uu.seUppsala University Publications
Change search
Refine search result
1234 151 - 168 of 168
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 151.
    Bhardwaj, Akanksha
    et al.
    PRL, Ahmadabad 380009, Gujarat, India;Indian Inst Technol, Gandhinagar 382424, Gujarat, India.
    Konar, Partha
    PRL, Ahmadabad 380009, Gujarat, India.
    Mandal, Tanumoy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sadhukhan, Soumya
    Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India.
    Probing the inert doublet model using jet substructure with a multivariate analysis2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, no 5, article id 055040Article in journal (Refereed)
    Abstract [en]

    We explore the challenging but phenomenologically interesting hierarchical mass spectrum of the inert doublet model where relatively light dark matter along with much heavier scalar states can fully satisfy the constraints on the relic abundance and also fulfill other theoretical as well as collider and astrophysical bounds. To probe this region of parameter space at the LHC, we propose a signal process that combines up to two large radius boosted jets along with substantial missing transverse momentum. Aided by our intuitive signal selection, we capture a hybrid process where the di-fatjet signal is significantly enhanced by the mono-fatjet contribution with minimal effects on the SM di-fatjet background. Substantiated by the sizable mass difference between the scalars, these boosted jets, originally produced from the hadronic decay of massive vector bosons, still carry the inherent footprint of their root. These features implanted inside the jet substructure can provide additional handles to deal with a large background involving QCD jets. We adopt a multivariate analysis using a boosted decision tree to provide a robust mechanism to explore the hierarchical scenario, which would bring almost the entire available parameter space well within reach of the 14 TeV LHC runs with high luminosity.

  • 152.
    Boehm, Janko
    et al.
    TU Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany.
    Georgoudis, Alessandro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Larsen, Kasper J.
    Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
    Schulze, Mathias
    TU Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany.
    Zhang, Yang
    Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55128 Mainz, Germany;Swiss Fed Inst Technol, Wolfang Pauli Str 27, CH-8093 Zurich, Switzerland.
    Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 2, article id 025023Article in journal (Refereed)
    Abstract [en]

    Integration-by-parts identities between loop integrals arise from the vanishing integration of total derivatives in dimensional regularization. Generic choices of total derivatives in the Baikov or parametric representations lead to identities which involve dimension shifts. These dimension shifts can be avoided by imposing a certain constraint on the total derivatives. The solutions of this constraint turn out to be a specific type of syzygies which correspond to logarithmic vector fields along the Gram determinant formed of the independent external and loop momenta. We present an explicit generating set of solutions in Baikov representation, valid for any number of loops and external momenta, obtained from the Laplace expansion of the Gram determinant. We provide a rigorous mathematical proof that this set of solutions is complete. This proof relates the logarithmic vector fields in question to ideals of submaximal minors of the Gram matrix and makes use of classical resolutions of such ideals.

  • 153.
    Chandak, Kushagra
    et al.
    Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad 500032, India.
    Mandal, Tanumoy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mitra, Subhadip
    Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad 500032, India.
    Hunting for scalar leptoquarks with boosted tops and light leptons2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, no 7, article id 075019Article in journal (Refereed)
    Abstract [en]

    The LHC search strategies for leptoquarks that couple dominantly to a top quark are different than for the ones that couple mostly to the light quarks. We consider charge 1/3 (phi(1)) and 5/3 (phi(5)) scalar leptoquarks that can decay to a top quark and a charged lepton (tl) giving rise to a resonance system of a boosted top and a high-p(T) lepton. We introduce simple phenomenological models suitable for bottom-up studies and explicitly map them to all possible scalar leptoquark models within the Buchmuller-Ruckl-Wyler classifications that can have the desired decays. We study pair and single productions of these leptoquarks. Contrary to the common perception, we find that the single production of top-philic leptoquarks phi = {phi(1), phi(5)} in association with a lepton and jets could be significant for order one phi tl coupling in certain scenarios. We propose a strategy of selecting events with at least one hadronic-top and two high-p(T) same flavor opposite sign leptons. This captures events from both pair and single productions. Our strategy can significantly enhance the LHC discovery potential especially in the high-mass region where single productions become more prominent. Our estimation shows that a scalar leptoquark as heavy as similar to 1.7 TeV can be discovered at the 14 TeV LHC with 3 ab(-1) of integrated luminosity in the tll + X channel for 100% branching ratio in the phi -> tl decay mode. However, in some scenarios, the discovery reach can increase beyond 2 TeV even though the branching ratio comes down to about 50%.

  • 154.
    Danielsson, Ulf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Dibitetto, Giuseppe
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Fate of stringy AdS vacua and the weak gravity conjecture2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 2, article id 026020Article in journal (Refereed)
    Abstract [en]

    Ooguri and Vafa [arXiv:1610.015313] have recently proposed a stronger version of the weak gravity conjecture (WGC), based on which they concluded that all those nonsupersyrrurietric AdS vacua that can be embedded within a consistent theory of quantum gravity necessarily develop instabilities. In this paper we further elaborate on this proposal by arguing that the aforementioned instabilities have a perturbative nature and arise from the crucial interplay between the closed and the open string sectors of the theory.

  • 155.
    Dondi, Nicola Andrea
    et al.
    Univ Southern Denmark, Origins CP3, Odense M, Denmark; Univ Southern Denmark, DIAS, Odense M, Denmark.
    Sannino, Francesco
    Univ Southern Denmark, Origins CP3, Odense M, Denmark; Univ Southern Denmark, DIAS, Odense M, Denmark.
    Prochazka, Vladimir
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Conformal data of fundamental gauge-Yukawa theories2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 4, article id 045002Article in journal (Refereed)
    Abstract [en]

    We determine central charges, critical exponents and appropriate gradient flow relations for non-supersymmetric vector-like and chiral Gauge-Yukawa theories that are fundamental according to Wilson and that feature calculable UV or IR interacting fixed points. We further uncover relations and identities among the various local and global conformal data. This information is used to provide the first extensive characterization of general classes of free and safe quantum field theories of either chiral or vector-like nature via their conformal data. Using large N-f techniques we also provide examples in which the safe fixed point is nonperturbative but for which conformal perturbation theory can be used to determine the global variation of the a central charge.

  • 156.
    Elagin, Andrey
    et al.
    Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA..
    Kumar, Jason
    Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA..
    Sandick, Pearl
    Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA..
    Teng, Fei
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
    Prospects for detecting a net photon circular polarization produced by decaying dark matter2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 9, article id 096008Article in journal (Refereed)
    Abstract [en]

    If dark matter interactions with Standard Model particles are CP violating, then dark matter annihilation/decay can produce photons with a net circular polarization. We consider the prospects for experimentally detecting evidence for such a circular polarization. We identify optimal models for dark matter interactions with the Standard Model, from the point of view of detectability of the net polarization, for the case of either symmetric or asymmetric dark matter. We find that, for symmetric dark matter, evidence for net polarization could be found by a search of the Galactic center by an instrument sensitive to circular polarization with an efficiency-weighted exposure of at least 50; 000 cm(2) yr, provided the systematic detector uncertainties are constrained at the 1% level. Better sensitivity can be obtained in the case of asymmetric dark matter. We discuss the prospects for achieving the needed level of performance using possible detector technologies.

  • 157.
    Fäldt, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Production and sequential decay of charmed hyperons2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, no 5, article id 053002Article in journal (Refereed)
    Abstract [en]

    We investigate production and decay of the Lambda(+)(c) thornc hyperon. The production considered is through the e(+)e(-) annihilation channel, e(+)e(-) -> Lambda(+)(c)(Lambda) over bar (-)(c), with summation over the (Lambda) over bar (-)(c) antihyperon spin directions. It is in this situation that the Lambda(+)(c) decay chain is identified. Two kinds of sequential decays are studied. The first one is the doubly weak decay B-1 -> B2M2, followed by B-2 -> B3M3. The other one is the mixed weak-electromagnetic decay B-1 -> B2M2, followed by B-2 -> B-3 gamma. In both schemes B denotes baryons and M mesons. We should also mention that the initial state of the Lambda(+)(c) thornc hyperon is polarized.

  • 158.
    Gomis, Jaume
    et al.
    Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada..
    Le Floch, Bruno
    Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA..
    Pan, Yiwen
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Peelaers, Wolfger
    Rutgers State Univ, New High Energy Theory Ctr, Piscataway, NJ 08854 USA..
    Intersecting surface defects and two-dimensional CFT2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 4, article id 045003Article in journal (Refereed)
    Abstract [en]

    We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N = 2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators in N = 2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations of SU(N).

  • 159.
    Husek, Tomas
    et al.
    Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, Prague 8, Czech Republic;Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
    Kampf, Karol
    Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, Prague 8, Czech Republic.
    Novotny, Jiri
    Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, Prague 8, Czech Republic.
    Leupold, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Radiative corrections to the η(') Dalitz decays2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, no 9, article id 096013Article in journal (Refereed)
    Abstract [en]

    We provide the complete set of radiative corrections to the Dalitz decays eta(()'()) -> l(+)l(-)gamma beyond the softphoton approximation, i. e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the eta(()'()) -> gamma*gamma(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the eta-eta' mixing.

  • 160.
    Ioannidou, Theodora
    et al.
    Aristotle Univ Thessaloniki, Sch Engn, Fac Civil Engn, Thessaloniki 54249, Greece..
    Niemi, A
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. Stockholm Univ, Nordita, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.;Far Eastern Fed Univ, Sch Biomed, Phys Living Matter, Vladivostok 690950, Russia.;Beijing Inst Technol, Dept Phys, Beijing 100081, Peoples R China..
    Relation between discrete Frenet frames and the bi- Hamiltonian structure of the discrete nonlinear Schrödinger equation2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, no 8, article id 085003Article in journal (Refereed)
    Abstract [en]

    The discrete Frenet equation entails a local framing of a discrete, piecewise linear polygonal chain in terms of its bond and torsion angles. In particular, the tangent vector of a segment is akin to the classical O(3) spin variable. Thus there is a relation to the lattice Heisenberg model that can be used to model physical properties of the chain. On the other hand, the Heisenberg model is closely related to the discrete nonlinear Schrodinger equation. Here we apply these interrelations to develop a perspective on discrete chains dynamics: We employ the properties of a discrete chain in terms of a spinorial representation of the discrete Frenet equation, to introduce a bi-Hamiltonian structure for the discrete nonlinear Schrodinger equation, which we then use to produce integrable chain dynamics.

