uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
2345678 201 - 250 of 504
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 201. Aad, G.
    et al.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Isaksson, Charlie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinki, L.
    Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at root s=7 TeV with the ATLAS detector2012Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 4, s. 069-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A search is preseritecl for same-sign top-quark production and down-type heavy quarks of charge -1/3 in events with two isolated leptons (c or mu) that have the same electric charge, at least two jets and large missing transverse momentum. The data are selected from pp collisions at root s = 7 TeV recorded by the ATLAS detector and correspond to an integrated luminosity of 1.04 fb(-1). The observed data are consistent with expectations from Standard Model processes. Upper limits are set at 95% confidence level on the cross section of new sources of same-sign top-quark pair production of 1.4-2.0 pb depending on the assumed mediator mass. Upper limits are also set on the pair-production cross-section for new heavy down-type quarks; a lower limit of 450 GeV is set at 95% confidence level on the mass of heavy down-type quarks under the assumption that they decay 100% of the time to Wt.

  • 202. Aad, G.
    et al.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Isaksson, Charlie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Forward-backward correlations and charged-particle azimuthal distributions in pp interactions using the ATLAS detector2012Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 7, s. 019-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using inelastic proton-proton interactions at root s = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a, selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.

  • 203. Aad, G.
    et al.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Isaksson, Charlie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Jet mass and substructure of inclusive jets in root s=7 TeV pp collisions with the ATLAS experiment2012Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 5, s. 128-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb(-1) of pp collisions delivered by the LHC at root s = 7 TeV. In a subsample of events with single pp collisions, measurements corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, k(t) splitting scales and N-subjettiness variables are presented for anti-k(t) R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.

  • 204. Aad, G.
    et al.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Isaksson, Charlie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Measurement of the cross section for top-quark pair production in pp collisions at root s=7 TeV with the ATLAS detector using final states with two high-p(T) leptons2012Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 5, artikkel-id 059Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A measurement is reported of the production cross section of top-quark pairs (t (t) over bar) in proton-proton collisions at a center-of-mass energy of 7 TeV recorded with the ATLAS detector at the LHC. Candidate events have a signature consistent with containing two isolated leptons, large missing transverse momentum, and at least two jets. Using a data sample corresponding to an integrated luminosity of 0.70 fb(-1), a t (t) over bar production cross section sigma(t (t) over bar) = 176 +/- 5(stat.)(-11)(+14)(syst.) +/- 8(lum.) pb is measured for an assumed top-quark mass of m(t) = 172.5 GeV. This measurement is in good agreement with Standard Model predictions.

  • 205. Aad, G.
    et al.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using root s=7 TeV pp collisions with the ATLAS detector2011Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 11, s. 099-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Results are presented of a search for any particle(s) decaying to six or more jets in association with missing transverse momentum. The search is performed using 1.34 fb(-1) of root s = 7TeV proton-proton collisions recorded by the ATLAS detector during 2011. Data-driven techniques are used to determine the backgrounds in kinematic regions that require at least six, seven or eight jets, well beyond the multiplicities required in previous analyses. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a supersymmetry model (MSUGRA/CMSSM) where they extend previous constraints.

  • 206. Aad, G.
    et al.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Costa, Marcio Jorge Teles da
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Isaksson, Charlie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Pelikan, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Search for anomalous production of prompt like-sign lepton pairs at root s=7 TeV with the ATLAS detector2012Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 12, s. 007-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An inclusive search for anomalous production of two prompt, isolated leptons with the same electric charge is presented. The search is performed in a data sample corresponding to 4.7 fb(-1) of integrated luminosity collected in 2011 at root s = 7TeV with the ATLAS detector at the LHC. Pairs of leptons (e(+/-)e(+/-), e(+/-)mu(+/-), and mu(+/-)mu(+/-)) with large transverse momentum are selected, and the dilepton invariant mass distribution is examined for any deviation from the Standard Model expectation. No excess is found, and upper limits on the production cross section of like-sign lepton pairs from physics processes beyond the Standard Model are placed as a function of the dilepton invariant mass within a fiducial region close to the experimental selection criteria. The 95% confidence level upper limits on the cross section of anomalous e(+/-)e(+/-), e(+/-)mu(+/-), or mu(+/-)mu(+/-) production range between 1.7 fb and 64 fb depending on the dilepton mass and flavour combination.

  • 207. Aad, G.
    et al.
    Bélanger-Champagne, Camille
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Hansen, C.J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Measurement of the W -> lv and Z/gamma* -> ll production cross sections in proton-proton collisions at root s=7 TeV with the ATLAS detector2010Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 12, artikkel-id 060Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    First measurements of the W -> lv and Z/gamma* -> ll (l = e; mu) production cross sections in proton-proton collisions at root s = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lv and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb(-1). The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are sigma(tot)(W) center dot BR(W -> lv) = 9.96 +/- 0.23(stat) +/- 0.50(syst) +/- 1.10(lumi) nb and sigma(tot)(Z) center dot BR(Z/gamma* -> ll) = 0.82 +/- 0.06 (stat) +/- 0.05 (syst) +/- 0.09 (lumi) nb (within the invariant mass window 66 < m(ll) < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +/- 0.9(stat) +/- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.

  • 208. Aad, G.
    et al.
    Bélanger-Champagne, Camille
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Odaka, S.
    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector2011Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 10, s. 107-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks.

  • 209. Aad, G.
    et al.
    Bélanger-Champagne, Camille
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    Measurement of W gamma and Z gamma production in proton-proton collisions at root s=7 TeV with the ATLAS detector2011Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 9, s. 072-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present studies of W and Z bosons with associated high energy photons produced in pp collisions at root s = 7 TeV. The analysis uses 35 pb(-1) of data collected by the ATLAS experiment in 2010. The event selection requires W and Z bosons decaying into high pT leptons (electrons or muons) and a photon with E(T) > 15 GeV separated from the lepton(s) by a distance Delta R(l, gamma) > 0.7 in eta-phi space. A total of 95 (97) pp -> e(+/-)nu gamma + X (pp -> mu(+/-)nu gamma + X) and 25 (23) pp -> e(+)e(-)gamma + X (pp -> mu(+)mu(-)gamma + X) event candidates are selected. The kinematic distributions of the leptons and photons and the production cross sections are measured. The data are found to agree with Standard Model predictions that include next-to-leading-order O(alpha alpha(s)) contributions.

  • 210. Aad, G.
    et al.
    Hansen, C.J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Zutshi, V.
    Performance of the ATLAS detector using first collision data2010Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 9, s. 056-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track- and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies.

  • 211. Aad, L.
    et al.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Buszello, Claus P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ekelöf, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ellert, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferrari, Arnaud
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Isaksson, Charlie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Pelikan, Daniel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Zwalinski, L.
    A search for t(t)over-bar resonances in lepton plus jets events with highly boosted top quarks collected in pp collisions at root s=7 TeV with the ATLAS detector2012Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 9, s. 041-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A search for resonant production of high-mass top-quark pairs is performed on 2.05 fb(-1) of proton-proton collisions at root s = 7 TeV collected in 2011 with the ATLAS experiment at the Large Hadron Collider. This analysis of the lepton+jets final state is specifically designed for the particular topology that arises from the decay of highly boosted top quarks. The observed t (t) over bar invariant mass spectrum is found to be compatible with the Standard Model prediction and 95% credibility level upper limits are derived on the t (t) over bar production rate through new massive states. An upper limit of 0.7 pb is set on the production cross section times branching fraction of a narrow 1 TeV resonance. A Kaluza-Klein gluon with a mass smaller than 1.5 TeV is excluded.

  • 212.
    Abou-Zeid, M.
    et al.
    Georg August Univ Gottingen, SUB, Pl Gottinger Sieben 1, D-37073 Gottingen, Germany.
    Hull, C. M.
    Imperial Coll London, Blackett Lab, Theory Grp, Prince Consort Rd, London SW7 2AZ, England.
    Lindström, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Imperial Coll London, Blackett Lab, Theory Grp, Prince Consort Rd, London SW7 2AZ, England.
    Rocek, M.
    SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA.
    T-duality in (2,1) superspace2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 6, artikkel-id 138Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We find the T-duality transformation rules for 2-dimensional (2,1) supersymmetric sigma-models in (2,1) superspace. Our results clarify certain aspects of the (2,1) sigma model geometry relevant to the discussion of T-duality. The complexified duality transformations we find are equivalent to the usual Buscher duality transformations (including an important refinement) together with diffeomorphisms. We use the gauging of sigma-models in (2,1) superspace, which we review and develop, finding a manifestly real and geometric expression for the gauged action. We discuss the obstructions to gauging (2,1) sigma-models, and find that the obstructions to (2,1) T-duality are considerably weaker.

    Fulltekst (pdf)
    FULLTEXT01
  • 213.
    Aharony, Ofer
    et al.
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel.
    Alday, Luis F.
    Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England.
    Bissi, Agnese
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Yacoby, Ran
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel.
    The analytic bootstrap for large N Chern-Simons vector models2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 8, artikkel-id 166Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three-dimensional Chern-Simons vector models display an approximate higher spin symmetry in the large N limit. Their single-trace operators consist of a tower of weakly broken currents, as well as a scalar a of approximate twist 1 or 2. We study the consequences of crossing symmetry for the four-point correlator of a in a 1/N expansion, using analytic bootstrap techniques. To order 1/N we show that crossing symmetry fixes the contribution from the tower of currents, providing an alternative derivation of well-known results by Maldacena and Zhiboedov. When sigma has twist 1 its OPE receives a contribution from the exchange of a itself with an arbitrary coefficient, due to the existence of a marginal sextic coupling. We develop the machinery to determine the corrections to the OPE data of double-trace operators due to this, and to similar exchanges. This in turns allows us to fix completely the correlator up to three known truncated solutions to crossing. We then proceed to study the problem to order 1/N-2. We find that crossing implies the appearance of odd-twist double-trace operators, and calculate their OPE coefficients in a large spin expansion. Also, surprisingly, crossing at order 1/N-2, implies non-trivial O(1/N) anomalous dimensions for even-twist double-trace operators, even though such contributions do not appear in the four-point function at order 1/N (in the case where there is no scalar exchange). We argue that this phenomenon arises due to operator mixing. Finally, we analyse the bosonic vector model with a sextic coupling without gauge interactions, and determine the order 1/N-2 corrections to the dimensions of twist-2 double-trace operators.

    Fulltekst (pdf)
    fulltext
  • 214.
    Ahdida, C.
    et al.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Albanese, R.
    Univ Bari, Bari, Italy;Sez INFN Napoli, Naples, Italy.
    Alexandrov, A.
    Sez INFN Napoli, Naples, Italy.
    Anokhina, A.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Aoki, S.
    Kobe Univ, Kobe, Hyogo, Japan.
    Arduini, G.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Atkin, E.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Azorskiy, N.
    Joint Inst Nucl Res, Dubna, Russia.
    Dos Santos, F. Baaltasar
    European Org Nucl Res CERN, Geneva, Switzerland.
    Back, J. J.
    Univ Warwick, Warwick, England.
    Bagulya, A.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Baranov, A.
    Yandex Sch Data Anal, Moscow, Russia.
    Bardou, F.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Barker, G. J.
    Univ Warwick, Warwick, England.
    Battistin, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Bauche, J.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Bay, A.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Bayliss, V.
    STFC Rutherford Appleton Lab, Didcot, Oxon, England.
    Bencivenni, G.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Berdnikov, Y. A.
    St Petersburg Polytech Univ SPbPU, St Petersburg, Russia.
    Berdnikov, A. Y.
    St Petersburg Polytech Univ SPbPU, St Petersburg, Russia.
    Berezkina, I.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Bertani, M.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Betancourt, C.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Bezshyiko, I.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Bezshyyko, O.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Bick, D.
    Univ Hamburg, Hamburg, Germany.
    Bieschke, S.
    Univ Hamburg, Hamburg, Germany.
    Blanco, A.
    Lab Instrumentat & Expt Particle Phys, LIP, Lisbon, Portugal.
    Boehm, J.
    STFC Rutherford Appleton Lab, Didcot, Oxon, England.
    Bogomilov, M.
    Sofia Univ, Fac Phys, Sofia, Bulgaria.
    Bondarenko, K.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine;Leiden Univ, Leiden, Netherlands.
    Bonivento, W. M.
    Sez INFN Cagliari, Cagliari, Italy.
    Borburgh, J.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Boyarsky, A.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine;Leiden Univ, Leiden, Netherlands.
    Brenner, Richard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Breton, D.
    Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France.
    Brundler, R.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Bruschi, M.
    Sez INFN Bologna, Bologna, Italy.
    Buescher, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Buonaura, A.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Buontempo, S.
    Sez INFN Napoli, Naples, Italy.
    Cadeddu, S.
    Sez INFN Cagliari, Cagliari, Italy.
    Calcaterra, A.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Calviani, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Campanelli, M.
    UCL, London, England.
    Casolino, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Charitonidis, N.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Chau, P.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Chauveau, J.
    Univ Paris Diderot, Sorbonne Univ, LPNHE, IN2P3,CNRS, F-75252 Paris, France.
    Chepurnov, A.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Chernyavskiy, M.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Choi, K. -Y
    Chumakov, A.
    Univ Tecn Federico Santa Maria, Valparaiso, Chile;Ctr Cient Tecnol Valparaiso, Valparaiso, Chile.
    Ciambrone, P.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Cornelis, K.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Cristinziani, M.
    Univ Bonn, Inst Phys, Bonn, Germany.
    Crupano, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Dallavalle, G. M.
    Sez INFN Bologna, Bologna, Italy.
    Datwyler, A.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    D'Ambrosio, N.
    Univ Hamburg, Hamburg, Germany.
    D'Appollonio, G.
    Univ Cagliari, Cagliari, Italy;Sez INFN Cagliari, Cagliari, Italy;Jeju Natl Univ, Jeju, South Korea.
    Dedenko, L.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Dergachev, P.
    Natl Univ Sci & Technol MISiS, Moscow, Russia.
    De Carvalho Saraiva, J.
    Lab Instrumentat & Expt Particle Phys, LIP, Lisbon, Portugal.
    De Lellis, G.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    de Magistris, M.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    De Roeck, A.
    European Org Nucl Res CERN, Geneva, Switzerland.
    De Serio, M.
    Univ Bari, Bari, Italy;Sez INFN Bari, Bari, Italy.
    De Simone, D.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Dib, C.
    Univ Tecn Federico Santa Maria, Valparaiso, Chile;Ctr Cient Tecnol Valparaiso, Valparaiso, Chile.
    Dijkstra, H.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Dipinto, P.
    Univ Bari, Bari, Italy;Sez INFN Bari, Bari, Italy.
    Di Crescenzo, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Di Marco, N.
    INFN Gran Sasso, Lab Nazl, Laquila, Italy.
    Dmitrenko, V.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Dmitrievskiy, S.
    Joint Inst Nucl Res, Dubna, Russia.
    Dolmatov, A.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Domenici, D.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Donskov, S.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Dougherty, L. A.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Drohan, V.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Dubreuil, A.
    Univ Geneva, Geneva, Switzerland.
    Ebert, J.
    Univ Hamburg, Hamburg, Germany.
    Enik, T.
    Joint Inst Nucl Res, Dubna, Russia.
    Etenko, A.
    Natl Res Nucl Univ MEPhI, Moscow, Russia;Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Fabbri, F.
    Sez INFN Bologna, Bologna, Italy.
    Fabbri, L.
    Univ Bologna, Bologna, Italy;Sez INFN Bologna, Bologna, Italy.
    Fabich, A.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Fedin, O.
    Petersburg Nucl Phys PNPI NRC Kurchatov Inst, Gatchina, Russia.
    Fedotovs, F.
    Imperial Coll London, London, England.
    Ferro-Luzzi, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Felici, G.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Filippov, K.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Fini, R. A.
    Sez INFN Bari, Bari, Italy.
    Fonte, P.
    Lab Instrumentat & Expt Particle Phys, LIP, Lisbon, Portugal.
    Franco, C.
    Lab Instrumentat & Expt Particle Phys, LIP, Lisbon, Portugal.
    Fraser, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Fresa, R.
    Univ Basilicata, Potenza, Italy;Sez INFN Napoli, Naples, Italy.
    Froeschl, R.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Fukuda, T.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Galati, G.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Gall, J.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Gatignon, L.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Gavrilov, G.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Gentile, V.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Goddard, B.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Golinka-Bezshyyko, L.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Golovatiuk, A.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Golubkov, D.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Golutvin, A.
    Imperial Coll London, London, England.
    Gorbounov, P.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Gorbunov, S.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Gorbunov, D.
    Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Gorkavenko, V.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Gornushkin, Y.
    Joint Inst Nucl Res, Dubna, Russia.
    Gorshenkov, M.
    Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Grachev, V.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Grandchamp, A. L.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Granich, G.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Graverini, E.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Grenard, J. -L
    Grenier, D.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Grichine, V.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Gruzinskii, N.
    Petersburg Nucl Phys PNPI NRC Kurchatov Inst, Gatchina, Russia.
    Guz, Yu.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Haefeli, G. J.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Hagner, C.
    Univ Hamburg, Hamburg, Germany.
    Hakobyan, H.
    Univ Tecn Federico Santa Maria, Valparaiso, Chile;Ctr Cient Tecnol Valparaiso, Valparaiso, Chile.
    Harris, I. W.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Hessler, C.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Hollnagel, A.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Hosseini, B.
    Imperial Coll London, London, England.
    Hushchyn, M.
    Yandex Sch Data Anal, Moscow, Russia.
    Iaselli, G.
    Univ Bari, Bari, Italy;Sez INFN Bari, Bari, Italy.
    Iuliano, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Ivantchenko, V.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Jacobsson, R.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Jokovic, D.
    Univ Belgrade, Inst Phys, Belgrade, Serbia.
    Jonker, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Kadenko, I.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Kain, V.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Kamiscioglu, C.
    Ankara Univ, Ankara, Turkey.
    Kershaw, K.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Khabibullin, M.
    Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Khalikov, E.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Khaustov, G.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Khoriauli, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Khotyantsev, A.
    Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Kim, Y. G.
    Gwangju Natl Univ Educ, Gwangju, South Korea.
    Kim, V.
    St Petersburg Polytech Univ SPbPU, St Petersburg, Russia;Petersburg Nucl Phys PNPI NRC Kurchatov Inst, Gatchina, Russia.
    Kim, S. H.
    Gyeongsang Natl Univ, Dept Phys Educ, Jinju, South Korea;Gyeongsang Natl Univ, RINS, Jinju, South Korea.
    Kitagawa, N.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Ko, J. -W
    Kodama, K.
    Aichi Univ Educ, Kariya, Aichi, Japan.
    Kolesnikov, A.
    Joint Inst Nucl Res, Dubna, Russia.
    Kolev, D. I.
    Sofia Univ, Fac Phys, Sofia, Bulgaria.
    Kolosov, V.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Komatsu, M.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Kondrateva, N.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Kono, A.
    Toho Univ, Funabashi, Chiba, Japan.
    Konovalova, N.
    PN Lebedev Phys Inst LPI, Moscow, Russia;Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Kormannshaus, S.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Korol, I.
    Humboldt Univ, Berlin, Germany.
    Korol'ko, I.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Korzenev, A.
    Univ Geneva, Geneva, Switzerland.
    Kostyukhin, V.
    Univ Bonn, Inst Phys, Bonn, Germany.
    Platia, E. Koukovini
    European Org Nucl Res CERN, Geneva, Switzerland.
    Kovalenko, S.
    Univ Tecn Federico Santa Maria, Valparaiso, Chile;Ctr Cient Tecnol Valparaiso, Valparaiso, Chile.
    Krasilnikova, I.
    Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Kudenko, Y.
    Moscow Inst Phys & Technol, Moscow, Moscow Region, Russia;Natl Res Nucl Univ MEPhI, Moscow, Russia;Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Kurbatov, E.
    Yandex Sch Data Anal, Moscow, Russia.
    Kurbatov, P.
    Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Kurochka, V.
    Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Kuznetsova, E.
    Petersburg Nucl Phys PNPI NRC Kurchatov Inst, Gatchina, Russia.
    Lacker, H. M.
    Humboldt Univ, Berlin, Germany.
    Lamont, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Lanfranchi, G.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Lantwin, O.
    Imperial Coll London, London, England.
    Lauria, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Lee, K. S.
    Korea Univ, Seoul, South Korea.
    Lee, K. Y.
    Gyeongsang Natl Univ, Dept Phys Educ, Jinju, South Korea;Gyeongsang Natl Univ, RINS, Jinju, South Korea.
    Levy, J. -M
    Lopes, L.
    Lab Instrumentat & Expt Particle Phys, LIP, Lisbon, Portugal.
    Sola, E. Lopez
    European Org Nucl Res CERN, Geneva, Switzerland.
    Loschiavo, V. P.
    Consorzio CREATE, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Lyubovitskij, V.
    Univ Tecn Federico Santa Maria, Valparaiso, Chile;Ctr Cient Tecnol Valparaiso, Valparaiso, Chile.
    Guler, A. M.
    METU, Ankara, Turkey.
    Maalmi, J.
    Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France.
    Magnan, A.
    Imperial Coll London, London, England.
    Maleev, V.
    Petersburg Nucl Phys PNPI NRC Kurchatov Inst, Gatchina, Russia.
    Malinin, A.
    Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Manabe, Y.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Managadze, A. K.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Manfredi, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Marsh, S.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Marshall, A. M.
    Univ Bristol, HH Wills Phys Lab, Bristol, Avon, England.
    Mefodev, A.
    Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Mermod, P.
    Univ Geneva, Geneva, Switzerland.
    Miano, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Mikado, S.
    Nihon Univ, Coll Ind Technol, Narashino, Chiba, Japan.
    Mikhaylov, Yu.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Milstead, D. A.
    Stockholm Univ, Stockholm, Sweden.
    Mineev, O.
    Russian Acad Sci, Inst Nucl Res, Moscow, Russia.
    Montanari, A.
    Sez INFN Bologna, Bologna, Italy.
    Montesi, M. C.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Morishima, K.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Movchan, S.
    Joint Inst Nucl Res, Dubna, Russia.
    Muttoni, Y.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Naganawa, N.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Nakamura, M.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Nakano, T.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Nasybulin, S.
    Petersburg Nucl Phys PNPI NRC Kurchatov Inst, Gatchina, Russia.
    Ninin, P.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Nishio, A.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Novikov, A.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Obinyakov, B.
    Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Ogawa, S.
    Toho Univ, Funabashi, Chiba, Japan.
    Okateva, N.
    PN Lebedev Phys Inst LPI, Moscow, Russia;Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Opitz, B.
    Univ Hamburg, Hamburg, Germany.
    Osborne, J.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Ovchynnikov, M.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine;Leiden Univ, Leiden, Netherlands.
    Owen, P. H.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Owtscharenko, N.
    Univ Bonn, Inst Phys, Bonn, Germany.
    Pacholek, P.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Paoloni, A.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Paparella, R.
    Sez INFN Bari, Bari, Italy.
    Park, B. D.
    Gyeongsang Natl Univ, Dept Phys Educ, Jinju, South Korea;Gyeongsang Natl Univ, RINS, Jinju, South Korea.
    Park, S. K.
    Korea Univ, Seoul, South Korea.
    Pastore, A.
    Sez INFN Bologna, Bologna, Italy.
    Patel, M.
    Imperial Coll London, London, England.
    Pereyma, D.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Perillo-Marcone, A.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Petkov, G. L.
    Sofia Univ, Fac Phys, Sofia, Bulgaria.
    Petridis, K.
    Univ Bristol, HH Wills Phys Lab, Bristol, Avon, England.
    Petrov, A.
    Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Podgrudkov, D.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Poliakov, V.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Polukhina, N.
    Natl Res Nucl Univ MEPhI, Moscow, Russia;PN Lebedev Phys Inst LPI, Moscow, Russia;Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Prieto, J. Prieto
    European Org Nucl Res CERN, Geneva, Switzerland.
    Prokudin, M.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Prota, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Quercia, A.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Rademakers, A.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Rakai, A.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Ratnikov, F.
    Yandex Sch Data Anal, Moscow, Russia.
    Rawlings, T.
    STFC Rutherford Appleton Lab, Didcot, Oxon, England.
    Redi, F.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Ricciardi, S.
    STFC Rutherford Appleton Lab, Didcot, Oxon, England.
    Rinaldesi, M.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Robbe, P.
    Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France.
    Rodin, Viktor
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Rodin, Volodymyr
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Cavalcante, A. B. Rodrigues
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Roganova, T.
    Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
    Rokujo, H.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Rosa, G.
    Univ Napoli Federico II, Naples, Italy;Sez INFN Napoli, Naples, Italy.
    Rovelli, T.
    Univ Bologna, Bologna, Italy;Sez INFN Bologna, Bologna, Italy.
    Ruchayskiy, O.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Ruf, T.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Samoylenko, V.
    Inst High Energy Phys IHEP NRC Kurchatov Inst, Protvino, Russia.
    Samsonov, V.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Galan, F. Sanchez
    European Org Nucl Res CERN, Geneva, Switzerland.
    Diaz, P. Santos
    European Org Nucl Res CERN, Geneva, Switzerland.
    Ull, A. Sanz
    European Org Nucl Res CERN, Geneva, Switzerland.
    Saputi, A.
    INFN Frascati, Lab Nazl, Frascati, Italy.
    Sato, O.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Savchenko, E. S.
    Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Schmidt-Parzefall, W.
    Univ Hamburg, Hamburg, Germany.
    Serra, N.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Sgobba, S.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Shadura, O.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Shakin, A.
    Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Shaposhnikov, M.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Shatalov, P.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Shchedrina, T.
    PN Lebedev Phys Inst LPI, Moscow, Russia;Natl Univ Sci & Technol MISiS, Moscow, Russia.
    Shchutska, L.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Shevchenko, V.
    Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Shibuya, H.
    Toho Univ, Funabashi, Chiba, Japan.
    Shirobokov, S.
    Imperial Coll London, London, England.
    Shustov, A.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Silverstein, S. B.
    Stockholm Univ, Stockholm, Sweden.
    Simone, S.
    Univ Bari, Bari, Italy;Sez INFN Bari, Bari, Italy.
    Simoniello, R.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Skorokhvatov, M.
    Natl Res Nucl Univ MEPhI, Moscow, Russia;Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Smirnov, S.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Sohn, J. Y.
    Gyeongsang Natl Univ, Dept Phys Educ, Jinju, South Korea;Gyeongsang Natl Univ, RINS, Jinju, South Korea.
    Sokolenko, A.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Solodko, E.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Starkov, N.
    PN Lebedev Phys Inst LPI, Moscow, Russia;Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Stoel, L.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Storaci, B.
    Univ Zurich, Inst Phys, Zurich, Switzerland.
    Stramaglia, M. E.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Sukhonos, D.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Suzuki, Y.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Takahashi, S.
    Kobe Univ, Kobe, Hyogo, Japan.
    Tastet, J. L.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Teterin, P.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Naing, S. Than
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Timiryasov, I.
    Ecole Polytech Fed Lausanne, Lausanne, Switzerland.
    Tioukov, V.
    Sez INFN Napoli, Naples, Italy.
    Tommasini, D.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Torii, M.
    Nagoya Univ, Nagoya, Aichi, Japan.
    Tosi, N.
    Sez INFN Bologna, Bologna, Italy.
    Treille, D.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Tsenov, R.
    Joint Inst Nucl Res, Dubna, Russia;Sofia Univ, Fac Phys, Sofia, Bulgaria.
    Ulin, S.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Ustyuzhanin, A.
    Yandex Sch Data Anal, Moscow, Russia.
    Uteshev, Z.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Vankova-Kirilova, G.
    Sofia Univ, Fac Phys, Sofia, Bulgaria.
    Vannucci, F.
    Univ Paris Diderot, Sorbonne Univ, LPNHE, IN2P3,CNRS, F-75252 Paris, France.
    van Herwijnen, E.
    European Org Nucl Res CERN, Geneva, Switzerland.
    van Waasen, S.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Venkova, P.
    Humboldt Univ, Berlin, Germany.
    Venturi, V.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Vilchinski, S.
    Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine.
    Villa, M.
    Univ Bologna, Bologna, Italy;Sez INFN Bologna, Bologna, Italy.
    Vincke, Heinz
    European Org Nucl Res CERN, Geneva, Switzerland.
    Vincke, Helmut
    European Org Nucl Res CERN, Geneva, Switzerland.
    Visone, C.
    Sez INFN Napoli, Naples, Italy;Univ Sannio, Benevento, Italy.
    Vlasik, K.
    Natl Res Nucl Univ MEPhI, Moscow, Russia.
    Volkov, A.
    PN Lebedev Phys Inst LPI, Moscow, Russia;Natl Res Ctr Kurchatov Inst, Moscow, Russia.
    Voronkov, R.
    PN Lebedev Phys Inst LPI, Moscow, Russia.
    Wanke, R.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Wertelaers, P.
    European Org Nucl Res CERN, Geneva, Switzerland.
    Woo, J. -K
    Wurm, M.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany;Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Mainz, Germany.
    Xella, S.
    Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
    Yilmaz, D.
    Ankara Univ, Ankara, Turkey.
    Yilmazer, A. U.
    Ankara Univ, Ankara, Turkey.
    Yoon, C. S.
    Gyeongsang Natl Univ, Dept Phys Educ, Jinju, South Korea;Gyeongsang Natl Univ, RINS, Jinju, South Korea.
    Zarubin, P.
    Joint Inst Nucl Res, Dubna, Russia.
    Zarubina, I.
    Joint Inst Nucl Res, Dubna, Russia.
    Zaytsev, Yu.
    Inst Theoret & Expt Phys ITEP NRC Kurchatov Inst, Moscow, Russia.
    Sensitivity of the SHiP experiment to Heavy Neutral Leptons2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 4, artikkel-id 077Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.

    Fulltekst (pdf)
    FULLTEXT01
  • 215.
    Alday, Luis F.
    et al.
    Mathematical Institute, University of Oxford, Oxford, U.K..
    Bissi, Agnese
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Perlmutter, Eric
    Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, U.S.A..
    Genus-One String Amplitudes from Conformal Field Theory2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 6, artikkel-id 10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We explore and exploit the relation between non-planar correlators in N=4 super-Yang-Mills, and higher-genus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genus-one, four-point string amplitude in AdS5×S5 in the low-energy expansion, dual to an N=4 super-Yang-Mills correlator in the 't Hooft limit at order 1/c2 in a strong coupling expansion. In the flat space limit, this maps onto the genus-one, four-point scattering amplitude for type II closed strings in ten dimensions. Using this approach we reproduce several results obtained via string perturbation theory. We also demonstrate a novel mechanism to fix subleading terms in the flat space limit of AdS amplitudes by using string/M-theory.

    Fulltekst (pdf)
    fulltext
  • 216.
    Alexandrov, Sergei
    et al.
    Univ Montpellier, UMR CNRS 5221, L2C, F-34095 Montpellier, France.;CERN, Theoret Phys Dept, Geneva, Switzerland..
    Banerjee, Sibasish
    CEA, IPhT, F-91191 Gif Sur Yvette, France.;Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany..
    Longhi, Pietro
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Rigid limit for hypermultiplets and five-dimensional gauge theories2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, artikkel-id 156Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the rigid limit of a class of hypermultiplet moduli spaces appearing in Calabi-Yau compactifications of type IIB string theory, which is induced by a local limit of the Calabi-Yau. We show that the resulting hyperkahler manifold is obtained by performing a hyperkahler quotient of the Swann bundle over the moduli space, along the isometries arising in the limit. Physically, this manifold appears as the target space of the non-linear sigma model obtained by compactification of a five-dimensional gauge theory on a torus. This allows to compute dyonic and stringy instantons of the gauge theory from the known results on D-instantons in string theory. Besides, we formulate a simple condition on the existence of a non-trivial local limit in terms of intersection numbers of the Calabi-Yau, and find an explicit form for the hypermultiplet metric including corrections from all mutually non-local D-instantons, which can be of independent interest.

    Fulltekst (pdf)
    fulltext
  • 217. Anastasi, A.
    et al.
    Babusci, D.
    Bencivenni, G.
    Berlowski, M.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Caldeira Balkeståh, Li
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Cao, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Ceradini, F.
    Ciambrone, P.
    Curciarello, F.
    Czerwinski, E.
    D’Agostini, G.
    Danè, E.
    De Leo, V.
    De Lucia, E.
    De Santis, A.
    De Simone, P.
    Di Cicco, A.
    Di Domenico, A.
    Di Salvo, R.
    Domenici, D.
    D’Uffizi, A.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Gajos, A.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Ikegami Andersson, Walter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Kaminska, D.
    Krzemien, W.
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Loffredo, S.
    Mandaglio, G.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Papenbrock, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Passeri, A.
    Patera, V.
    Perez del Rio, E.
    Ranieri, A.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Silarski, M.
    Sirghi, F.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Precision measurement of the η → π + π − π 0 Dalitz plot distribution with the KLOE detector2016Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 5, artikkel-id 019Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using 1.6 fb−1 of e + e − → ϕ → ηγ data collected with the KLOE detector at DAΦNE, the Dalitz plot distribution for the η → π + π − π 0 decay is studied with the world’s largest sample of ∼ 4.7 · 106 events. The Dalitz plot density is parametrized as a polynomial expansion up to cubic terms in the normalized dimensionless variables X and Y . The experiment is sensitive to all charge conjugation conserving terms of the expansion, including a gX 2 Y term. The statistical uncertainty of all parameters is improved by a factor two with respect to earlier measurements.

    Fulltekst (pdf)
    fulltext
  • 218.
    Anastasi, A.
    et al.
    INFN, Lab Nazl Frascati, Frascati, Italy.;Univ Messina, Dipartimento Sci Matemat & Informat Sci Fis & Sci, Messina, Italy..
    Babusci, D.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Berlowski, M.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Bloise, C.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Bossi, F.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Branchini, P.
    INFN, Sez Roma Tre, Rome, Italy..
    Budano, A.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.;INFN, Sez Roma Tre, Rome, Italy..
    Balkeståhl, Li Caldeira
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Cao, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Ceradini, F.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.;INFN, Sez Roma Tre, Rome, Italy..
    Ciambrone, P.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Curciarello, F.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Czerwinski, E.
    Jagiellonian Univ, Inst Phys, Krakow, Poland..
    D'Agostini, G.
    Univ Sapienza, Dipartimento Fis, Rome, Italy.;INFN, Sez Roma, Rome, Italy..
    Dane, E.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    De Leo, V.
    INFN, Sez Roma Tor Vergata, Rome, Italy..
    De Lucia, E.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    De Santis, A.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    De Simone, P.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Di Cicco, A.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.;INFN, Sez Roma Tre, Rome, Italy..
    Di Domenico, A.
    Univ Sapienza, Dipartimento Fis, Rome, Italy.;INFN, Sez Roma, Rome, Italy..
    Domenici, D.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    D'Uffizi, A.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Fantini, A.
    Univ Tor Vergata, Dipartimento Fis, Rome, Italy.;INFN, Sez Roma Tor Vergata, Rome, Italy..
    Fantini, G.
    Gran Sasso Sci Inst, Laquila, Italy..
    Fermani, P.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Fiore, S.
    INFN, Sez Roma, Rome, Italy.;ENEA, Dept Fusion & Technol Nucl Safety & Secur, Frascati, RM, Italy..
    Gajos, A.
    Jagiellonian Univ, Inst Phys, Krakow, Poland..
    Gauzzi, P.
    Univ Sapienza, Dipartimento Fis, Rome, Italy.;INFN, Sez Roma, Rome, Italy..
    Giovannella, S.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Graziani, E.
    INFN, Sez Roma Tre, Rome, Italy..
    Ivanov, V. L.
    Budker Inst Nucl Phys, Novosibirsk, Russia.;Novosibirsk State Univ, Novosibirsk, Russia..
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Kang, X.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Kisielewska-Kaminska, D.
    Jagiellonian Univ, Inst Phys, Krakow, Poland..
    Kozyrev, E. A.
    Budker Inst Nucl Phys, Novosibirsk, Russia.;Novosibirsk State Univ, Novosibirsk, Russia..
    Krzemien, W.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Loffredo, S.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.;INFN, Sez Roma Tre, Rome, Italy..
    Lukin, P. A.
    Budker Inst Nucl Phys, Novosibirsk, Russia.;Novosibirsk State Univ, Novosibirsk, Russia..
    Mandaglio, G.
    INFN, Sez Catania, Catania, Italy.;Univ Messina, Dipartimento Sci Chim Biol Farmaceut & Ambientali, Messina, Italy..
    Martini, M.
    INFN, Lab Nazl Frascati, Frascati, Italy.;Univ Guglielmo Marconi, Dipartimento Sci &Tecnol Applicate, Rome, Italy..
    Messi, R.
    Univ Tor Vergata, Dipartimento Fis, Rome, Italy.;INFN, Sez Roma Tor Vergata, Rome, Italy..
    Miscetti, S.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Morello, G.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Moricciani, D.
    INFN, Sez Roma Tor Vergata, Rome, Italy..
    Moskal, P.
    Jagiellonian Univ, Inst Phys, Krakow, Poland..
    Passeri, A.
    INFN, Sez Roma Tre, Rome, Italy..
    Patera, V.
    Univ Sapienza, Dipartimento Sci Base & Applicate Ingn, Rome, Italy.;INFN, Sez Roma, Rome, Italy..
    del Rio, E. Perez
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Raha, N.
    INFN, Sez Roma Tor Vergata, Rome, Italy..
    Santangelo, P.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Schioppa, M.
    Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy.;INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy..
    Selce, A.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.;INFN, Sez Roma Tre, Rome, Italy..
    Silarski, M.
    Jagiellonian Univ, Inst Phys, Krakow, Poland..
    Sirghi, F.
    INFN, Lab Nazl Frascati, Frascati, Italy..
    Solodov, E. P.
    Budker Inst Nucl Phys, Novosibirsk, Russia.;Novosibirsk State Univ, Novosibirsk, Russia..
    Tortora, L.
    INFN, Sez Roma Tre, Rome, Italy..
    Venanzoni, G.
    INFN, Sez Pisa, Pisa, Italy..
    Wislicki, W.
    Natl Ctr Nucl Res, Warsaw, Poland..
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Keshavarzi, A.
    Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England..
    Mueller, S. E.
    Helmholtz Zentrum Dresden Rossendorf, Dept Informat Serv & Comp, Dresden, Germany.;Helmholtz Zentrum Dresden Rossendorf, Inst Radiat Phys, Dresden, Germany..
    Teubner, T.
    Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England..
    Combination of KLOE sigma (e(+) e(-) -> pi(+)pi(-) gamma(gamma)) measurements and determination of a(mu)(pi+pi-) in the energy range 0.10 < s < 0.95 GeV22018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 3, artikkel-id 173Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The three precision measurements of the cross section sigma (e(+)e(-) -> pi(+)pi(-)gamma(gamma)) using initial state radiation by the KLOE collaboration provide an important input for the prediction of the hadronic contribution to the anomalous magnetic moment of the muon. These measurements are correlated for both statistical and systematic uncertainties and, therefore, the simultaneous use of these measurements requires covariance matrices that fully describe the correlations. We present the construction of these covariance matrices and use them to determine a combined KLOE measurement for sigma (e(+)e(-) -> pi(+)pi(-)gamma(gamma)). We find, from this combination, a two-pion contribution to the muon magnetic anomaly in the energy range 0.10 < s < 0.95 GeV2 of a(mu)(pi+pi-) (489.8 +/- 1.7(stat) +/- 4.8(sys)) x 10(-10).

    Fulltekst (pdf)
    fulltext
  • 219.
    Anastasi, A.
    et al.
    Univ Messina, Dipartimento Sci Matemat & Informat, Sci Fis & Sci Terra, Messina, Italy;Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Babusci, D.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Berlowski, M.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy;Natl Ctr Nucl Res, Warsaw, Poland.
    Bloise, C.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Bossi, F.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Branchini, P.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
    Budano, A.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy;Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
    Cao, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Capon, G.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Ceradini, F.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy;Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
    Ciambrone, P.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Curciarello, F.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Czerwinski, E.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    D'Agostini, G.
    Univ Sapienza, Dipartimento Fis, Rome, Italy;Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
    Dane, E.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    De Leo, V.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
    De Lucia, E.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    De Santis, A.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    De Simone, P.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Di Cicco, A.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy;Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
    Di Domenico, A.
    Univ Sapienza, Dipartimento Fis, Rome, Italy;Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
    Domenici, D.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    D'Uffizi, A.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Fantini, A.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy;Univ Tor Vergata, Dipartimento Fis, Rome, Italy.
    Fantini, G.
    Gran Sasso Sci Inst, Laquila, Italy.
    Fermani, P.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Fiore, S.
    Ist Nazl Fis Nucl, Sez Roma, Rome, Italy;Casaccia RC, ENEA UTTMAT IRR, Rome, Italy.
    Gajos, A.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Gauzzi, P.
    Univ Sapienza, Dipartimento Fis, Rome, Italy;Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
    Giovannella, S.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Graziani, E.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
    Ivanov, V. L.
    Budker Inst Nucl Phys, Novosibirsk, Russia;Novosibirsk State Univ, Novosibirsk, Russia.
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Kang, X.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Kisielewska-Kaminska, D.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Kozyrev, E. A.
    Novosibirsk State Univ, Novosibirsk, Russia.
    Krzemien, W.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Loffredo, S.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy;Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
    Lukin, P. A.
    Novosibirsk State Univ, Novosibirsk, Russia.
    Mandaglio, G.
    Univ Messina, Dipartimento Sci Chim Biol Farmaceut & Ambientali, Messina, Italy;Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.
    Martini, M.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy;Univ Guglielmo Marconi, Dipartimento Sci & Tecnol Applicate, Rome, Italy.
    Messi, R.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy;Univ Tor Vergata, Dipartimento Fis, Rome, Italy.
    Miscetti, S.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Moricciani, D.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
    Moskal, P.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Passeri, A.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
    Patera, V.
    Ist Nazl Fis Nucl, Sez Roma, Rome, Italy;Univ Sapienza, Dipartimento Sci Base & Applicate Ingn, Rome, Italy.
    del Rio, E. Perez
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Raha, N.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
    Santangelo, P.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy.
    Schioppa, M.
    Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy;Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy.
    Selce, A.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy;Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
    Silarski, M.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Sirghi, F.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy;Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele, Romania.
    Solodov, E. P.
    Budker Inst Nucl Phys, Novosibirsk, Russia;Novosibirsk State Univ, Novosibirsk, Russia.
    Tortora, L.
    Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
    Venanzoni, G.
    Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
    Wislicki, W.
    Natl Ctr Nucl Res, Warsaw, Poland.
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Measurement of the charge asymmetry for the K-S -> pi e nu decay and test of CPT symmetry with the KLOE detector2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 9, artikkel-id 021Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using 1.63 fb(-1) of integrated luminosity collected by the KLOE experiment about 7 x 10(4) K-S -> pi(+/-)e(-/+)nu decays have been reconstructed. The measured value of the charge asymmetry for this decay is A(S) = (-4.9 +/- 5.7(stat) +/- 2.6(syst)) x 10(-3) which is almost twice more precise than the previous KLOE result. The combination of these two measurements gives A(S) = (3.8 +/- 5.0(stat) +/- 2.6(syst)) x 10(-3) and, together with the asymmetry of the K-L semileptonic decay, provides significant tests of the CPT symmetry. The obtained results are in agreement with CPT invariance.

    Fulltekst (pdf)
    fulltext
  • 220. Anderson, Louise
    et al.
    Zarembo, Konstantin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Quantum phase transitions in mass-deformed ABJM matrix model2014Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 9, s. 021-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    When mass-deformed ABJM theory is considered on S-3, the partition function of the theory localises, and is given by a matrix model. At large N, we solve this model in the decompactification limit, where the radius of the three-sphere is taken to infinity. In this limit, the theory exhibits a rich phase structure with an infinite number of third-order quantum phase transitions, accumulating at strong coupling.

    Fulltekst (pdf)
    fulltext
  • 221.
    Apruzzi, Fabio
    et al.
    Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA; CUNY, Grad Ctr, Initiat Theoret Sci, New York, NY 10016 USA; olumbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
    Dibitetto, Giuseppe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Tizzano, Luigi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    A new 6d fixed point from holography2016Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 11, artikkel-id 126Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We propose a stringy construction giving rise to a class of interacting and non-supersymmetric CFT's in six dimensions. Such theories may be obtained as an IR conformal fixed point of an RG flow ending up in a (1,0)" role="presentation" style="display: inline; font-size: 13.6px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: arial, verdana, sans-serif; position: relative;">(1,0)(1,0) theory in the UV. We provide the due holographic evidence in the context of massive type IIA on AdS7&#x00D7;M3" role="presentation" style="display: inline; font-size: 13.6px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: arial, verdana, sans-serif; position: relative;">AdS7×M3AdS7×M3, where M3" role="presentation" style="display: inline; font-size: 13.6px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: arial, verdana, sans-serif; position: relative;">M3M3 is topologically an S3" role="presentation" style="display: inline; font-size: 13.6px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: arial, verdana, sans-serif; position: relative;">S3S3. In particular, in this paper we present a 10d flow solution which may be interpreted as a non-BPS bound state of NS5, D6 and D6&#x00AF;" role="presentation" style="display: inline; font-size: 13.6px; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; font-family: arial, verdana, sans-serif; position: relative;">D6⎯⎯⎯⎯⎯⎯⎯D6¯ branes. Moreover, by adopting its 7d effective desciption, we are able to holographically compute the free energy and the operator spectrum in the novel IR conformal fixed point.

    Fulltekst (pdf)
    fulltext
  • 222.
    Apruzzi, Fabio
    et al.
    Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA;Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA.
    Heckman, Jonathan J.
    Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
    Morrison, David R.
    Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA;Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
    Tizzano, Luigi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    4D gauge theories with conformal matter2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 9, artikkel-id 088Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the hallmarks of 6D superconformal field theories (SCFTs) is that on a partial tensor branch, all known theories resemble quiver gauge theories with links comprised of 6D conformal matter, a generalization of weakly coupled hypermultiplets. In this paper we construct 4D quiverlike gauge theories in which the links are obtained from compactifications of 6D conformal matter on Riemann surfaces with flavor symmetry fluxes. This includes generalizations of super QCD with exceptional gauge groups and quarks replaced by 4D conformal matter. Just as in super QCD, we find evidence for a conformal window as well as confining gauge group factors depending on the total amount of matter. We also present F-theory realizations of these field theories via elliptically fibered Calabi-Yau fourfolds. Gauge groups (and flavor symmetries) come from 7-branes wrapped on surfaces, conformal matter localizes at the intersection of pairs of 7-branes, and Yukawas between 4D conformal matter localize at points coming from triple intersections of 7-branes. Quantum corrections can also modify the classical moduli space of the F-theory model, matching expectations from effective field theory.

    Fulltekst (pdf)
    FULLTEXT01
  • 223.
    Arabi Ardehali, Arash
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran.
    Cardy-like asymptotics of the 4d N=4 index and AdS(5) blackholes2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 6, artikkel-id 134Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Choi, Kim, Kim, and Nahmgoong have recently pioneered analyzing a Cardy-like limit of the superconformal index of the 4d N=4 theory with complexified fugacities which encodes the entropy of the dual supersymmetric AdS(5) blackholes. Here we study the Cardy-like asymptotics of the index within the rigorous framework of elliptic hypergeometric integrals, thereby filling a gap in their derivation of the blackhole entropy function, finding a new blackhole saddle-point, and demonstrating novel bifurcation phenomena in the asymptotics of the index as a function of fugacity phases. We also comment on the relevance of the supersymmetric Casimir energy to the blackhole entropy function in the present context.

    Fulltekst (pdf)
    FULLTEXT01
  • 224.
    Arabi Ardehali, Arash
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Larsen, Finn
    Leinweber Center for Theoretical Physics, Randall Laboratory of Physics,The University of Michigan, Ann Arbor, MI 48109–1040, USA.
    Liu, James T.
    Leinweber Center for Theoretical Physics, Randall Laboratory of Physics,The University of Michigan, Ann Arbor, MI 48109–1040, USA.
    Szepietowski, Phillip
    Institute for Theoretical Physics, University of Amsterdam,Science Park 904, 1098 XH Amsterdam, The Netherlands; nstitute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands.
    Quantum Corrections to Central Charges and Supersymmetric Casimir Energy in AdS3/CFT22019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 7, artikkel-id 71Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the Casimir energy of bulk fields in AdS3 and its relation to subleading terms in the central charge of the dual CFT2. Computing both sides of the standard CFT2 relation E=−c/12 independently we show that this relation is not necessarily satisfied at the level of individual bulk supergravity states, but in theories with sufficient supersymmetry it is restored at the level of bulk supermultiplets. Assuming only (0,2) supersymmetry (or more), we improve the situation by relating quantum corrections to the central charge and the supersymmetric Casimir energy which in turn is related to an index. These relations adapt recent progress on the AdS5/CFT4 correspondence to AdS3/CFT2 holography. We test our formula successfully in several examples, including the (0,4) MSW theory describing classes of 4D black holes and the large (4,4) theory that is interesting for higher spin holography. We also make predictions for the subleading central charges in several recently proposed (2,2) dualities where the CFT2 is not yet well-understood.

    Fulltekst (pdf)
    fulltext
  • 225. Arai, Masato
    et al.
    Kuzenko, Sergei M.
    Lindström, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för teoretisk fysik.
    Hyperkahler sigma models on cotangent bundles of Hermitian symmetric spaces using projective superspace2007Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 2, s. 100-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Kahler manifolds have a natural hyperkahler structure associated with (part of) their cotangent bundles. Using projective superspace, we construct four-dimensional N=2 models on the tangent bundles of some classical Hermitian symmetric spaces (specifically, the four regular series of irreducible compact symmetric Kahler manifolds, and their non-compact versions). A further dualization yields the Kahler potential for the hyperkahler metric on the cotangent bundle.

  • 226. Arai, Masato
    et al.
    Kuzenko, Sergei M.
    Lindström, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för teoretisk fysik.
    Polar supermultiplets, Hermitian symmetric spaces and hyperkahler metrics2007Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 12, s. 008-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We address the construction of four-dimensional N = 2 supersymmetric non-linear sigma models on tangent bundles of arbitrary Hermitian symmetric spaces startingfrom projective superspace. Using a systematic way of solving the (infinite number of) aux-iliary field equations along with the requirement of supersymmetry, we are able to derivea closed form for the Lagrangian on the tangent bundle and to dualize it to give the hy-perk ̈hler potential on the cotangent bundle. As an application, the case of the exceptional     asymmetric space E6 / SO(10) × U(1) is explicitly worked out for the first time.

  • 227.
    Armoni, Adi
    et al.
    Swansea Univ, Coll Sci, Dept Phys, Swansea SA2 8PP, W Glam, Wales.
    Dumitrescu, Thomas T.
    Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Dept Phys & Astron, Los Angeles, CA 90095 USA.
    Festuccia, Guido
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Komargodski, Zohar
    SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA;Weizmann Inst Sci, Dept Particle Phys & Astrophys, Herzl St 234, Rehovot, Israel.
    Metastable vacua in large-N QCD32020Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 1, artikkel-id 4Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We reexamine the vacuum structure of three-dimensional quantum chromodynamics (QCD3) with gauge group SU(N), Nf fundamental quark flavors, and a level-k Chern-Simons term. This analysis can be reliably carried out in the large-N, fixed Nf, k limit of the theory, up to certain assumptions that we spell out explicitly. At leading order in the large-N expansion we find Nf + 1 distinct, exactly degenerate vacuum superselection sectors with different patterns of flavor-symmetry breaking. The associated massless Nambu-Goldstone bosons are generically accompanied by topological Chern-Simons theories. This set of vacua explicitly realizes many candidate phases previously proposed for QCD3. At subleading order in the large-N expansion, the exact degeneracy between the different superselection sectors is lifted, leading to a multitude of metastable vacua. If we dial the quark masses, different metastable vacua can become the true vacuum of the theory, leading to a sequence of first-order phase transitions. We show that this intricate large-N dynamics can be captured by the previously proposed bosonic dual theories for QCD3, provided these bosonic duals are furnished with a suitable scalar potential. Interestingly, this potential must include terms beyond quartic order in the scalar fields.

    Fulltekst (pdf)
    FULLTEXT01
  • 228.
    Azevedo, Thales
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Engelund, Oluf Tang
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ambitwistor formulations of R2 gravity and (DF)2 gauge theories2017Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 11, artikkel-id 052Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We consider D-dimensional amplitudes in R-2 gravities (conformal gravity in D = 4) and in the recently introduced (DF)(2) gauge theory, from the perspective of the CHY formulae and ambitwistor string theory. These theories are related through the BCJ double-copy construction, and the (DF)(2) gauge theory obeys color-kinematics duality. We work out the worldsheet details of these theories and show that they admit a formulation as integrals on the support of the scattering equations, or alternatively, as ambitwistor string theories. For gravity, this generalizes the work done by Berkovits and Witten on conformal gravity to D dimensions. The ambitwistor is also interpreted as a D-dimensional generalization of Witten's twistor string (SYM + conformal supergravity). As part of our ambitwistor investigation, we discover another (DF)(2) gauge theory containing a photon that couples to Einstein gravity. This theory can provide an alternative KLT description of Einstein gravity compared to the usual Yang-Mills squared.

    Fulltekst (pdf)
    fulltext
  • 229.
    Azevedo, Thales
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Jusinskas, Renann Lipinski
    AS CR, Inst Phys, Na Slovance 2, Prague 18221, Czech Republic..
    Background constraints in the infinite tension limit of the heterotic string2016Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 8, artikkel-id 133Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work we investigate the classical constraints imposed on the supergravity and super Yang-Mills backgrounds in the alpha' -> 0 limit of the heterotic string using the pure spinor formalism. Guided by the recently observed sectorization of the model, we show that all the ten-dimensional constraints are elegantly obtained from the single condition of nilpotency of the BRST charge.

    Fulltekst (pdf)
    fulltext
  • 230.
    Azevedo, Thales
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Jusinskas, Renann Lipinski
    Inst Phys AS CR, Slovance 2, Prague 18221, Czech Republic.
    Connecting the ambitwistor and the sectorized heterotic strings2017Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 10, artikkel-id 216Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an in finite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter l in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit l -> 1 infinity, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner's RNS description.

    Fulltekst (pdf)
    fulltext
  • 231.
    Azevedo, Tholes
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Chiodaroli, Marco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Johansson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. KTH Royal Inst Technol, Roslagstullsbacken 23, Stockholm, Sweden.
    Schlotterer, Oliver
    Albert Einstein Inst, Max Planck Inst Gravitationphys, D-14476 Potsdam, Germany;Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada.
    Heterotic and bosonic string amplitudes via field theory2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 10, artikkel-id 012Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Previous work has shown that massless tree amplitudes of the type I and IIA/B superstrings can be dramatically simplified by expressing them as double copies between field-theory amplitudes and scalar disk/sphere integrals, the latter containing all the alpha'-corrections. In this work, we pinpoint similar double-copy constructions for the heterotic and bosonic string theories using an alpha'-dependent field theory and the same disk/sphere integrals. Surprisingly, this field theory, built out of dimension-six operators such as (D mu F mu v)(2), has previously appeared in the double-copy construction of conformal supergravity. We elaborate on the alpha' -> infinity limit in this picture and derive new amplitude relations for various gauge-gravity theories from those of the heterotic string.

    Fulltekst (pdf)
    fulltext
  • 232. Babichenko, A.
    et al.
    Dekel, Amit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Sax, O. O.
    Finite-gap equations for strings on AdS 3 times S 3 times T 4 with mixed 3-form flux2014Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 11, s. 122-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study superstrings on AdS 3 times S 3 times T 4 supported by a combination of Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz three form fluxes, and write down a set of finite-gap equations that describe the massive part of the classical string spectrum. Using the recently proposed all-loop S-matrix we write down the all-loop Bethe ansatz equations for the massive sector. In the thermodynamic limit the Bethe ansatz reproduces the finite-gap equations. As part of this derivation we propose expressions for the leading order dressing phases. These phases differ from the well-known Arutyunov-Frolov-Staudacher phase that appears in the pure Ramond-Ramond case. We also consider the one-loop quantisation of the algebraic curve and determine the one-loop corrections to the dressing phases. Finally we consider some classical string solutions including finite size giant magnons and circular strings.

    Fulltekst (pdf)
    fulltext
  • 233. Babichenko, A.
    et al.
    Stefanski, B., Jr.
    Zarembo, Konstantin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Integrability and the AdS(3)/CFT2 correspondence2010Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 3, s. 058-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate the AdS(3)/CFT2 correspondence for theories with 16 supercharges using the integrability approach. We construct Green-Schwarz actions for Type IIB strings on AdS(3) x S-3 x M-4 where M-4 = T-4 or S-3 x S-1 using the coset approach. These actions are based on a Z(4) automorphism of the super-coset D(2, 1; alpha) x D(2, 1; alpha)/SO(1, 2) x SO(3) x SO(3). The equations of motion admit a representation in terms of a Lax connection, showing that the system is classically integrable. We present the finite gap equations for these actions. When alpha = 0, 1/2, 1 we propose a set of quantum Bethe equations valid at all values of the coupling. The AdS(3)/CFT2 duals contain novel massless modes whose role remains to be explored.

  • 234. Babusci, D.
    et al.
    Badoni, D.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bini, C.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkestahl, Li Caldeira
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Capon, G.
    Ceradini, F.
    Ciambrone, P.
    Czerwinski, E.
    Dane, E.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    Di Domenico, A.
    Di Donato, C.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Gonnella, F.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Höistad, Bo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Iafolla, L.
    Jacewicz, Marek
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Johansson, Tord
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Kupsc, Andrzej
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Lee-Franzini, J.
    Leverington, B.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Nguyen, F.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Redmer, C. F.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Kärnfysik.
    Zdebik, J.
    Measurement of eta meson production in gamma gamma interactions and Gamma(eta -> gamma gamma) with the KLOE detector2013Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 1, s. 119-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a measurement of eta meson production in photon-photon interactions produced by electron-positron beams colliding with root s = 1 GeV. The measurement is done with the KLOE detector at the phi-factory DA Phi NE with an integrated luminosity of 0.24 fb(-1). The e(+)e(-) -> e(+)e(-)eta cross section is measured without detecting the outgoing electron and positron, selecting the decays eta -> pi(+)pi(-)pi(0) and eta -> pi(0)pi(0)pi(0). The most relevant background is due to e(+)e(-) -> eta gamma when the monochromatic photon escapes detection. The cross section for this process is measured as sigma(e(+)e(-) -> eta gamma) = (856 +/- 8(stat) +/- 16(syst)) pb. The combined result for the e(+)e(-) -> e(+)e(-)eta cross section is sigma(e(+)e(-) -> e(+)e(-)eta) = (32.72 +/- 1.27(stat) +/- 0.70(syst)) pb. From this we derive the partial width Gamma(eta -> gamma gamma) = (520 +/- 20(stat) +/- 13(syst)) eV. This is in agreement with the world average and is the most precise measurement to date.

  • 235.
    Bah, Ibrahima
    et al.
    Univ Calif San Diego, La Jolla, USA; Johns Hopkins Univ, Baltimore, USA.
    Passias, Achilleas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Tomasiello, Alessandro
    Univ Milano Bicocca, Milan, Italy; INFN, Milan, Italy.
    AdS(5) compactifications with punctures in massive IIA supergravity2017Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 11, artikkel-id 050Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We find AdS(5) solutions holographically dual to compactifications of six-dimensional N=(1,0) supersymmetric field theories on Riemann surfaces with punctures. We simplify a previous analysis of supersymmetric AdS(5) IIA solutions, and with a suitable Ansatz we find explicit solutions organized in three classes, where an O8-D8 stack, D6- and D4-branes are simultaneously present, localized and partially localized. The D4-branes are smeared over the Riemann surface and this is interpreted as the presence of a uniform distribution of punctures. For the first class we identify the corresponding six-dimensional theory as an E-string theory coupled to a quiver gauge theory. The second class of solutions lacks D6-branes and its central charge scales as n(5/2), suggesting a five-dimensional origin for the dual field theory. The last class has elements of the previous two.

    Fulltekst (pdf)
    fulltext
  • 236.
    Bah, Ibrahima
    et al.
    Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD USA.
    Passias, Achilleas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Weck, Peter
    Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD USA.
    Holographic duals of five-dimensional SCFTs on a Riemann surface2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 1, artikkel-id 058Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the twisted compacti fi cations of fi ve-dimensional Seiberg SCFTs, with SU M (2) ENf+1 avor symmetry, on a generic Riemann surface that preserves four supercharges. The fi ve-dimensional SCFTs are obtained from the decoupling limit of N D4-branes probing a geometry of Nf < 8 D8-branes and an O8-plane. In addition to the R-symmetry, we can also twist the avor symmetry by turning on background ux on the Riemann surface. In particular, in the string theory construction of the fi ve-dimensional SCFTs, the background ux for the SU M (2) has a geometric origin, similar to the topological twist of the R-symmetry. We argue that the resulting low-energy three-dimensional theories describe the dynamics on the world-volume of the N D4-branes wrapped on the Riemann surface in the O8/D8 background. The Riemann surface can be described as a curve in a Calabi-Yau three-fold that is a sum of two line bundles over it. This allows for an explicit construction of AdS 4 solutions in massive IIA supergravity dual to the worldvolume theories, thereby providing strong evidence that the three-dimensional SCFTs exist in the low-energy limit of the compacti fi cation of the fi ve-dimensional SCFTs. We compute observables such as the free energy and the scaling dimensions of operators dual to D2-brane probes; these have non-trivial dependence on the twist parameter for the U(1) in SU M (2). The free energy exhibits the N5=2 scaling that is emblematic of fi ve-dimensional SCFTs.

    Fulltekst (pdf)
    fulltext
  • 237.
    Bak, Dongsu
    et al.
    Univ Seoul, Phys Dept, Seoul 02504, South Korea..
    Gustafsson, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Five-dimensional fermionic Chern-Simons theory2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, artikkel-id 037Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study 5d fermionic CS theory with a fermionic 2-form gauge potential. This theory can be obtained from 5d maximally supersymmetric YM theory by performing the maximal topological twist. We put the theory on a five-manifold and compute the partition function. We find that it is a topological quantity, which involves the Ray-Singer torsion of the five-manifold. For abelian gauge group we consider the uplift to the 6d theory and find a mismatch between the 5d partition function and the 6d index, due to the nontrivial dimensional reduction of a selfdual two-form gauge field on a circle. We also discuss an application of the 5d theory to generalized knots made of 2d sheets embedded in 5d.

    Fulltekst (pdf)
    fulltext
  • 238. Balasubramanian, V.
    et al.
    Bernamonti, A.
    Craps, B.
    Keränen, V.
    Keski-Vakkuri, Esko
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Müller, B.
    Thorlacius, L.
    Vanhoof, J.
    Thermalization of the spectral function in strongly coupled two dimensional conformal field theories2013Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 4, s. 069-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using Wigner transforms of Green functions, we discuss non-equilibrium generalizations of spectral functions and occupation numbers. We develop methods for computing time-dependent spectral functions in conformal field theories holographically dual to thin-shell AdS-Vaidya spacetimes.

  • 239. Balasubramanian, V.
    et al.
    Bernamonti, A.
    de Boer, J.
    Craps, B.
    Franti, L.
    Galli, F.
    Keski-Vakkuri, Esko
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Mueller, B.
    Schaefer, A.
    Inhomogeneous holographic thermalization2013Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 10, s. 082-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The sudden injection of energy in a strongly coupled conformal field theory and its subsequent thermalization can be holographically modeled by a shell falling into anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya and Minwalla were able to study this process analytically using a weak field approximation. Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities in this model, obtaining analytic results in a long wavelength expansion. In the early-time window in which our approximations can be trusted, the resulting evolution matches well with that of a simple free streaming model. Near the end of this time window, we find that the stress tensor approaches that of second-order viscous hydrodynamics. We comment on possible lessons for heavy ion phenomenology.

    Fulltekst (pdf)
    fulltext
  • 240. Balatsky, Alexander
    et al.
    Gudnason, Sven Bjarke
    Kedem, Yaron
    Krikun, Alexander
    Thorlacius, Larus
    Zarembo, Konstantin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Classical and quantum temperature fluctuations via holography2015Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 1, artikkel-id 011Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS spacetime. The fluctuation spectrum is governed by the lowest-lying hydrodynamic modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at high temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

    Fulltekst (pdf)
    fulltext
  • 241.
    Banerjee, Pinaki
    et al.
    Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bengaluru 560089, India;Indian Inst Technol Kanpur, Kanpur 208016, Uttar Pradesh, India.
    Dey, Parijat
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Analytic bootstrap for logarithmic CFT2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 12, artikkel-id 114Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study logarithmic conformal field theory (LogCFT) in four dimensions using conformal bootstrap techniques in the large spin limit. We focus on the constraints imposed by conformal symmetry on the four point function of certain logarithmic scalar operators and compute the leading correction to the anomalous dimension of double trace operators in the large spin limit. There exist certain holographic duals to such LogCFTs, which involve higher derivative equations of motion. The anomalous dimension is related to the binding energy of a state where two scalars rotate around each other with a large angular momentum. We compute this energy shift and compare it to the anomalous dimension of the large spin double trace operators due to stress tensor exchange in the LogCFT. Our result shows that the cluster decomposition principle is satisfied for LogCFTs as long as the dimensions of the operators are positive.

    Fulltekst (pdf)
    FULLTEXT01
  • 242.
    Banerjee, Souvik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Bryan, Jan-Willem
    Univ Groningen, Van Swinderen Inst Particle Phys & Grav, Nijenborgh 4, NL-9747 AG Groningen, Netherlands..
    Vos, Gideon
    Univ Groningen, Van Swinderen Inst Particle Phys & Grav, Nijenborgh 4, NL-9747 AG Groningen, Netherlands..
    On the universality of late-time correlators in semi-classical 2d CFTs2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 8, artikkel-id 047Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the framework of the AdS3/CFT2 correspondence, we present a systematic analysis of the late time thermalization of a two dimensional CFT state created by insertion of small number of heavy operators on the vacuum. We show that at late Lorentzian time, the universal features of this thermalization are solely captured by the eigenvalues of the monodromy matrix corresponding to the solutions of the uniformization equation. We discuss two different ways to extract the monodromy eigenvalues while bypassing the need for finding explicitly the full monodromy matrix - first, using a monodromy preserving diffeomorphism and second using Chen-Simons formulation of gravity in AdS(3). Both of the methods yield the same precise relation between the eigenvalues and the final black hole temperature at late Lorentzian time.

    Fulltekst (pdf)
    fulltext
  • 243.
    Banerjee, Souvik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Danielsson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Dibitetto, Giuseppe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Giri, Suvendu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Schillo, Marjorie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    De Sitter cosmology on an expanding bubble2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 10, artikkel-id 164Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Constructing an explicit compactification yielding a metastable de Sitter (dS) vacuum in a UV consistent string theory is an incredibly difficult open problem. Motivated by this issue, as well as the conjecture that all non-supersymmetric AdS vacua must decay, we discuss the alternative possibility of realizing an effective four-dimensional dS cosmology on a codimension-one bubble wall separating two AdS(5) vacua. The construction further elaborates on the scenario of , where the aforementioned cosmology arises due to a non-perturbative decay and is embedded in a five-dimensional bulk in a time- dependent way. In this paper we discuss the relation between this scenario and the weak gravity conjecture and further develop the details of the four-dimensional cosmology. We provide a bulk interpretation for the dS temperature as the Unruh temperature experienced by an accelerated observer riding the bubble. A source of four-dimensional matter arises from a string cloud in the bulk, and we examine the consequences for the particle mass spectrum. Furthermore, we show how effective four-dimensional Einstein gravity on the bubble is obtained from the five-dimensional Gauss equation. We conclude by outlining some implications that this paradigm will have for holography, inflation, the standard model, and black holes.

    Fulltekst (pdf)
    FULLTEXT01
  • 244.
    Banerjee, Souvik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Engelsoy, Julius
    Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden;Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden.
    Larana-Aragon, Jorge
    Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden;Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden.
    Sundborg, Bo
    Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden;Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden.
    Thorlacius, Larus
    Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden;Stockholm Univ, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden;Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland.
    Wintergerst, Nico
    Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark.
    Quenched coupling, entangled equilibria, and correlated composite operators: a tale of two O(N) models2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 8, artikkel-id 139Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A macroscopic version of Einstein-Podolsky-Rosen entanglement is obtained by quenching a quadratic coupling between two O(N) vector models. A quench of the mixed vacuum produces an excited entangled state, reminiscent of purified thermal equilibrium, whose properties can be studied analytically in the free limit of the individual field theories. The decoupling of different wavelength modes in free field theory prevents true thermalisation but a more subtle difference is that the density operator obtained by a partial trace does not commute with the post-quench Hamiltonian. Generalized thermal behaviour is obtained at late times, in the limit of weak initial mixing or a smooth but rapid quench. More surprisingly, late-time correlation functions of composite operators in the post-quench free field theory share interesting properties with correlators in strongly coupled systems. We propose a holographic interpretation of our result.

    Fulltekst (pdf)
    FULLTEXT01
  • 245.
    Banerjee, Souvik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik. Julius Maximilians Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany..
    Erdmenger, Johanna
    Julius Maximilians Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany.;Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany..
    Sarkar, Debajyoti
    Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany.;Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr, Theresienstr 37, D-80333 Munich, Germany..
    Connecting Fisher information to bulk entanglement in holography2018Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 8, artikkel-id 001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the context of relating AdS/CFT to quantum information theory, we propose a holographic dual of Fisher information metric for mixed states in the boundary field theory. This amounts to a holographic measure for the distance between two mixed quantum states. For a spherical subregion in the boundary we show that this is related to a particularly regularized volume enclosed by the Ryu-Takayanagi surface. We further argue that the quantum correction to the proposed Fisher information metric is related to the quantum correction to the boundary entanglement entropy. We discuss consequences of this connection.

    Fulltekst (pdf)
    fulltext
  • 246. Bargheer, Till
    et al.
    Minahan, Joseph A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Pereira, Raul
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Computing Three-Point Functions for Short Operators2014Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 3, s. 096-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We compute the three-point structure constants for short primary operators of N=4 super Yang-Mills theory to leading order in the inverse coupling by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

    Fulltekst (pdf)
    fulltext
  • 247. Beisert, Niklas
    et al.
    Kazakov, V. A.
    Sakai, K.
    Zarembo, Konstantin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för teoretisk fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för teoretisk fysik, Teoretisk fysik.
    Complete spectrum of long operators in N=4 SYM at one loop2005Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 0507, s. 030-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We construct the complete spectral curve for an arbitrary local operator, including fermions and covariant derivatives, of one-loop N=4 gauge theory in the thermodynamic limit. This curve perfectly reproduces the Frolov-Tseytlin limit of the full spectral curve of classical strings on AdS_5xS^5 derived in hep-th/0502226. To complete the comparison we introduce stacks, novel bound states of roots of different flavors which arise in the thermodynamic limit of the corresponding Bethe ansatz equations. We furthermore show the equivalence of various types of Bethe equations for the underlying su(2,2|4) superalgebra, in particular of the type "Beauty" and "Beast".

  • 248. Benbrik, Rachid
    et al.
    Bergeås Kuutmann, Elin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Franzosi, Diogo Buarque
    Ellajosyula, Venugopal
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Enberg, Rikard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Ferretti, Gabriele
    Isacson, Max
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Liu, Yao-Bei
    Mandal, Tanumoy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Mathisen, Thomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Moretti, Stefano
    Panizzi, Luca
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Signatures of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons2019Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    We explore the phenomenology of models containing one Vector-Like Quark (VLQ), t′, which can decay into the Standard Model (SM) top quark, t, and a new spin-0 neutral boson, S, the latter being either a scalar or pseudoscalar state. We parametrise the underlying interactions in terms of a simplified model which enables us to capture possible Beyond the SM (BSM) scenarios. We discuss in particular three such scenarios: one where the SM state is supplemented by an additional scalar, one which builds upon a 2-Higgs Doublet Model (2HDM) framework and another which realises a Composite Higgs Model (CHM) through partial compositeness. Such exotic decays of the t′ can be competitive with decays into SM particles, leading to new possible discovery channels at the Large Hadron Collider (LHC). Assuming t′ pair production via strong interactions, we design signal regions optimised for one t′→St transition (while being inclusive on the other \bar{t'} decay, and vice versa), followed by the decay of S into the two very clean experimental signatures S→γγ and S→Z(→ℓ+ℓ−)γ. We perform a dedicated signal-to-background analysis in both channels, by using Monte Carlo (MC) event simulations modelling the dynamics from the proton-proton to the detector level. Under the assumption of BR(t′→St)=100%, we are therefore able to realistically quantify the sensitivity of the LHC to both the t′ and S masses, assuming both current and foreseen luminosities. This approach paves the way for the LHC experiments to surpass current VLQ search strategies based solely on t′ decays into SM bosons (W±,Z, h).

  • 249.
    Bendle, Dominik
    et al.
    Tech Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany;Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany.
    Böhm, Janko
    Tech Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany.
    Decker, Wolfram
    Tech Univ Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany.
    Georgoudis, Alessandro
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Pfreundt, Franz-Josef
    Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany.
    Rahn, Mirko
    Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany.
    Wasser, Pascal
    Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55128 Mainz, Germany.
    Zhang, Yang
    Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China;Werner Heisenberg Inst, Max Planck Inst Phys, DE-80805 Munich, Germany.
    Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space2020Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 2, artikkel-id 079Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We introduce an algebro-geometrically motived integration-by-parts (IBP) re- duction method for multi-loop and multi-scale Feynman integrals, using a framework for massively parallel computations in computer algebra. This framework combines the com- puter algebra system Singular with the workflow management system GPI-Space, which are being developed at the TU Kaiserslautern and the Fraunhofer Institute for Industrial Mathematics (ITWM), respectively. In our approach, the IBP relations are first trimmed by modern tools from computational algebraic geometry and then solved by sparse linear algebra and our new interpolation method. Modelled in terms of Petri nets, these steps are efficiently automatized and automatically parallelized by GPI-Space. We demonstrate the potential of our method at the nontrivial example of reducing two-loop five-point non- planar double-pentagon integrals. We also use GPI-Space to convert the basis of IBP reductions, and discuss the possible simplification of master-integral coefficients in a uni- formly transcendental basis.

    Fulltekst (pdf)
    FULLTEXT01
  • 250. Benna, Marcus
    et al.
    Klebanov, Igor
    Klose, Thomas
    Smedback, Mikael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Superconformal Chern-Simons theories and AdS(4)/CFT3 correspondence2008Inngår i: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, nr 9, s. 072-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We discuss the N = 2 superspace formulation of the N = 8 superconformal Bagger-Lambert-Gustavsson theory, and of the N = 6 superconformal Aharony-Bergman-Jafferis-Maldacena U(N) x U(N) Chern-Simons theory. In particular, we prove the full SU(4)R-symmetry of the ABJM theory. We then consider orbifold projections of this theory that give non-chiral and chiral (U( N) x U(N))(n) superconformal quiver gauge theories. We argue that these theories are dual to certain AdS(4) x S-7/(Z(n) x Z (k$) over tilde) backgrounds of M-theory. We also study a SU(3) invariant mass term in the superpotential that makes the N = 8 theory flow to a N = 2 superconformal gauge theory with a sextic superpotential. We conjecture that this gauge theory is dual to the U(1)(R) x SU(3) invariant extremum of the N = 8 gauged supergravity, which was discovered by N. Warner 25 years ago and whose uplifting to 11 dimensions was found more recently.

2345678 201 - 250 of 504
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf