uu.seUppsala University Publications
Change search
Refine search result
1234567 101 - 150 of 576
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    An HAXPES study of Sn, SnS, SnO and SnO22014In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 195, p. 195-199Article in journal (Refereed)
    Abstract [en]

    Hard X-ray photoelectron spectra have been recorded for Sn, SnO2, SnO and SnS. The binding energies of the core levels of elemental Sn from 2s up to, and including, 4d have been determined with least squares fitting and calibrated against an Au 4f standard. For the oxides and the sulphide data on Sn 3p, 3d core levels’ binding energies and relative intensities are presented together with the binding energies of O 1s, S 1s and 2p. This study thus serves as a picture of tin's core level spectra compared to those of some of its oxides and a sulphide taken at photon energies beyond Al Kα and Mg Kα.

  • 102.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    HAXPES study of Sn core levels and their plasmon loss features2014In: Results in Physics, ISSN 2211-3797, Vol. 4, p. 168-169Article in journal (Refereed)
    Abstract [en]

    Hard X-ray Photoelectron spectra have been recorded for elemental Sn. Electron loss features, prominent in all core level spectra of the metal, are analyzed at several photo energies for the 3p core level. For higher photoelectron kinetic energies the intensity of the plasmonic features follows a simple exponential law. The data and models presented here will aid the modeling of spectra where tin is present and especially if its spectrum overlaps with those from other sources.

  • 103.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    Gorgoi, Mihaela
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    Surface modification of iron oxides by ion bombardment – comparing depth profiling by HAXPES and Ar ion sputtering2018In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 224, p. 23-26Article in journal (Refereed)
    Abstract [en]

    Iron oxide in the form of maghemite  γ-Fe2O3  and hematite α-Fe2O3 has been studied with x-ray photoelectron spectroscopy. It is found that even low energy sputtering induces a reduction of the surface layer into FeO. Satellites in the Fe 2p  core level spectra are used to determine the oxidation state of iron. Depth profiling with changing photon energy shows that the unsputtered films are homogeneous and that the information obtained from sputtering thus, in this instance, represents sputter damages to the sample.

  • 104.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    von Fieandt, Linus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Phase control of iron oxides grown in nano-scale cauliflower structures: hematite, maghemite and magnetiteManuscript (preprint) (Other academic)
    Abstract [en]

    We demonstrate that iron oxide in the form of hematite, suitable as absorber in photoelectrochemical cells, can be produced by pulsed chemical vapour deposition. By choosing carbon monoxide or nitrogen as carrier gases in the process the phase and granularity of the grown material can be controlled. The choice of carrier gas a ect the decomposition rate of iron pentacarbonyl used as iron precursor. The iron oxide phase is also dependent on the chosen substrate, here fluorine doped tin oxide and crystalline silicon have been used. Regardless of the substrate nitrogen yields hematite, whereas carbon monoxide gives magnetite on Si and maghemite on fluorine doped tin oxide. A combination of Raman spectroscopy, X-ray di raction, and hard X-ray photoelectron spectroscopy were used for characterization of the crystalline phase and chemical composition in the films. Scanning electron microscopy were used to visualise the deposited films’ nano-structure reminiscent of a cauliflower.

  • 105.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jacobsson, Jesper
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany.
    von Fieandt, Linus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Temperature Induced Diffusion of Sn and Si in Hematite and Implications for Photocatalytic Water Splitting ApplicationsManuscript (preprint) (Other academic)
    Abstract [en]

    The performance of Hematite (α-Fe2O3) for the water oxidation step in solar hydrogen production is dependent upon annealing of the material. In this study, these effects are investigated in terms of temperature induced diffusion of Sn and Si from the substrate into thin films of hematite by using hard X-ray photoelectron spectroscopy (HAXPES). Here, HAXPES is used for the first time to characterize a buried interface between a conducting substrate and a nanostructured thin film overlayer by diffusion upon annealing. This process is prototypical for the large class of photoelectrochemical devices that uses indium and fluorine doped tin oxide as substrates where the device is subsequently annealed. Indeed, we observe that: diffusion of Sn and Si is significant, already at 550 °C; the photocatalytic efficiency of the hematite films increased, from low values to 0.23 mA/cm2; annealing in air preserves the hematite phase, while annealing in vacuum induces a phase transition into magnetite, which impairs the photocatalytic performance. The increase in efficiency is explained in terms of an improvement of the quantum efficiency of the oxygen evolution reaction accompanied by a slight improvement in charge carrier transport.

  • 106.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jacobsson, Jesper T.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Optical quantum confinement in low dimensional hematite2014In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, no 10, p. 3352-3363Article in journal (Refereed)
    Abstract [en]

    Hematite is considered to be a promising material for various applications, including for example photoelectrochemical cells for solar hydrogen production. Due to limitations in the charge transport properties hematite needs to be in the form of low-dimensional particles or thin films in several of these applications. This may however affect the optical properties, introducing additional complications for efficient design of photo-active devices. In this paper the optical absorption is analyzed in detail as a function of film thickness for 35 thin films of hematite ranging between 2 and 70 nm. Hematite was deposited by atomic layer deposition on FTO-substrates using Fe(CO)(5) and O-2 as precursors. It was found that for film thicknesses below 20 nm the optical properties are severely affected as a consequence of quantum confinement. One of the more marked effects is a blue shift of up to 0.3 eV for thinner films of both the indirect and direct transitions, as well as a 0.2 eV shift of the absorption maximum. The data show a difference in quantum confinement for the indirect and the direct transitions, where the probability for the indirect transition decreases markedly and essentially disappears for the thinnest films. Raman measurements showed no peak shift or change in relative intensity for vibrations for the thinnest films indicating that the decrease in indirect transition probability could not be assigned to depression of any specific phonon but instead seems to be a consequence of isotropic phonon confinement. The onset of the indirect transition is found at 1.75 eV for the thickest films and shifted to 2.0 eV for the thinner films. Two direct transitions are found at 2.15 eV and 2.45 eV, which are blue shifted 0.3 and 0.45 eV respectively, when decreasing the film thickness from 20 to 4 nm. Low dimensional hematite, with dimensions small enough for efficient charge transport, thus has a substantially lower absorption in the visible region than expected from bulk values. This knowledge of the intrinsic optical behavior of low dimensional hematite will be of importance in the design of efficient photo-active devices.

  • 107.
    Fondell, Mattis
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gorgoi, M.
    von Fieandt, Linus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lindblad, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Phase control of iron oxides grown in nano-scale structures on FTO and Si(100): Hematite, maghemite and magnetite2015In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 117, p. 85-90Article in journal (Refereed)
    Abstract [en]

    We demonstrate that iron oxide in the form of hematite, suitable as absorption material in photo-electrochemical cells, can be produced by pulsed chemical vapour deposition. By choosing carbon monoxide or nitrogen as carrier gases in the process the phase and granularity of the grown material can be controlled. The choice of carrier gas affect the decomposition rate of iron pentacarbonyl used as iron precursor. The iron oxide phase is also dependent on the chosen substrate, here fluorine doped tin oxide and crystalline silicon have been used. Regardless of the substrate nitrogen yields hematite, whereas carbon monoxide gives, magnetite on Si and maghemite on fluorine doped tin oxide. A combination of Raman spectroscopy, X-ray diffraction, and hard X-ray photoelectron spectroscopy were used for characterization of the crystalline phase and chemical composition in the films. Scanning electron microscopy were used to visualise the deposited films' nano-structure.

  • 108.
    Fredriksson, Wendy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Petrini, Daniel
    Erasteel Kloster AB, Box 100, Söderfors SE-815 82, Sweden.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Björefors, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Corrosion Resistances and Passivation of Powder Metallurgical and Conventionally Cast 316L and 2205 Stainless Steels2013In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 67, p. 268-280Article in journal (Refereed)
    Abstract [en]

    The corrosion resistances and passivation of austenitic 316L and duplex 2205 powder metallurgical (P/M) steels, produced by employing gas atomizing and hot isostatic pressing (HIP), have been compared with those of their conventional cast and forged counterparts. The P/M 316L steel is shown to have a significantly higher pitting corrosion resistance than the conventional 316L steel in 0.5 M HCl. Since the chemical composition and the total amount of inclusions were analogous for the two steels, the effect is ascribed to the finer grained microstructure for the P/M 316L steel yielding a better passive layer. This is supported by photoelectron spectroscopy data demonstrating differences between the thickness and composition of the passive layers for the two 316 L steels. Differences in the passivation process were also found for the different steels as three mixed potentials were observed in the polarization curves for the P/M and conventional 316L steels whereas only one mixed potential at about +0.7 V vs. Ag/AgCl was observed for the two duplex steels in 0.5 M HCl. The results indicate that discussions of the shapes of polarization curves and mixed potentials should be based on the anodic and cathodic partial currents, including the reduction of oxygen. HIP:ed P/M steels are clearly well-suited for applications requiring high pitting corrosion resistances.

  • 109.
    Fritze, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Karlsson, Dennis
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Berastegui, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Rehnlund, David
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Synthesis and characterization of HfNbTiVZr high entropy alloy thin films2017Conference paper (Other academic)
  • 110.
    Fritze, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Koller, Christian M.
    TU Wien, Inst Mat Sci & Technol, A-1060 Vienna, Austria.
    von Fieandt, Linus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Malinovskis, Paulius
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Johansson, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Mayrhofer, Paul H.
    TU Wien, Inst Mat Sci & Technol, A-1060 Vienna, Austria.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Influence of Deposition Temperature on the Phase Evolution of HfNbTiVZr High-Entropy Thin Films2019In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 12, no 4, article id 587Article in journal (Refereed)
    Abstract [en]

    In this study, we show that the phase formation of HfNbTiVZr high-entropy thin films is strongly influenced by the substrate temperature. Films deposited at room temperature exhibit an amorphous microstructure and are 6.5 GPa hard. With increasing substrate temperature (room temperature to 275 degrees C), a transition from an amorphous to a single-phased body-centred cubic (bcc) solid solution occurs, resulting in a hardness increase to 7.9 GPa. A higher deposition temperature (450 degrees C) leads to the formation of C14 or C15 Laves phase precipitates in the bcc matrix and a further enhancement of mechanical properties with a peak hardness value of 9.2 GPa. These results also show that thin films follow different phase formation pathways compared to HfNbTiVZr bulk alloys.

  • 111.
    Fritze, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Malinovskis, Paulius
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Riekehr, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rehnlund, David
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    von Fieandt, Linus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Magnetron sputtering of carbon-containing multicomponent alloys — A pathway to hard and ductile thin filmsManuscript (preprint) (Other academic)
  • 112.
    Fritze, Stefan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Malinovskis, Paulius
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Riekehr, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    von Fieandt, Linus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Hard and crack resistant carbon supersaturated refractory nanostructured multicomponent coatings2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 14508Article in journal (Refereed)
    Abstract [en]

    The combination of ceramic hardness with high crack resistance is a major challenge in the design of protective thin films. High entropy alloys have shown in earlier studies promising mechanical properties with a potential use as thin film materials. In this study, we show that small amounts of carbon in magnetron-sputtered multicomponent CrNbTaTiW films can lead to a significant increase in hardness. The film properties were strongly dependent on the metal composition and the most promising results were observed for TaW-rich films. They crystallised in a bcc structure with a strong (110) texture and coherent grain boundaries. It was possible to deposit films with 8 at.% C in a supersaturated solid-solution into the bcc structure without carbide formation. A major effect of carbon was a significant grain refinement, reducing the column diameter from approximately 35 to 10 nm. This resulted in an increase in hardness from 14.7 to 19.1 GPa while the reduced E-modulus stayed constant at 322 GPa. The carbon-containing films exhibited extremely little plastic deformation around the indent and no cracks were observed. These results show that supersaturation of carbon into high entropy films can be a promising concept to combine superior hardness with high crack resistance.

  • 113.
    Fromell, Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Forsberg, Pontus
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Karlsson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Larsson, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Nikolajeff, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Baltzer, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Designed protein binders in combination with nanocrystalline diamond for use in high-sensitivity biosensors2012In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 404, no 6-7, p. 1643-1651Article in journal (Refereed)
    Abstract [en]

    A platform for diagnostic applications showing signal-to-noise ratios that by far surpass those of traditional bioanalytical test formats has been developed. It combines the properties of modified nanocrystalline diamond (NCD) surfaces and those of polyethylene oxide and polypropylene oxide based block copolymers for surface passivation and binder conjugation with a new class of synthetic binders for proteins. The NCD surfaces were fluorine-, hydrogen-, or oxygen-terminated prior to further biofunctionalization and the surface composition was characterized by X-ray photoelectron spectroscopy. In a proof of principle demonstration targeting the C-reactive protein, an ELISA carried out using an F-terminated diamond surface showed a signal-to-noise ratio of 3,900 which compares well to the signal-to-noise of 89 obtained in an antibody-based ELISA on a polystyrene microtiter plate, a standard test format used in most life science laboratories today. The increase in signal-to-noise ratio is to a large extent the result of extremely efficient passivation of the diamond surface. The results suggest that significant improvements can be obtained in standardized test formats using new materials in combination with new types of chemical coatings and receptor molecules.

  • 114. Furlan, Andrej
    et al.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lu, Jun
    Hultman, Lars
    Magnuson, Martin
    Structure and bonding in amorphous iron carbide thin films2015In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 27, no 4, p. 045002-Article in journal (Refereed)
    Abstract [en]

    We investigate the amorphous structure, chemical bonding, and electrical properties of magnetron sputtered Fe1-xCx (0.21 <= x <= 0.72) thin films. X-ray, electron diffraction and transmission electron microscopy show that the Fe1-xCx films are amorphous nanocomposites, consisting of a two-phase domain structure with Fe-rich carbidic FeCy, and a carbon-rich matrix. Pair distribution function analysis indicates a close-range order similar to those of crystalline Fe3C carbides in all films with additional graphene-like structures at high carbon content (71.8 at% C). From x-ray photoelectron spectroscopy measurements, we find that the amorphous carbidic phase has a composition of 15-25 at% carbon that slightly increases with total carbon content. X-ray absorption spectra exhibit an increasing number of unoccupied 3d states and a decreasing number of C 2p states as a function of carbon content. These changes signify a systematic redistribution in orbital occupation due to charge-transfer effects at the domain-size-dependent carbide/matrix interfaces. The four-point probe resistivity of the Fe1-xCx films increases exponentially with carbon content from similar to 200 mu Omega cm (x = 0.21) to similar to 1200 mu Omega cm (x = 0.72), and is found to depend on the total carbon content rather than the composition of the carbide. Our findings open new possibilities for modifying the resistivity of amorphous thin film coatings based on transition metal carbides through the control of amorphous domain structures.

  • 115.
    Furlan, Andrej
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lu, Jun
    Hultman, Lars
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Control of crystallinity in sputtered Cr-Ti-C films2013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 17, p. 6352-6361Article in journal (Refereed)
    Abstract [en]

    The influence of Ti content on crystallinity and bonding of Cr-Ti-C thin films deposited by magnetron sputtering have been studied by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. Our results show that binary Cr-C films without Ti exhibit an amorphous structure with two non-crystalline components; amorphous CrCx, and amorphous C (a-C). The addition of 10-20 at.% Ti leads to the crystallization of the amorphous CrCx and the formation of a metastable cubic (Cr1-xTix)Cy phase. The observation was explained based on the tendency of the 3d transition metals to form crystalline carbide films. The mechanical properties of the films determined by nanoindentation and microindentation were found to be strongly dependent on the film composition in terms of hardness, elasticity modulus, hardness/elasticity ratio and crack development.

  • 116. Furlan, Andrej
    et al.
    Lu, Jun
    Hultman, Lars
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Magnuson, Martin
    Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites2014In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 26, no 41, p. 415501-Article in journal (Refereed)
    Abstract [en]

    The crystal structure and chemical bonding of magnetron-sputtering deposited nickel carbide Ni1-xCx (0.05 <= x <= 0.62) thin films have been investigated by high-resolution x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, and soft x-ray absorption spectroscopy. By using x-ray as well as electron diffraction, we found carbon-containing hcp-Ni (hcp-NiCy phase), instead of the expected rhombohedral-Ni3C. At low carbon content (4.9 at%), the thin film consists of hcp-NiCy nanocrystallites mixed with a smaller amount of fcc-NiCx. The average grain size is about 10-20 nm. With the increase of carbon content to 16.3 at%, the film contains single-phase hcp-NiCy nanocrystallites with expanded lattice parameters. With a further increase of carbon content to 38 at%, and 62 at%, the films transform to x-ray amorphous materials with hcp-NiCy and fcc-NiCx nanodomain structures in an amorphous carbon-rich matrix. Raman spectra of carbon indicate dominant sp(2) hybridization, consistent with photoelectron spectra that show a decreasing amount of C-Ni phase with increasing carbon content. The Ni 3d-C 2p hybridization in the hexagonal structure gives rise to the salient double-peak structure in Ni 2p soft x-ray absorption spectra at 16.3 at% that changes with carbon content. We also show that the resistivity is not only governed by the amount of carbon, but increases by more than a factor of two when the samples transform from crystalline to amorphous.

  • 117.
    Garlisi, Corrado
    et al.
    Khalifa Univ Sci & Technol, Dept Chem Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    Szlachetko, Jakub
    Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland.;Polish Acad Sci, Inst Phys Chem, Warsaw, Poland..
    Aubry, Cyril
    Khalifa Univ Sci & Technol, Dept Mech Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    Fernandes, Daniel L. A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hattori, Yocefu
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Paun, Cristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Pavliuk, Mariia V.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Rajput, Nitul S.
    Khalifa Univ Sci & Technol, Dept Mech Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sá, Jacinto
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. Polish Acad Sci, Inst Phys Chem, Warsaw, Poland.
    Palmisano, Giovanni
    Khalifa Univ Sci & Technol, Dept Chem Engn, Masdar Inst, POB 54224, Abu Dhabi, U Arab Emirates..
    N-TiO2/Cu-TiO2 double-layer films: Impact of stacking order on photocatalytic properties2017In: Journal of Catalysis, ISSN 0021-9517, E-ISSN 1090-2694, Vol. 353, p. 116-122Article in journal (Refereed)
    Abstract [en]

    In this work, we report for the first time a unique configuration of N-doped and Cu-doped TiO2 bilayer. The activity of TiO2 was improved by combining Cu- and N-doping in a layered thin-film structure. The impact of the stacking order was studied, pointing out how the best arrangement is by far the one with Cu-TiO2 as the top layer. The results reveal a unique and simple way to enhance the photocatalytic response of TiO2 in the visible domain.

  • 118.
    Gebresenbut, Girma
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Andersson, Mikael Svante
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Beran, Pr™emysl
    Manuel, Pascal
    Nordblad, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gomez, Cesar Pay
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Long range ordered magnetic and atomic structures of the quasicrystal approximant in the Tb-Au-Si system2014In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 26, no 32, p. 322202-Article in journal (Refereed)
    Abstract [en]

    The atomic and magnetic structure of the 1/1 Tb(14)Au(70)Si(16) quasicrystal approximant has been solved by combining x-ray and neutron diffraction data. The atomic structure is classified as a Tsai-type 1/1 approximant with certain structural deviations from the prototype structures; there are additional atomic positions in the so-called cubic interstices as well as in the cluster centers. The magnetic property and neutron diffraction measurements indicate the magnetic structure to be ferrimagnetic-like below 9 K in contrast to the related Gd(14)Au(70)Si(16) structure that is reported to be purely ferromagnetic.

  • 119.
    Gebresenbut, Girma H.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Andersson, Mikael S.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Nordblad, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gomez, Cesar Pay
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tailoring Magnetic Behavior in the Tb-Au-Si Quasicrystal Approximant System2016In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 55, no 5, p. 2001-2008Article in journal (Refereed)
    Abstract [en]

    A novel synthesis method, "arc-melting-self-flux", has been developed and a series of five Tsai-type 1/1 approximant crystals in the Tb-Au-Si system have been synthesized. The synthesis method, by employing a temperature program which oscillates near the melting and nucleation points of the approximants, has provided high-quality and large single crystals in comparison to those obtained from the standard arc-melting-annealing and self-flux methods. The atomic structures of the approximants have been determined from single-crystal X-ray diffraction data and described using concentric atomic clusters with icosahedral symmetry. The compounds are nearly isostructural with subtle variations; two types of atomic clusters which mainly vary at their cluster centers are observed. One type contains a Tb site at the center, and the other contains a disordered tetrahedron decorated with Au/Si mixed sites. Both cluster types can be found coexisting in the approximants. The compounds have different average weighted ratios of central Tb to disordered tetrahedron in the bulk material. Furthermore, a strategy for chemically tuning magnetic behavior is presented. Magnetic property measurements on the approximants revealed that the magnetic transition temperature (T-c) decreases as the occupancy of the central Tb site increases. T-c decreased from 11.5 K for 0% occupancy of the central Tb to 8 K for 100% occupancy. Enhanced magneto crystalline anisotropy is observed for the approximants with higher central Tb occupancy in comparison to their low central Tb occupancy counterparts. Hence, the previously reported "ferrimagnetic-like" magnetic structure model remains valid.

  • 120.
    Gebresenbut, Girma Hailu
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Andersson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Nordblad, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Qureshi, Navid
    Institut Laue Langevin, 6 rue Jules Horowitz, Boîıte Postale 156, F-38042 Grenoble, France.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Pay Gómez, Cesar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Single crystal growth, structure determination and magnetic behavior of RE-Au-Si quasicrystal approximants (RE = Ho and Tb)Manuscript (preprint) (Other academic)
  • 121.
    Gerdin Hulkko, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Muspel and Surtr: CVD system and control program for WF6 chemistry2019Licentiate thesis, monograph (Other academic)
    Abstract [en]

    CVD (Chemical Vapour Deposition) is an advanced technique for depositing a coating on a substrate. CVD implies that a solid phase is deposited on a normally heated substrate surface using a reactive, gaseous mixture. The reaction gas mixture must be carefully chosen to prevent homogeneous nucleation in the gas phase. As the solid phase is formed, gaseous by-products are formed and they must be removed from the CVD system. The thermally activated CVD process requires a deposition system which can regulate the total pressure and mass flows of the separate gas components as well as maintain a sufficiently high temperature to initiate a chemical reaction on the substrate surface.

    In this thesis a new CVD system was constructed to meet these challenges. Initially it will be used to deposit hard, wear resistant coatings but by changing the gases, it is possible to explore other chemical systems. The CVD system functions well up to a deposition temperature of 1100 ºC as long as the CVD processes are thermally activated. Apart from manual operation, a LabView control interface was implemented that can automate process steps by reading recipe files as csv (comma-separated variables). In this way complex coating architectures can be deposited.

    The aim of this thesis is to give a detailed description of the hardware set-up and of the software developed for it. Provided in this work are also a few examples of W and WN (tungsten nitride) coatings, including a multi-layered structure to show the potential of complex structures. Since the system also contains a titanium precursor, a TiN (titanium nitride) coating is presented to conceptually show the flexibility of the equipment.

  • 122.
    Glechner, T.
    et al.
    TU Wien, Inst Mat Sci & Technol, A-1060 Vienna, Austria.
    Mayrhofer, P. H.
    TU Wien, Inst Mat Sci & Technol, A-1060 Vienna, Austria.
    Holec, D.
    Univ Leoben, Dept Mat Sci, A-8700 Leoben, Austria.
    Fritze, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lewin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Paneta, Valentina
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Primetzhofer, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Kolozsvari, S.
    Plansee Composite Mat GmbH, D-86983 Lechbruck, Germany.
    Riedl, H.
    TU Wien, Inst Mat Sci & Technol, A-1060 Vienna, Austria.
    Tuning structure and mechanical properties of Ta-C coatings by N-alloying and vacancy population2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 17669Article in journal (Refereed)
    Abstract [en]

    Tailoring mechanical properties of transition metal carbides by substituting carbon with nitrogen atoms is a highly interesting approach, as thereby the bonding state changes towards a more metallic like character and thus ductility can be increased. Based on ab initio calculations we could prove experimentally, that up to a nitrogen content of about 68% on the non-metallic sublattice, Ta-C-N crystals prevail a face centered cubic structure for sputter deposited thin films. The cubic structure is partly stabilized by non-metallic as well as Ta vacancies-the latter are decisive for nitrogen rich compositions. With increasing nitrogen content, the originally super-hard fcc-TaC0.71 thin films soften from 40 GPa to 26 GPa for TaC0.33N0.67, accompanied by a decrease of the indentation modulus. With increasing nitrogen on the non-metallic sublattice (hence, decreasing C) the damage tolerance of Ta-C based coatings increases, when characterized after the Pugh and Pettifor criteria. Consequently, varying the non-metallic sublattice population allows for an effective tuning and designing of intrinsic coating properties.

  • 123.
    Grahn, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Functionalization of Upsalite® by aminosilane deposition from gas phase2016Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The use of desiccant materials is crucial in many applications, such as dehumidification rotors, in OLED screen and as desiccant materials in dish washers, for example. Upsalite® is a novel, anhydrous, micro-mesoporous, and large surface area structure consisting of amorphous magnesium carbonate which has been shown to exhibit a good water sorption capacity. Depending on the heat treatment of Upsalite® after synthesis, the material exhibits different sorption capacity and hydrolytic stability. Calcined Upsalite® has a higher sorption capacity compared to as-synthesized, but crystallizes into nesquehonite when stored in a relative humidity of 100 % for several days. The need to stabilize the material arises and the use of two different aminosilanes as surface stabilizers has been evaluated. Two different deposition techniques from gas phase have been used, atomic layer deposition and vapor phase grafting, which are evaluated and compared.

     

    The results of the functionalization show an increase in decomposition temperature by ~25 °C of the functionalized materials compared to non-functionalized. The initial water sorption capacity of the functionalized material increases by up to 80 %, when stored in a relative humidity of 100 % for 24 h and shows a stabilizing effect after five cycles of repeated exposure to high humidity. The long term stability seems to have decreased due to pore collapse, when the functionalized material is cycled 5 times for one week in a repeated relative humidity of 100 %. The stability of the material when exposed to two liquids of different pH was also evaluated and the functionalized material exhibits a slower increase of the pH in the buffer solution, implying a retardation of Upsalite® dissolution. The conclusion is that a functionalization of the material with aminosilane increases the initial sorption capacity and has a stabilizing effect.

  • 124.
    Grandin, Martina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Nedfors, Nils
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sundberg, Jill
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Wiklund, Urban
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Ti-Ni-C nanocomposite coatings evaluated in a sliding electrical contact application2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 276, p. 210-218Article in journal (Refereed)
    Abstract [en]

    Nanocomposite Ti-Ni-C coatings, with nanosized carbide grains in an amorphous carbon (a-C) matrix have been suggested to have low friction and low contact resistance making them suitable for sliding electrical contacts. In this study we investigate further the previously observed influence of the amount of amorphous carbon, in a test set-up simulating instrumentation and control applications. The tribological and electrical performance is evaluated at high speed and continuous sliding against silver-graphite, where the mechanical load and current are fairly low. It is shown that under these circumstances there is no significant influence from the amount of a-C on neither the contact resistance nor the amount of wear of the silver-graphite. The reason for this is suggested to be that similar tribofilms are formed on the surface of the coatings, regardless of the amount of a-C phase. Degradation of the nanocomposite coatings is observed under electrical load, even though they are both much harder than the silver-graphite counter surface.

  • 125.
    Grennberg, Helena
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Synthesis of graphene and derivatives2012In: Advanced Functional Materials: A Perspective from Theory and Experiment / [ed] Biplab Sanyal and Olle Eriksson, Elsevier, 2012, no 1, p. 105-127Chapter in book (Refereed)
  • 126.
    Gupta, Arvind Kumar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Akkarasamiyo, Sunisa
    Stockholm Univ, Dept Organ Chem, S-10691 Stockholm, Sweden..
    Orthaber, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Rich Coordination Chemistry of pi-Acceptor Dibenzoarsole Ligands2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 8, p. 4504-4511Article in journal (Refereed)
    Abstract [en]

    A series of dibenzoarsole (also known as 9-arsafluorene) derivatives have been prepared, and their coordination chemistry has been investigated. The different ligand topology and the arsenic substituents govern the reactivity of the ligands. We report various crystal structures of palladium and platinum complexes derived from this family of ligands. The biphenyl backbone of the bridged bidentate ligands allows very flexible coordination. We have also studied the application of an allylic Pd complex in nucleophilic substitution reactions, revealing that the benzoarsole substituent is susceptible to metal insertion.

  • 127.
    Gupta, Arvind Kumar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Synthetic Molecular Chemistry.
    Green, Joshua P.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Synthetic Molecular Chemistry.
    Orthaber, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Synthetic Molecular Chemistry.
    Rearrangement and redistribution reaction of Ph2PCH2TMS with PhAsCl2 or AsCl32019In: Phosphorus Sulfur and Silicon and the Related Elements, ISSN 1042-6507, E-ISSN 1563-5325, Vol. 194, no 10, p. 967-971Article in journal (Refereed)
    Abstract [en]

    The attempted synthesis of bis(diphenylphosphinomethyl) phenylarsane and tris(diphenylphosphinomethyl) arsane through condensation of chloro arsanes and diphenyl (trimethylsilylmethyl) phosphane yielded a number of side products originating from migratory and redox-reactions in addition to the targeted ligands. An unexpected, 1,3,4-phosphadiarssolan-1-ium salt was obtained and crystallographically characterized as an A-shaped chlorido adduct. [GRAPHICS] .

  • 128.
    Gupta, Arvind Kumar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Orthaber, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Alkynyl Coinage Metal Clusters and Complexes-Syntheses, Structures, and Strategies2018In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 30, p. 7536-+Article in journal (Refereed)
    Abstract [en]

    In this Concept we discuss how the chemistry of coinage metal complexes based on alkynyl ligands has developed over the past decades. The rich coordination of alkynyl, that exhibit both (1) (end-on) and (2) (side on) modes, includes non-bridged systems, as well as bridging of up to four (or six) metal centres. Resulting metal clusters often exhibit highly regular structures and typical coordination motifs forming fascinating assemblies exploiting this versatile coordination. Metallophilic interactions are often an important driving force for the formation of large clusters. In addition, the use of co-ligands as well the possibility to encapsulate counter ions greatly increases the chemical and structural diversity. Herein we attempt to summarize and highlight design principles towards multinuclear homo and hetero-bi-metallic coinage metal clusters of alkynyl ligands.

  • 129.
    Hassan, Mir Mahadi
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Larsson, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Effect of Surface Termination on Diamond (100) Surface Electrochemistry2014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 40, p. 22995-23002Article in journal (Refereed)
    Abstract [en]

    The combined effect of water adlayer composition and surface termination on diamond surface electrochemistyr, has been studied theoretically using Density Functional Theory (DFT) calculations. The terminating species included H, O(ontop), O(bridge), OH and NH2. The chemical composition of the water adlayer was altered by using a very thin layer of water only, or by introducing oxygen, ozone or hydroxonium ions (H3O+) into the adlayer. A partial electron transfer toward the atmospheric adlayer was observed for the situation with either an H- or NH2-terminated diamond surface. Corresponding calculations for oxygen-termination (O(ontop) or O(bridge)), did not render any significant amount of electron transfer. The situation was completely different for the situation with OH-termination. The degree of electron transfer was approximately of the same order as for H- and NH2-terminations. The presence of oxidative species like oxygen ozone and H(3)0(+) (or combinations thereof) were observed to significantly increase the degree of electron transfer for the situation with either NH2-, OH-, or H-terminated diamond (100)-2 x 1 surfaces. Adsorption energy calculations revealed, with some exceptions, a quite good correlation between diamond//adlayer adhesion strength and degree of interfacial electron transfer. The electron transfer process were further verified and analyzed by performing partial density of state (pDOS) calculations for some selected diamond//adlayer systems.

  • 130.
    Hedin, Allan
    et al.
    SKB, Swedish Nucl Fuel & Waste Management Co, SE-10124 Stockholm, Sweden.
    Johansson, Adam Johannes
    SKB, Swedish Nucl Fuel & Waste Management Co, SE-10124 Stockholm, Sweden.
    Lilja, Christina
    SKB, Swedish Nucl Fuel & Waste Management Co, SE-10124 Stockholm, Sweden.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Berastegui, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Berger, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Ottosson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Corrosion of copper in pure O2-free water?2018In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 137, p. 1-12Article in journal (Refereed)
    Abstract [en]

    Copper exposed to pure, O-2-free water for several months in glass- and metal-contained, well-controlled systems shows no evidence of corrosion, either through hydrogen evolution or through the occurrence of oxidized copper. The results contradict the interpretation of recent experiments where it has been claimed that copper corrodes in pure, O-2-free water far above the very limited extent predicted by established thermodynamic data. Reasons for the different experimental outcomes are discussed. Experimental and theoretical efforts to identify hitherto unknown, potentially corrosion driving species of the Cu-O-H system and studies of copper/water surface reactions are reviewed as background for the present study.

  • 131.
    Hedlund, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Cedervall, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edström, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Kontos, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Rusz, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Svedlindh, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gunnarsson, Klas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Towards a magnetic phase diagram of the Fe5SiB2-Fe5PB2 alloy systemManuscript (preprint) (Other academic)
  • 132.
    Hedlund, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Cedervall, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edström, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Materials Theory, ETH Zürich.
    Werwinski, Miroslaw
    Polish Academy of Sciences.
    Kontos, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Eriksson, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Örebro University.
    Rusz, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Svedlindh, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Gunnarsson, Klas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Magnetic properties of the Fe5SiB2−Fe5PB2 system2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, no 9, article id 094433Article in journal (Refereed)
    Abstract [en]

    The magnetic properties of the compound Fe5Si1−xPxB2 have been studied, with a focus on the Curie temperature TC, saturation magnetization MS, and magnetocrystalline anisotropy. Field and temperature dependent magnetization measurements were used to determine TC(x) and MS(x). The saturation magnetization at 10 K (300 K) is found to monotonically decrease from 1.11MA/m (1.03MA/m) to 0.97MA/m (0.87MA/m), as x increases from 0 to 1. The Curie temperature is determined to be 810 and 615 K in Fe5SiB2 and Fe5PB2, respectively. The highest TC is observed for x=0.1, while it decreases monotonically for larger x. The Curie temperatures have also been theoretically determined to be 700 and 660 K for Fe5SiB2 and Fe5PB2, respectively, using a combination of density functional theory and Monte Carlo simulations. The magnitude of the effective magnetocrystalline anisotropy was extracted using the law of approach to saturation, revealing an increase with increasing phosphorus concentration. Low-field magnetization vs temperature results for x=0,0.1,0.2 indicate that there is a transition from easy-axis to easy-plane anisotropy with decreasing temperature.

  • 133.
    Holmberg, Max
    et al.
    Uppsala Univ, Dept Engn Sci, Angstrom Lab, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hjörvarsson, Björgvin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Marattukalam, Jithin James
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Andersson, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    On Surface Losses in Direct Metal Laser Sintering Printed Millimeter and Submillimeter Waveguides2018In: Journal of Infrared, Millimeter and Terahertz Waves, ISSN 1866-6892, E-ISSN 1866-6906, Vol. 39, no 6, p. 535-545Article in journal (Refereed)
    Abstract [en]

    Different lengths of WR3 (220-330 GHz) and WR10 (75-110 GHz) waveguides are fabricated through direct metal laser sintering (DMLS). The losses in these waveguides are measured and modelled using the Huray surface roughness model. The losses in WR3 are around 0.3 dB/mm and in WR10 0.05 dB/mm. The Huray equation model is accounting relatively good for the attenuation in the WR10 waveguide but deviates more in the WR3 waveguide. The model is compared to finite element simulations of the losses assuming an approximate surface structure similar to the resulting one from the DMLS process.

  • 134.
    Holmberg, Måns
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hjörvarsson, Björgvin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Marattukalam, Jithin J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Andersson, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Direct metal laser sintering printed millimeter and submillimeter waveguides2018Conference paper (Other academic)
  • 135.
    Hudl, Matthias
    et al.
    Department of Materials, ETH Zürich; KTH Royal Institute of Technology, ICT Materials Physics.
    Campanini, Donato
    Department of Physics, Stockholm University.
    Caron, Luana
    Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, TU Delft.
    Höglin, Viktor
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Sahlberg, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Nordblad, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Rydh, Andreas
    Department of Physics, Stockholm University.
    Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals2014In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, no 14, p. 144432-Article in journal (Refereed)
    Abstract [en]

    The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC = 217K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H-T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.

  • 136. HUDNER, J
    et al.
    OSTLING, M
    OHLSEN, H
    STOLT, L
    NORDBLAD, P
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    OTTOSSON, M
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    VILLEGIER, JC
    MORICEAU, H
    WEISS, F
    THOMAS, O
    PREPARATION OF YBA2CU3O7-X FILMS AND YBA2CU3O7-X/Y2O3 MULTILAYERS USING COEVAPORATION AND ATOMIC OXYGEN1993In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 73, p. 3096-3098Article in journal (Refereed)
    Abstract [en]

    Thin layers of YBa2Cu3O7-x (YBCO) deposited on LaAlO3 substrates have been prepared in situ by coevaporation of Y, Ba, and Cu. Incorporation of oxygen was accomplished by an atomic oxygen beam source with high cracking efficiency. The total oxygen flow at the substrate could be kept low enough to permit the use of a quadrupole mass spectrometer for evaporation rate monitoring. Films were strongly c-axis oriented with rocking curve full width at half-maximum values of 0.6-degrees. Transport measurements on patterned films yielded critical current densities of 6 x 10(6) A/cm2 at 77 K. The deposition method was demonstrated to be feasible for preparation of Y2O3/YBCO heterostructures.

  • 137. Hultman, L.
    et al.
    Bareno, J.
    Flink, A.
    Söderberg, H.
    Larsson, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Petrova, V.
    Odén, M.
    Green, J.E.
    Petrov, I.
    Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Films growth experiments and ab initio calculations2007In: Physical Review B Condensed Matter, ISSN 0163-1829, E-ISSN 1095-3795, Vol. 75, p. 155437-Article in journal (Refereed)
  • 138.
    Höglin, Viktor
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Structure-Magnetic Relationships in the Fe-Mn-P-Si System for Energy Applications2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Demands for new, energy-efficient appliances have greatly increased in response to our growing need for a more environmentally friendly society. Magnetic refrigeration is a technique that utilizes the magnetocaloric effect, with possible energy savings of up to 30% compared to commercial gas compression refrigerators. A material appropriate for commercial magnetocaloric devices should be both cheap and non-toxic; it should also exhibit a first-order magnetic transitions close to room temperature. The magnetic properties of Fe2P-related materials can be relevant in this context, since their magnetic properties can be finely tuned through the substitution of Fe by Mn and P by Si, As, Ge or B to meet the general requirements for a magnetocaloric device.

    An in-depth study has therefore here been made of the structural and magnetic properties of the (Fe,Mn)2(P,Si)-system. The phase diagram of the FeMnP1-xSix-system has been carefully re-examined. It is found to contain two single-phase regions: an orthorhombic Co2P-type structure (x < 0.15) and a hexagonal Fe2P-type structure (0.24 ≤ x < 0.50). Selected compounds within the Fe2P-type region of the phase diagram have been shown to exhibit potential for use in magnetic refrigeration applications.

    Neutron powder diffraction has here been used to determine the magnetic structures of selected crystalline compositions within the FeMnP1-xSix-system to gain a better understanding of its magnetic properties. The Fe2P-type region is mainly ferromagnetic, but an incommensurate antiferromagnetic structure has also been identified close to the Co2P/Fe2P-type phase border for x ≈ 0.25.

    The so-called ''virgin effect'' in the Fe2P-type region of the FeMn(P,Si) phase diagram is found to be accompanied by an irreversible structural phase transition induced by magnetostriction. This new phase is found to be preserved during successive cooling-heating cycles. Furthermore, the magnetic properties of the substituted Fe2P-type structure changes significantly for metal:non-metal ratios away from 2:1. Such deviations could well explain the apparently conflicting structure-property relationships described in earlier literature for the FeMnP1-xSix-system.

    List of papers
    1. The crystal and magnetic structure of the magnetocaloric compound FeMnP0.5Si0.5
    Open this publication in new window or tab >>The crystal and magnetic structure of the magnetocaloric compound FeMnP0.5Si0.5
    Show others...
    2011 (English)In: Journal of Solid State Chemistry, ISSN 0022-4596, E-ISSN 1095-726X, Vol. 184, no 9, p. 2434-2438Article in journal (Refereed) Published
    Abstract [en]

    The crystal and magnetic structure of the magnetocaloric compound FeMnP0.5Si0.5 has been studied by means of neutron and X-ray powder diffraction. Single phase samples of nominal composition FeMnP0.5Si0.5 have been prepared by the drop synthesis method. The compound crystallizes in the Fe2P-type structure (P-62m) with the magnetic moments aligned along the a-axis. It is found that the Fe atoms are mainly situated in the tetrahedral 3g site while the Mn atoms prefer the pyramidal 3f position. The material is ferromagnetic (TC=382 K) and at 296 K the total magnetic moment is 4.4 µB/f.u. It is shown that the magnetic moment in the 3f site is larger (2.5 µB) than in the 3g site (1.9 µB).

    Keywords
    Magnetocaloric, Neutron powder diffraction, X-ray diffraction (XRD), Drop synthesis method, Magnetic refrigeration, Magnetic structure
    National Category
    Natural Sciences Engineering and Technology Inorganic Chemistry
    Research subject
    Chemistry with specialization in Inorganic Chemistry; Engineering Science with specialization in Solid State Physics
    Identifiers
    urn:nbn:se:uu:diva-159482 (URN)10.1016/j.jssc.2011.06.019 (DOI)000294835700019 ()
    Available from: 2011-10-03 Created: 2011-10-03 Last updated: 2017-12-08
    2. Strongly enhanced magnetic moments in ferromagnetic FeMnP0.5Si0.5
    Open this publication in new window or tab >>Strongly enhanced magnetic moments in ferromagnetic FeMnP0.5Si0.5
    Show others...
    2011 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, no 15, p. 152502-Article in journal (Refereed) Published
    Abstract [en]

    The compound FeMnP(0.5)Si(0.5) has been studied by magnetic measurements, Mossbauer spectroscopy, and electronic structure and total energy calculations. An unexpectedly high magnetic hyperfine field for Fe atoms located at the tetrahedral Me(1) site in the Fe(2)P structure is found, The saturation moment derived from magnetic measurements corresponds to 4.4 mu(B)/f.u. at low temperatures, a value substantially higher than previously reported, but in accordance with the results from our electron structure calculations, This high saturation moment and the tunable first order ferromagnetic transition make the Fe(2-x)Mn(x)P(1-y)Si(y), system promising for magnetocaloric applications.

    Keywords
    electronic structure, iron alloys, magnetic moments, magnetic transitions, magnetocaloric effects, manganese alloys, Mossbauer effect, phosphorus alloys, silicon alloys, total energy
    National Category
    Physical Sciences Inorganic Chemistry Engineering and Technology
    Research subject
    Inorganic Chemistry; Engineering Science with specialization in Solid State Physics
    Identifiers
    urn:nbn:se:uu:diva-161941 (URN)10.1063/1.3651272 (DOI)000295883800051 ()
    Available from: 2011-11-23 Created: 2011-11-21 Last updated: 2017-12-08
    3. Detailed study of the magnetic ordering in FeMnP0.75Si0.25
    Open this publication in new window or tab >>Detailed study of the magnetic ordering in FeMnP0.75Si0.25
    Show others...
    2015 (English)In: Journal of Solid State Chemistry, ISSN 0022-4596, E-ISSN 1095-726X, Vol. 221, p. 240-246Article in journal (Refereed) Published
    Abstract [en]

    Magnetic and crystallographic properties of FeMnP0.75Si0.25 in the hexagonal Fe2P-type structure have been investigated by X-ray powder diffraction, neutron powder diffraction and magnetic measurements. The room temperature diffractograms reveal co-existence of two distinct structural phases in the samples with small, but significant, differences only in the unit cell dimensions. The volume ratio between the two phases is governed by the annealing conditions. One of the phases orders ferromagnetically (TC = 250 K) and the other in an incommensurate antiferromagnetic structure at low temperatures (qx = 0.363(1), TN = 150 K).

    Keywords
    Magnetic structure, Incommensurate ordering, Neutron powder diffraction, X-ray powder diffraction (XRD), Magnetization
    National Category
    Inorganic Chemistry Engineering and Technology
    Research subject
    Chemistry with specialization in Inorganic Chemistry; Engineering Science with specialization in Solid State Physics
    Identifiers
    urn:nbn:se:uu:diva-234509 (URN)10.1016/j.jssc.2014.10.013 (DOI)000347263700034 ()
    Available from: 2014-10-20 Created: 2014-10-20 Last updated: 2017-12-05Bibliographically approved
    4. Irreversible structure change of the as prepared FeMnP1−xSix-structure on the initial cooling through the curie temperature
    Open this publication in new window or tab >>Irreversible structure change of the as prepared FeMnP1−xSix-structure on the initial cooling through the curie temperature