  • 161.
    Krefl, Daniel
    et al.
    CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland..
    Seong, Rak-Kyeong
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Machine learning of Calabi-Yau volumes2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 6, article id 066014Article in journal (Refereed)
    Abstract [en]

    We employ machine learning techniques to investigate the volume minimum of Sasaki-Einstein base manifolds of noncompact toric Calabi-Yau three-folds. We find that the minimum volume can be approximated via a second-order multiple linear regression on standard topological quantities obtained from the corresponding toric diagram. The approximation improves further after invoking a convolutional neural network with the full toric diagram of the Calabi-Yau three-folds as the input. We are thereby able to circumvent any minimization procedure that was previously necessary and find an explicit mapping between the minimum volume and the topological quantities of the toric diagram. Under the AdS/CFT correspondence, the minimum volumes of Sasaki-Einstein manifolds correspond to central charges of a class of 4d N = 1 superconformal field theories. We therefore find empirical evidence for a function that gives values of central charges without the usual extremization procedure.

  • 162.
    Mandal, Tanumoy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India.
    Mitra, Subhadip
    Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad 500032, India.
    Raz, Swapnil
    Int Inst Informat Technol, Ctr Computat Nat Sci & Bioinformat, Hyderabad 500032, India.
    R-D(*) motivated S-1 leptoquark scenarios: Impact of interference on the exclusion limits from LHC data2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 055028Article in journal (Refereed)
    Abstract [en]

    Motivated by the persistent anomalies in the semileptonic B-meson decays, we investigate the competency of LHC data to constrain the R-D(*)-favored parameter space in a charge -1/3 scalar leptoquark (S-1) model. We consider some scenarios with one large free coupling to accommodate the R-D(*) anomalies. As a result, some of them dominantly yield nonresonant tau tau and tau nu events at the LHC through the t-channel S-1 exchange. So far, no experiment has searched for leptoquarks using these signatures and the relevant resonant leptoquark searches are yet to put any strong exclusion limit on the parameter space. We recast the latest tau tau and tau nu resonance search data to obtain new exclusion limits. The nonresonant processes strongly interfere (destructively in our case) with the Standard Model background and play the determining role in setting the exclusion limits. To obtain precise limits, we include non-negligible effects coming from the subdominant (resonant) pair and inclusive single leptoquark productions systematically in our analysis. To deal with large destructive interference, we make use of the transverse mass distributions from the experiments in our statistical analysis. In addition, we also recast the relevant direct search results to obtain the most stringent collider bounds on these scenarios to date. These are independent bounds and are competitive to other known bounds. Finally, we indicate how one can adopt these bounds to a wide class of models with S-1 that are proposed to accommodate the R-D(*) anomalies.

  • 163.
    Perotti, Elisabetta
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Fäldt, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Leupold, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Song, Jiao Jiao
    Shandong Univ, Jinan 250100, Shandong, Peoples R China;Inst High Energy Phys, Beijing 100049, Peoples R China.
    Polarization observables in e(+) e(-) annihilation to a baryon-antibaryon pair2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 056008Article in journal (Refereed)
    Abstract [en]

    Using the helicity formalism of Jacob and Wick, we derive spin density matrices of baryon antibaryon pairs produced in e(+)e(-) annihilation. We consider the production of pairs with spins 1/2 + (1/2) over bar, 1/2 + (3/2) over bar (+c.c.) and 3/2 + (3/2) over bar. We provide modular expressions to include chains of weak hadronic two-body decays of the produced hyperons. The expressions are suitable for the analysis of high statistics data from J/psi and psi(2S) ecays at e(+) e(-) colliders, by fits to the fully differential angular distributions of the measured particles. We illustrate the method by examples, such as the inclusive measurement of the e(+) e(-) -> psi(2S) -> Omega(-)(Omega) over bar (+) process where one decay chain Omega(-) -> AK(-) followed by A -> p pi(-) is considered. Finally, we show that the inclusive angular distributions can be used to test spin assignment of the produced baryons.

  • 164.
    Procházka, Vladimir
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Zwicky, Roman
    On the a-theorem in the Conformal Window2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 2, article id 025006Article in journal (Refereed)
    Abstract [en]

    We show that for four-dimensional gauge theories in the conformal window, the anomaly, known as the a function, can be computed from a two-point function of the trace of the energy momentum tensor making it more amenable to lattice simulations. Concretely, we derive an expression for the a function as an integral over the renormalization scale of quantities related to two- and three-point functions of the trace of the energy momentum tensor. The crucial ingredients are that the square of the field strength tensor is an exactly marginal operator at the Gaussian fixed point and that the relevant three-point correlation function is finite when resummed to all orders. This allows us to define a scheme for which the three-point contribution vanishes, thereby explicitly establishing the strong version of the a theorem for this class of theories.

  • 165.
    Ramberg, Nicklas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Visinelli, Luca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden;Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.
    Probing the early Universe with axion physics and gravitational waves2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 12, article id 123513Article in journal (Refereed)
    Abstract [en]

    We show results for the expected reach of the network of experiments that is being set up globally with the aim of detecting the "invisible" axion, in light of a nonstandard thermal history of the universe. Assuming that the axion is the dark matter, we discuss the reach of a successful detection by a given experimental setup in a particular axion mass window for different modifications of the cosmological background before primordial nucleosynthesis occurred. Results are presented both in the case where the present energy budget in cold axions is produced through the vacuum realignment mechanism alone, or in the case in which axionic strings also provide with additional contributions to the axion energy density. We also show that in some cosmological models, the spectrum of gravitational waves from the axionic string network would be within reach of the future network of detectors like LISA and DECIGO-BBO. We conclude that some scenarios describing the early universe can be probed jointly by the experimental efforts on axion detection and by gravity wave multimessenger astronomy.

  • 166.
    Singh, B.
    et al.
    Aligarh Muslim Univ, Dept Phys, Aligarh, Uttar Pradesh, India..
    Erni, W.
    Univ Basel, Basel, Switzerland..
    Krusche, B.
    Univ Basel, Basel, Switzerland..
    Steinacher, M.
    Univ Basel, Basel, Switzerland..
    Walford, N.
    Univ Basel, Basel, Switzerland..
    Liu, H.
    Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China..
    Liu, Z.
    Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.;Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Liu, B.
    Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China..
    Shen, X.
    Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China..
    Wang, C.
    Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China..
    Zhao, J.
    Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China..
    Albrecht, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Erlen, T.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Fink, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Heinsius, F. H.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Held, T.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Holtmann, T.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Jasper, S.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Keshk, I.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Koch, H.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Kopf, B.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Kuhlmann, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Kuemmel, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Leiber, S.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Mikirtychyants, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Musiol, P.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Mustafa, A.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Pelizaeus, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Pychy, J.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Richter, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Schnier, C.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Schroeder, T.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Sowa, C.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Steinke, M.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Triffterer, T.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Wiedner, U.
    Ruhr Univ Bochum, Inst Experimentalphys 1, Bochum, Germany..
    Ball, M.
    Univ Bonn, Bonn, Germany..
    Beck, R.
    Univ Bonn, Bonn, Germany..
    Hammann, C.
    Univ Bonn, Bonn, Germany..
    Ketzer, B.
    Univ Bonn, Bonn, Germany..
    Kube, M.
    Univ Bonn, Bonn, Germany..
    Mahlberg, P.
    Univ Bonn, Bonn, Germany..
    Rossbach, M.
    Univ Bonn, Bonn, Germany..
    Schmidt, C.
    Univ Bonn, Bonn, Germany..
    Schmitz, R.
    Univ Bonn, Bonn, Germany..
    Thoma, U.
    Univ Bonn, Bonn, Germany..
    Urban, M.
    Univ Bonn, Bonn, Germany..
    Walther, D.
    Univ Bonn, Bonn, Germany..
    Wendel, C.
    Univ Bonn, Bonn, Germany..
    Wilson, A.
    Univ Bonn, Bonn, Germany..
    Bianconi, A.
    Univ Brescia, Brescia, Italy..
    Bragadireanu, M.
    Inst Natl C&D Pentru Fiz Ingn Nucleara Horia Hulu, Magurele, Romania..
    Caprini, M.
    Inst Natl C&D Pentru Fiz Ingn Nucleara Horia Hulu, Magurele, Romania..
    Pantea, D.
    Inst Natl C&D Pentru Fiz Ingn Nucleara Horia Hulu, Magurele, Romania..
    Patel, B.
    PD Patel Inst Appl Sci, Dept Phys Sci, Changa, India..
    Czyzycki, W.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Domagala, M.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Filo, G.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Jaworowski, J.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Krawczyk, M.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Lisowski, E.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Lisowski, F.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Michalek, M.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Poznanski, P.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Plazek, J.
    Univ Technol, Inst Appl Informat, Krakow, Poland..
    Korcyl, K.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Kozela, A.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Kulessa, P.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Lebiedowicz, P.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Pysz, K.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Schaefer, W.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Szczurek, A.
    Inst Nucl Phys PAN, IFJ, Krakow, Poland..
    Fiutowski, T.
    AGH Univ Sci & Technol, Krakow, Poland..
    Idzik, M.
    AGH Univ Sci & Technol, Krakow, Poland..
    Mindur, B.
    AGH Univ Sci & Technol, Krakow, Poland..
    Przyborowski, D.
    AGH Univ Sci & Technol, Krakow, Poland..
    Swientek, K.
    AGH Univ Sci & Technol, Krakow, Poland..
    Biernat, J.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Kamys, B.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Kistryn, S.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Korcyl, G.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Krzemien, W.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Magiera, A.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Moskal, P.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Pyszniak, A.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Rudy, Z.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Salabura, P.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Smyrski, J.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Strzempek, P.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Wronska, A.
    Uniwersytet Jagiellonski, Inst Fizyki, Krakow, Poland..
    Augustin, I.
    FAIR Facil Antiproton & Ion Res Europe, Darmstadt, Germany..
    Boehm, R.
    FAIR Facil Antiproton & Ion Res Europe, Darmstadt, Germany..
    Lehmann, I.
    FAIR Facil Antiproton & Ion Res Europe, Darmstadt, Germany..
    Marinescu, D. Nicmorus
    FAIR Facil Antiproton & Ion Res Europe, Darmstadt, Germany..
    Schmitt, L.
    FAIR Facil Antiproton & Ion Res Europe, Darmstadt, Germany..
    Varentsov, V.
    FAIR Facil Antiproton & Ion Res Europe, Darmstadt, Germany..
    Al-Turany, M.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Belias, A.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Deppe, H.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Veis, N. Divani
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Dzhygadlo, R.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Ehret, A.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Flemming, H.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Gerhardt, A.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Goetzen, K.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Gromliuk, A.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Gruber, L.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Karabowicz, R.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Kliemt, R.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Krebs, M.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Kurilla, U.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Lehmann, D.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Loechner, S.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Luehning, J.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Lynen, U.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Orth, H.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Patsyuk, M.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Peters, K.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Saito, T.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Schepers, G.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Schmidt, C. J.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Schwarz, C.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Schwiening, J.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Taeschner, A.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Traxler, M.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Ugur, C.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Voss, B.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Wieczorek, P.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Wilms, A.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Zuehlsdorf, M.
    GSI Helmholtzzentrum Schwerionenforschung GmbH, Darmstadt, Germany..
    Abazov, V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Alexeev, G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Arefiev, V. A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Astakhov, V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Barabanov, M. Yu.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Batyunya, B. V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Davydov, Y.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Dodokhov, V. Kh.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Efremov, A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Fechtchenko, A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Fedunov, A. G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Galoyan, A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Grigoryan, S.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Koshurnikov, E. K.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Lobanov, Y. Yu.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Lobanov, V. I.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Makarov, A. F.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Malinina, L. V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Malyshev, V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Olshevskiy, A. G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Perevalova, E.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Piskun, A. A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Pocheptsov, T.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Pontecorvo, G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Rodionov, V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Rogov, Y.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Salmin, R.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Samartsev, A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Sapozhnikov, M. G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Shabratova, G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Skachkov, N. B.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Skachkova, A. N.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Strokovsky, E. A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Suleimanov, M.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Teshev, R.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Tokmenin, V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Uzhinsky, V.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Vodopianov, A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Zaporozhets, S. A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Zhuravlev, N. I.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Zinchenko, A.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Zorin, A. G.
    Joint Inst Nucl Res, Veksler Baldin Lab High Energies VBLHE, Dubna, Russia..
    Branford, D.
    Univ Edinburgh, Edinburgh, Midlothian, Scotland..
    Glazier, D.
    Univ Edinburgh, Edinburgh, Midlothian, Scotland..
    Watts, D.
    Univ Edinburgh, Edinburgh, Midlothian, Scotland..
    Boehm, M.
    Univ Erlangen Nurnberg, Erlangen, Germany..
    Britting, A.
    Univ Erlangen Nurnberg, Erlangen, Germany..
    Eyrich, W.
    Univ Erlangen Nurnberg, Erlangen, Germany..
    Lehmann, A.
    Univ Erlangen Nurnberg, Erlangen, Germany..
    Pfaffinger, M.
    Univ Erlangen Nurnberg, Erlangen, Germany..
    Uhlig, F.
    Univ Erlangen Nurnberg, Erlangen, Germany..
    Dobbs, S.
    Northwestern Univ, Evanston, IL 60208 USA..
    Seth, K.
    Northwestern Univ, Evanston, IL 60208 USA..
    Tomaradze, A.
    Northwestern Univ, Evanston, IL 60208 USA..
    Xiao, T.
    Northwestern Univ, Evanston, IL 60208 USA..
    Bettoni, D.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Carassiti, V.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Ramusino, A. Cotta
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Dalpiaz, P.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Drago, A.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Fioravanti, E.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Garzia, I.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Savrie, M.
    Univ Ferrara, Ferrara, Italy.;Ist Nazl Fis Nucl, Sez Ferrara, Ferrara, Italy..
    Akishina, V.
    Frankfurt Inst Adv Studies, Frankfurt, Germany..
    Kisel, I.
    Frankfurt Inst Adv Studies, Frankfurt, Germany..
    Kozlov, G.
    Frankfurt Inst Adv Studies, Frankfurt, Germany..
    Pugach, M.
    Frankfurt Inst Adv Studies, Frankfurt, Germany..
    Zyzak, M.
    Frankfurt Inst Adv Studies, Frankfurt, Germany..
    Gianotti, P.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Guaraldo, C.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Lucherini, V.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Bersani, A.
    Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy..
    Bracco, G.
    Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy..
    Macri, M.
    Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy..
    Parodi, R. F.
    Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy..
    Biguenko, K.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Brinkmann, K. T.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Di Pietro, V.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Diehl, S.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Dormenev, V.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Drexler, P.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Doern, M.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Etzelmller, E.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Galuska, M.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Gutz, E.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Hahn, C.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Hayrapetyan, A.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Kesselkaul, M.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Koehn, W.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Kuske, T.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Lange, J. S.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Liang, Y.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Metag, V.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Moritz, M.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Nanova, M.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Nazarenko, S.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Novotny, R.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Quagli, T.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Reiter, S.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Riccardi, A.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Rieke, J.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Rosenbaum, C.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Schmidt, M.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Schnell, R.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Stenzel, H.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Thoering, U.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Ullrich, T.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Wagner, M. N.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Wasem, T.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Wohlfahrt, B.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Zaunick, H. G.
    Univ Giessen, Physikal Inst 2, Giessen, Germany..
    Tomasi-Gustafsson, E.
    Univ Paris Saclay, CEA, IRFU, Gif Sur Yvette, France..
    Ireland, D.
    Univ Glasgow, Glasgow, Lanark, Scotland..
    Rosner, G.
    Univ Glasgow, Glasgow, Lanark, Scotland..
    Seitz, B.
    Univ Glasgow, Glasgow, Lanark, Scotland..
    Deepak, P. N.
    Birla Inst Technol & Sci Pilani, Pilani, Rajasthan, India..
    Kulkarni, A.
    Birla Inst Technol & Sci Pilani, Pilani, Rajasthan, India..
    Apostolou, A.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Babai, M.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Kavatsyuk, M.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Lemmens, P. J.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Lindemulder, M.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Loehner, H.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Messchendorp, J.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Schakel, P.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Smit, H.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Tiemens, M.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Van derweele, J. C.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Veenstra, R.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Vejdani, S.
    Univ Groningen, KVI Ctr Adv Radiat Technol CART, Groningen, Netherlands..
    Dutta, K.
    Gauhati Univ, Dept Phys, Gauhati, India..
    Kalita, K.
    Gauhati Univ, Dept Phys, Gauhati, India..
    Kumar, A.
    Indian Inst Technol, Indore, India..
    Roy, A.
    Indian Inst Technol, Indore, India..
    Sohlbach, H.
    Fachhoch Sudwestfalen, Iserlohn, Germany..
    Bai, M.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Bianchi, L.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Buescher, M.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Cao, L.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Cebulla, A.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Dosdall, R.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Gillitzer, A.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Goldenbaum, F.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Grunwald, D.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Herten, A.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Hu, Q.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Kemmerling, G.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Kleines, H.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Lai, A.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Lehrach, A.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Nellen, R.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Ohm, H.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Orfanitski, S.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Prasuhn, D.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Prencipe, E.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Puetz, J.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Ritman, J.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Schadmand, S.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Sefzick, T.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Serdyuk, V.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Sterzenbach, G.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Stockmanns, T.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Wintz, P.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Wuestner, P.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Xu, H.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany.;Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China..
    Zambanini, A.
    Forschungszentrum Julich, Inst Kernphys, Julich, Germany..
    Li, S.
    Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China..
    Li, Z.
    Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China..
    Sun, Z.
    Chinese Acad Sci, Inst Modern Phys, Lanzhou, Peoples R China..
    Rigato, V.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy..
    Isaksson, L.
    Lund Univ, Dept Phys, Lund, Sweden..
    Achenbach, P.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Corell, O.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Denig, A.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Distler, M.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Hoek, M.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Karavdina, A.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Lauth, W.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Merkel, H.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Mueller, U.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Pochodzalla, J.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Sanchez, S.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Schlimme, S.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Sfienti, C.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Thiel, M.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, Mainz, Germany..
    Ahmadi, H.
    Helmholtz Inst Mainz, Mainz, Germany..
    Ahmed, S.
    Helmholtz Inst Mainz, Mainz, Germany..
    Bleser, S.
    Helmholtz Inst Mainz, Mainz, Germany..
    Capozza, L.
    Helmholtz Inst Mainz, Mainz, Germany..
    Cardinali, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Dbeyssi, A.
    Helmholtz Inst Mainz, Mainz, Germany..
    Deiseroth, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Feldbauer, F.
    Helmholtz Inst Mainz, Mainz, Germany..
    Fritsch, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Froerllich, B.
    Helmholtz Inst Mainz, Mainz, Germany..
    Kang, D.
    Helmholtz Inst Mainz, Mainz, Germany..
    Khaneft, D.
    Helmholtz Inst Mainz, Mainz, Germany..
    Klasen, R.
    Helmholtz Inst Mainz, Mainz, Germany..
    Leithoff, H. H.
    Helmholtz Inst Mainz, Mainz, Germany..
    Lin, D.
    Helmholtz Inst Mainz, Mainz, Germany..
    Maas, F.
    Helmholtz Inst Mainz, Mainz, Germany..
    Maldaner, S.
    Helmholtz Inst Mainz, Mainz, Germany..
    Martinez, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Michel, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Mora Esp, M. C.
    Helmholtz Inst Mainz, Mainz, Germany..
    Morales, C. Morales
    Helmholtz Inst Mainz, Mainz, Germany..
    Motzko, C.
    Helmholtz Inst Mainz, Mainz, Germany..
    Nerling, F.
    Helmholtz Inst Mainz, Mainz, Germany..
    Noll, O.
    Helmholtz Inst Mainz, Mainz, Germany..
    Pfloeger, S.
    Helmholtz Inst Mainz, Mainz, Germany..
    Pitka, A.
    Helmholtz Inst Mainz, Mainz, Germany..
    Pineiro, D. Rodriguez
    Helmholtz Inst Mainz, Mainz, Germany..
    Sanchez-Lorente, A.
    Helmholtz Inst Mainz, Mainz, Germany..
    Steinen, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Valente, R.
    Helmholtz Inst Mainz, Mainz, Germany..
    Weber, T.
    Helmholtz Inst Mainz, Mainz, Germany..
    Zambrana, M.
    Helmholtz Inst Mainz, Mainz, Germany..
    Zimmermann, I.
    Helmholtz Inst Mainz, Mainz, Germany..
    Fedorov, A.
    Belarusian State Univ, Res Inst Nucl Problems, Minsk, Byelarus..
    Korjik, M.
    Belarusian State Univ, Res Inst Nucl Problems, Minsk, Byelarus..
    Missevitch, O.
    Belarusian State Univ, Res Inst Nucl Problems, Minsk, Byelarus..
    Boukharov, A.
    Moscow Power Engn Inst, Moscow, Russia..
    Malyshev, O.
    Moscow Power Engn Inst, Moscow, Russia..
    Marishev, I.
    Moscow Power Engn Inst, Moscow, Russia..
    Balanutsa, V.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Balanutsa, P.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Chernetsky, V.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Demekhin, A.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Dolgolenko, A.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Fedorets, P.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Gerasimov, A.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Goryachev, V.
    Inst Theoret & Expt Phys, Moscow, Russia..
    Chandratre, V.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Datar, V.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Dutta, D.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Jha, V.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Kumawat, H.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Mohanty, A. K.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Parmar, A.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Roy, B.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Sonika, G.
    Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai, Maharashtra, India..
    Fritzsch, C.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Grieser, S.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Hergemoeller, A. K.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Hetz, B.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Huesken, N.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Khoukaz, A.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Wessels, J. P.
    Westfalische Wilhelms Univ Munster, Munster, Germany..
    Khosonthongkee, K.
    Suranaree Univ Technol, Nakhon Ratchasima, Thailand..
    Kobdaj, C.
    Suranaree Univ Technol, Nakhon Ratchasima, Thailand..
    Limphirat, A.
    Suranaree Univ Technol, Nakhon Ratchasima, Thailand..
    Srisawad, P.
    Suranaree Univ Technol, Nakhon Ratchasima, Thailand..
    Yan, Y.
    Suranaree Univ Technol, Nakhon Ratchasima, Thailand..
    Barnyakov, A. Yu.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Barnyakov, M.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Beloborodov, K.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Blinov, V. E.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Bobrovnikov, V. S.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Kuyanov, I. A.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Martin, K.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Onuchin, A. P.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Serednyakov, S.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Sokolov, A.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Tikhonov, Y.
    Budker Inst Nucl Phys, Novosibirsk, Russia..
    Blinov, A. E.
    Novosibirsk State Univ, Novosibirsk, Russia..
    Kononov, S.
    Novosibirsk State Univ, Novosibirsk, Russia..
    Kravchenko, E. A.
    Novosibirsk State Univ, Novosibirsk, Russia..
    Atomssa, E.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    Kunne, R.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    Ma, B.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    Marchand, D.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    Ramstein, B.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    van de Wiele, J.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    Wang, Y.
    Univ Paris 11, Univ Paris Saclay, Inst Nucl Phys, CNRS IN2P3, F-91406 Orsay, France..
    Boca, G.
    Univ Pavia, INFN Sez Pavia, Dipartimento Fis, Pavia, Italy..
    Costanza, S.
    Univ Pavia, INFN Sez Pavia, Dipartimento Fis, Pavia, Italy..
    Genova, P.
    Univ Pavia, INFN Sez Pavia, Dipartimento Fis, Pavia, Italy..
    Montagna, P.
    Univ Pavia, INFN Sez Pavia, Dipartimento Fis, Pavia, Italy..
    Rotondi, A.
    Univ Pavia, INFN Sez Pavia, Dipartimento Fis, Pavia, Italy..
    Abramov, V.
    Inst High Energy Phys, Protvino, Russia..
    Belikov, N.
    Inst High Energy Phys, Protvino, Russia..
    Bukreeva, S.
    Inst High Energy Phys, Protvino, Russia..
    Davidenko, A.
    Inst High Energy Phys, Protvino, Russia..
    Derevschikov, A.
    Inst High Energy Phys, Protvino, Russia..
    Goncharenko, Y.
    Inst High Energy Phys, Protvino, Russia..
    Grishin, V.
    Inst High Energy Phys, Protvino, Russia..
    Kachanov, V.
    Inst High Energy Phys, Protvino, Russia..
    Kormilitsin, V.
    Inst High Energy Phys, Protvino, Russia..
    Levin, A.
    Inst High Energy Phys, Protvino, Russia..
    Melnik, Y.
    Inst High Energy Phys, Protvino, Russia..
    Minaev, N.
    Inst High Energy Phys, Protvino, Russia..
    Mochalov, V.
    Inst High Energy Phys, Protvino, Russia..
    Morozov, D.
    Inst High Energy Phys, Protvino, Russia..
    Nogach, L.
    Inst High Energy Phys, Protvino, Russia..
    Poslavskiy, S.
    Inst High Energy Phys, Protvino, Russia..
    Ryazantsev, A.
    Inst High Energy Phys, Protvino, Russia..
    Ryzhikov, S.
    Inst High Energy Phys, Protvino, Russia..
    Semenov, P.
    Inst High Energy Phys, Protvino, Russia..
    Shein, I.
    Inst High Energy Phys, Protvino, Russia..
    Uzunian, A.
    Inst High Energy Phys, Protvino, Russia..
    Vasiliev, A.
    Inst High Energy Phys, Protvino, Russia..
    Yakutin, A.
    Inst High Energy Phys, Protvino, Russia..
    Roy, U.
    Sikaha Bhavana, Visva Bharati, Santini Ketan, W Bengal, India..
    Yabsley, B.
    Univ Sydney, Sch Phys, Sydney, BC, Australia..
    Belostotski, S.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Gavrilov, G.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Izotov, A.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Manaenkov, S.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Miklukho, O.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Veretennikov, D.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Zhdanov, A.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Baeck, T.
    Kungliga Tekniska Hogskolan, Stockholm, Sweden..
    Cederwall, B.
    Kungliga Tekniska Hogskolan, Stockholm, Sweden..
    Makonyi, K.
    Stockholm Univ, Stockholm, Sweden..
    Preston, M.
    Stockholm Univ, Stockholm, Sweden..
    Tegner, P. E.
    Stockholm Univ, Stockholm, Sweden..
    Woelbing, D.
    Stockholm Univ, Stockholm, Sweden..
    Rai, A. K.
    Sardar Vallabhbhai Natl Inst Technol, Dept Appl Phys, Surat, India..
    Godre, S.
    Veer Narmad S Gujarat Univ, Dept Phys, Surat, India..
    Calvo, D.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Coli, S.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    De Remigis, P.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Filippi, A.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Giraudo, G.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Lusso, S.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Mazza, G.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Mignone, M.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Rivetti, A.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Wheadon, R.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Amoroso, A.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Bussa, M. P.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Busso, L.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    De Mori, F.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Destefanis, M.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Fava, L.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Ferrero, L.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Greco, M.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Hu, J.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Lavezzi, L.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Maggiora, M.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Maniscalco, G.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Marcello, S.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Sosio, S.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Spataro, S.
    Univ Turin, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Balestra, F.
    Politecn Torino, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Iazzi, F.
    Politecn Torino, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Introzzi, R.
    Politecn Torino, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Lavagno, A.
    Politecn Torino, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Olave, J.
    Politecn Torino, Turin, Italy.;Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Birsa, R.
    Univ Trieste, Trieste, Italy.;Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy..
    Bradamante, F.
    Univ Trieste, Trieste, Italy.;Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy..
    Bressan, A.
    Univ Trieste, Trieste, Italy.;Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy..
    Martin, A.
    Univ Trieste, Trieste, Italy.;Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy..
    Calén, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Andersson, Walter Ikegami
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Marcinievski, Pawel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Papenbrock, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pettersson, Joachim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Schönning, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Gålnander, Björn
    Uppsala University, The Svedberg Laboratory.
    Diaz, J.
    Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain..
    Chackara, V. Pothodi
    Sardar Patel Univ, Dept Phys, Vallabh Vidynagar, India..
    Chlopik, A.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Kesik, G.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Melnychuk, D.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Slowinski, B.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Trzcinski, A.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Wojciechowski, M.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Wronka, S.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Zwieglinski, B.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Buehler, P.
    Austrian Acad Sci, Stefan Meyer Inst Subatomare Phys, Vienna, Austria..
    Marton, J.
    Austrian Acad Sci, Stefan Meyer Inst Subatomare Phys, Vienna, Austria..
    Steinschaden, D.
    Austrian Acad Sci, Stefan Meyer Inst Subatomare Phys, Vienna, Austria..
    Suzuki, K.
    Austrian Acad Sci, Stefan Meyer Inst Subatomare Phys, Vienna, Austria..
    Widmann, E.
    Austrian Acad Sci, Stefan Meyer Inst Subatomare Phys, Vienna, Austria..
    Zmeskal, J.
    Austrian Acad Sci, Stefan Meyer Inst Subatomare Phys, Vienna, Austria..
    Semenov-Tian-Shansky, K. M.
    Kurchatov Inst BP Konstantinov Petersburg Nucl Ph, Natl Res Ctr, St Petersburg, Russia..
    Feasibility study for the measurement of pi N transition distribution amplitudes at (P)over-barANDA in (P)over-barp -> J/psi pi(0)2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, no 3, article id 032003Article in journal (Refereed)
    Abstract [en]

    The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is shown that the measurement can be done at (P) over bar ANDA with significant constraining power under the assumption of an integrated luminosity attainable in four to five months of data taking at the maximum design luminosity.

  • 167.
    Vagnozzi, Sunny
    et al.
    Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, Alballova Univ Ctr, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden;KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden;Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden;Univ Cambridge, Kavh Inst Cosmol KICC, Madingley Rd, Cambridge CB3 0HA, England;Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
    Visinelli, Luca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden;Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden;Univ Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands;Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands.
    Hunting for extra dimensions in the shadow of M872019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, no 2, article id 024020Article in journal (Refereed)
    Abstract [en]

    The Event Horizon Telescope has recently provided the first image of the dark shadow around the supermassive black hole M87*. The observation of a highly circular shadow provides strong limits on deviations of M87*'s quadrupole moment from the Kerr value. We show that the absence of such a deviation can be used to constrain the physics of extra dimensions of spacetime. Focusing on the Randall-Sundrum AdS(5) brane-world scenario, we show that the observation of M87*'s dark shadow sets the limit l less than or similar to 170 AU, where l is the AdS(5) curvature radius. This limit is among the first quantitative constraints on exotic physics obtained from the extraordinary first ever image of the dark shadow of a black hole.

  • 168.
    Visinelli, Luca
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden; KTH Royal Inst Technol, Nordita, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.
    Vagnozzi, Sunny
    Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden; KTH Royal Inst Technol, Nordita, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.
    Cosmological window onto the string axiverse and the supersymmetry breaking scale2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 6, article id 063517Article in journal (Refereed)
    Abstract [en]

    In the simplest picture, the masses of string axions populating the axiverse depend on two parameters: the supersymmetry-breaking scale Msusy and the action S of the string instantons responsible for breaking the axion shift symmetry. In this work, we explore whether cosmological data can be used to probe these two parameters. Adopting string-inspired flat priors on log10 Msusy and S and imposing that Msusy be sub-Planckian, we find S = 198 ± 28. These bounds suggest that cosmological data complemented with string-inspired priors select a quite narrow axion mass range within the axiverse, log10(ma/eV) = -21.5-2.3+1.3. We find that Msusy remains unconstrained due to a fundamental parameter degeneracy with S. We explore the significant impact of other choices of priors on the results, and we comment on similar findings in recent previous literature.

1234 151 - 168 of 168
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf