh, F.
    Inter Univ Accelerator Ctr, Aruna Asaf Ali Marg, New Delhi 110067, India.
    High temperature-mediated rocksalt to wurtzite phase transformation in cadmium oxide nanosheets and its theoretical evidence2019Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, nr 31, s. 14802-14819Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Herein, a high temperature-induced phase transformation (PT) in chemically grown CdO thin films is demonstrated, and its corresponding electronic origin further investigated by density functional theory. In particular, the cubic rocksalt to hexagonal wurtzite PT in the CdO thin film annealed at 900 degrees C was confirmed by X-ray diffraction (XRD), which was consistent with the high-resolution transmission electron microscopy (TEM) results. Moreover, atomic force microscopy and scanning electron microscopy clearly evidenced the morphological evolution via the formation of a nanosheet network in the wurtzite-phase CdO film. The high temperature treatment also led to a significant enhancement in the optical band gap from 2.2 to 3.2 eV, as manifested by UV-visible spectroscopy. The enhanced surface roughness of the nanosheet caused a deviation in the net dipole moment, which may break the polarizable bonds and help in reducing the average dielectric constant, resulting in a band gap opening for the transformed phase. Furthermore, X-ray absorption spectroscopy at the oxygen k-edge revealed a notable shift in the inflection point of the absorption edge, while the X-ray photoelectron spectroscopy (XPS) Cd 3d and O 1s spectra suggested a gradual reduction in the CdO2 phase with an increase in annealing temperature. In addition, different complementary techniques including Rutherford backscattering and Raman spectroscopy were exploited to understand the aforementioned PT and its structural correlation. Finally, molecular dynamics simulation together with density functional theory calculation suggested that the symmetry modification at the Brillouin zone boundary provides a succinct signature for the PT in the CdO thin film.

  • 2.
    Hussain, T.
    et al.
    Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia.
    Singh, Deobrat
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, Gujarat, India.
    Gupta, Sanjeev K.
    St Xaviers Coll, Dept Phys, Computat Mat & Nanosci Grp, Ahmadabad 380009, Gujarat, India.
    Karton, A.
    Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia.
    Sonvane, Yogesh
    SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, Gujarat, India.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    Efficient and selective sensing of nitrogen-containing gases by Si2BN nanosheets under pristine and pre-oxidized conditions2019Ingår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 469, s. 775-780Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Motivated by the promise of two-dimensional nanostructures in the field of gas sensing, we have employed van der Waals corrected density functional theory calculations to study the structural, electronic and gas sensing propensities of the recently designed Si2BN monolayer. Our rigorous simulations reveal that the representative members of nitrogen-containing gases (NCGs) such as NO, NO2 and NH3 binds extremely strongly on pristine Si2BN monolayer. However, a strong dissociative adsorption in case of NO and NO2 would poison the Si2BN and ultimately reversibility of the monolayer would be compromised. Exploring the sensing mechanism in more realistic pre-oxidized conditions, the binding characteristics of O2@Si2BN changed dramatically, resulting into much lower adsorption in associative manner for all NO, NO2 and NH3. A visible change in work function indicates the variation in conductivity of O2@Si2BN upon the exposure of incident gases. Sustainable values of binding energies would also ensure a quick recovery time that makes O2@Si2BN an efficient nano sensor for pollutants like NCGs.

  • 3.
    Kumavat, Sandip R.
    et al.
    SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
    Sonvane, Yogesh
    SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
    Singh, Deobrat
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
    Gupta, Sanjeev K.
    St Xaviers Coll, Dept Phys, Computat Mat & Nanosci Grp, Ahmadabad 38009, Gujarat, India.
    Two-Dimensional CH3NH3PbI3 with High Efficiency and Superior Carrier Mobility: A Theoretical Study2019Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 9, s. 5231-5239Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-dimensional (2D) halide perovskites have distinct tunable compositional and structural properties, which make 2D materials a good candidate to improve the characteristics of photovoltaic applications. We have explored strain-dependent structural, electronic, and optical properties of organic inorganic hybrid perovskite CH3NH3PbI3 monolayers using density functional calculations. Here, we have calculated carrier mobility of electrons and holes and the band gap of the CH3NH3PbI3 monolayer. The results suggest that with increasing tensile and compressive strains, the band gap increases up to 5% (in the case of tensile strain), whereas decreases toward instability, i.e., 9% (in the case of compressive strain). The carrier mobility of 2D CH3NH3PbI3 is approximately 16 times larger than that of the bulk form of CH3NH3PbI3. Furthermore, we have also investigated optical properties, which show good activity in the visible as well as in the high-ultraviolet region of the spectrum. In addition, the 2D CH3NH3PbI3 monolayer shows good transmittance (>80%) in a lower energy range as well as high absorption coefficient of 14.09 X 10(5) cm(-1) at 8.8 eV, which is up to 40% higher than that of the bulk form of CH3NH3PbI3; however, under both types of strains, the absorption coefficient is decreased in the 2D CH3NH3PbI3 monolayer. For photovoltaic applications, we have calculated the open-circuit voltage (V-oc), fill factor (FF), short-circuit current density (J(sc)), and power conversion efficiency (eta) of the 2D CH3NH3PbI3 monolayer. Our theoretical results suggest that the power conversion efficiency (eta) is 28%, which is higher than that of its bulk form and 5% less than the Shockley-Queisser limit (33%), suggesting that 2D CH3NH3PbI3 is a good candidate for the solar cell application.

  • 4.
    Mahida, H. R.
    et al.
    Veer Narmad South Gujarat Univ, Dept Phys, Surat 395007, India.
    Singh, Deobrat
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Sonvane, Yogesh
    SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat 395007, India.
    Thakor, P. B.
    Veer Narmad South Gujarat Univ, Dept Phys, Surat 395007, India.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    Gupta, Sanjeev K.
    Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    The influence of edge structure on the optoelectronic properties of Si2BN quantum dot2019Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 126, nr 23, artikel-id 233104Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In recent work, we have investigated the electronic and optical properties of pristine and functionalized Si2BN quantum dots (QDs) using first-principles calculations. Due to the edge functionalization, Si2BN QDs have binding energies of -0.96 eV and -2.08 eV per hydrogen atom for the adsorption of single and double hydrogen atoms, respectively. These results reveal the stability and the bonding nature of hydrogen at the edges of Si2BN QD. In particular, the charge transfer between hydrogen and other atoms is explicitly increased. The electronic band structure of pristine Si2BN QD shows a metallic behavior with a finite number of electronic states in the density of states at the Fermi level. The frequency-dependent optical properties, such as refractive index, extinction coefficient, absorption coefficient, electron energy loss spectra, and reflectivity, are computed for both the parallel and perpendicular components of electric field polarization. The higher absorption was found in the infrared regime. The present study shows that the functionalization of Si2BN QD by two hydrogen atoms is energetically stable. It offers a promising application of Si2BN QD, which can be used in optical nanodevices such as photodetectors and biomedical imagination. (C) 2019 Author(s).

  • 5.
    Negi, Devendra Singh
    et al.
    Max Planck Inst Solid State Res, Stuttgart Ctr Electron Microscopy, Heisenbergstr 1, D-70569 Stuttgart, Germany.
    Singh, Deobrat
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    van Aken, Peter A.
    Max Planck Inst Solid State Res, Stuttgart Ctr Electron Microscopy, Heisenbergstr 1, D-70569 Stuttgart, Germany.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat, S-10044 Stockholm, Sweden.
    Spin-entropy induced thermopower and spin-blockade effect in CoO2019Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 100, nr 14, artikel-id 144108Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report spin-entropy-induced thermopower and the occurrence of a spin-blockade effect in stoichiometric disordered CoO. Cation defect-driven distortion in the octahedral ligand field of CoO leads to a charge transfer process and favors the stabilization of Co+3 charge states at defect adjacent atomic sites. Moreover, a higher extent of local stoichiometric disruption triggers the spin crossover and magnetic collapse into a Co+3 state. Degenerated spin-orbital states on vacancy neighbored atomic sites render the spin-orbital degeneracy to enhance the thermopower in CoO. Furthermore, we unravel an operating spin-blockade effect in CoO. The localized combination of active magnetic states-high-spin Co+2 and neutral magnetic states-low-spin Co+3 on alternate atomic sites suppress the charge carrier hopping due to a spin blockade. In the pursuit of efficient thermoelectric material, the present investigation explores the potential of the recipe of spin entropy and defect-engineered CoO.

  • 6.
    Singh, D.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    Enhanced Optoelectronic and Thermoelectric Properties by Intrinsic Structural Defects in Monolayer HfS22019Ingår i: ACS APPLIED ENERGY MATERIALS, ISSN 2574-0962, Vol. 2, nr 9, s. 6891-6903Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the present work, we have studied the electronic, optical, and thermoelectric properties of a monolayer of pristine HfS2 and two types of vacancy and two types of dopant by using first-principles calculations. These configurations with single atom vacancy (Hf and S atoms) and single atom dopant in place of a sulfur atom are energetically more favorable. The electronic properties of HfS2 monolayer are significantly affected by vacancies as well as dopants. Also, it transforms indirect-band-gap semiconducting behavior to direct-band-gap semiconducting behavior and semiconductor-to-metal HfS2 occurs during the structural defect. The variation in the work function of HfS2 monolayer by vacancy, as well as dopant, indicates the change in conductivity. The structural defect enhancing the light absorption as well as the conductivity of HfS2 monolayer and H-phase of it is suitable for UV light absorption while the T-phase is suitable for visible light absorption. From the thermoelectric properties, the relatively high Seebeck coefficient and it is found to be 2867 and 2902 mu V K-1 for doped P atom in the T-phase and the pristine H-phase, respectively, at room temperature. The figure of merit (ZT) at 300 K is determined to be 1 for the T-phase and 1.05 for the H-phase, while, at a higher temperature, ZT = 1.23 for the Hf vacancy in the T-phase. Such analysis reveals that the structural defects not only significantly affect the electronic properties, but they also can be used as an efficient way to modulate the thermoelectric properties and enhance ZT. The theoretical results suggest that the two-dimensional HfS2 monolayer is very useful in high-performance optoelectronic and thermoelectric devices.

  • 7.
    Singh, D.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Gupta, Sanjeev K.
    St Xaviers Coll, Dept Phys & Elect, Computat Mat & Nanosci Grp, Ahmadabad 380009, Gujarat, India.
    Lukacevic, Igor
    Josip Juraj Strossmayer Univ Osijek, Dept Phys, Osijek 31000, Croatia.
    Muzevic, Matko
    Josip Juraj Strossmayer Univ Osijek, Dept Phys, Osijek 31000, Croatia.
    Sonvane, Yogesh
    SV Natl Inst Technol, Dept Appl Phys, Adv Mat Lab, Surat, India.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat, S-10044 Stockholm, Sweden.
    Effect of electric field on optoelectronic properties of indiene monolayer for photoelectric nanodevices2019Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, artikel-id 17300Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In recent years, layered materials display interesting properties and the quest for new sorts of two-dimensional (2D) structures is a significance for future device manufacture. In this paper, we study electronic and optical properties of 2D indiene allotropes with planar and buckled structures. The optical properties calculations are based on density functional theory (DFT) simulations including in-plane and out-of-plane directions of light polarization. We indicate that the optical properties such as complex refractive index, absorption spectrum, electron energy loss function (EELS), reflectivity and optical conductivity spectra are strongly dependent on the direction of light's polarization. High values and narrow peaks in optical spectra introduce indiene to the field of ultra-thin optical systems. The effect of external static electric field on electronic and optical properties of indiene is also observed and discussed. We show that the band gap in buckled indiene can be effectively changed by applying the external electric field. The discoveries here expand the group of 2D materials beyond graphene and transition metal dichalcogenides (TMDs) and give valuable data for future experimental realization of new mono-elemental materials with conceivable applications in optical devices.

  • 8.
    Singh, Deobrat
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Chakraborty, Sudip
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Indian Inst Technol IIT Indore, Discipline Phys, Indore 453552, Madhya Pradesh, India.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden.
    Emergence of Si2BN Monolayer as Efficient HER Catalyst under Co-functionalization Influence2019Ingår i: ACS APPLIED ENERGY MATERIALS, ISSN 2574-0962, Vol. 2, nr 12, s. 8441-8448Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the present work, we have envisaged the enhancement of hydrogen evolution reaction (HER) activity on stable Si2BN monolayer based on first-principles electronic structure calculations. Herein, we have performed the HER activities on the pristine Si2BN monolayer and various possible active sites on structural defects in the Si2BN monolayer. In addition to the pristine monolayer, we have thoroughly investigated the effect of functionalization and cofunctionalization on the Si2BN monolayer. The adsorption of the most important HER intermediate hydrogen on different possible active sites of Si2BN monolayer has been systematically studied for all the functionalization and cofunctionalization cases. We have determined the projected density of states, work functions, and optical absorption cross-section for all the pristine and doped systems. The charge distributions for all of the monolayer systems are determined along with the mapping of the reaction coordinate based on the hydrogen (H*) adsorption free energies (Delta G(H double dagger)(0)). Among all of the functionalized Si2BN monolayers, the C-doped monolayer has been emerged as the active most HER catalyst, whereas in the case of co-functionalization, C-P codoped Si2BN monolayer is the best candidate for HER mechanism.

  • 9.
    Yang, Xiaoyong
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Mianyang 621010, Sichuan, Peoples R China.
    Singh, Deobrat
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Xu, Zhitong
    Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Mianyang 621010, Sichuan, Peoples R China.
    Wang, Ziwei
    Southwest Univ Sci & Technol, Natl Collaborat Innovat Ctr Nucl Waste & Environm, Mianyang 621010, Sichuan, Peoples R China.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    An emerging Janus MoSeTe material for potential applications in optoelectronic devices2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 39, s. 12312-12320Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Motivated by the extraordinary physical and chemical properties of Janus transition-metal dichalcogenides (TMDs) due to the change of the crystal field originating from their asymmetry structures, the electronic and optical properties of the MoSeTe monolayer in 2H and 1T phases are systematically studied by first-principles calculations, and a detailed comparison with the parental MoSe2 and MoTe2 monolayer is made. It is found that 2H-MoSeTe exhibits a direct bandgap of 1.859 eV and an indirect band gap of 0.391 eV in the 1T phase, resulting in a different way to interact with sunlight. Besides, the obtained results show that the SOC has little effects on the band gaps. The calculated optical properties show a significant red shift from the MoSe2 to MoSeTe to MoTe2 monolayer. However, a blue shift is observed from the in-plane to out-of-plane direction. Moreover, both electron-electron and electron-hole correlation effects are considered for obtaining the optical spectra of systems by G(0)W(0) and G(0)W(0) + BSE approaches. Besides, the absorption coefficient value reaches up to 1 x 10(6) cm(-1) in both phases, implying the high efficiency in the utilization of solar energy for the MoSeTe monolayer. Additionally, the 1T-MoSeTe monolayer is a good hot mirror material in that its maximum reflectivity could reach up to 51% in the infrared region. Additionally, the average optical absorbance of the Janus MoSeTe monolayer in the visible light region is calculated to be about 2% and the corresponding average transmittance is around 80%. More importantly, the difference in the optical response for the two side surfaces is considered in our work due to the intrinsic asymmetric structure of Janus MoSeTe. These results not only predict the great potential application of Janus MoSeTe in optoelectronics-electronic devices, but may enable the discovery of new optical science and the realization of various light emissions, detection, modulation and manipulation functions of specific frequencies.

1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf