uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
2345 201 - 215 av 215
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 201.
    van der Spoel, David
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Seibert, M Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Protein folding kinetics and thermodynamics from atomistic simulations2006Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 96, nr 23, s. 238102-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Determining protein folding kinetics and thermodynamics from all-atom molecular dynamics (MD) simulations without using experimental data represents a formidable scientific challenge because simulations can easily get trapped in local minima on rough free energy landscapes. This necessitates the computation of multiple simulation trajectories, which can be independent from each other or coupled in some manner, as, for example, in the replica exchange MD method. Here we present results obtained with a new analysis tool that allows the deduction of faithful kinetics data from a heterogeneous ensemble of simulation trajectories. The method is demonstrated on the decapeptide Chignolin for which we predict folding and unfolding time constants of 1.0±0.3 and 2.6±0.4  μs, respectively. We also derive the energetics of folding, and calculate a realistic melting curve for Chignolin.

  • 202. van Lun, Michiel
    et al.
    Hub, Jochen S.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    van der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Andersson, Inger
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    CO2 and O-2 Distribution in Rubisco Suggests the Small Subunit Functions as a CO2 Reservoir2014Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 136, nr 8, s. 3165-3171Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Protein gas interactions are important in biology. The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes two competing reactions involving CO2 and O-2 as substrates. Carboxylation of the common substrate ribulose-1,5-bisphosphate leads to photosynthetic carbon assimilation, while the oxygenation reaction competes with carboxylation and reduces photosynthetic productivity. The migration of the two gases in and around Rubisco was investigated using molecular dynamics simulations. The results indicate that at equal concentrations of the gases, Rubisco binds CO2 stronger than it does O-2. Amino acids with small hydrophobic side chains are the most proficient in attracting CO2, indicating a significant contribution of the hydrophobic effect in the interaction. On average, residues in the small subunit bind approximately twice as much CO2 as do residues in the large subunit. We did not detect any cavities that would provide a route to the active site for the gases. Instead, CO2 appears to be guided toward the active site through a CO2 binding region around the active site opening that extends to the closest neighboring small subunits. Taken together, these results suggest the small subunit may function as a "reservoir" for CO2 storage.

  • 203. Vinko, S. M.
    et al.
    Zastrau, U.
    Mazevet, S.
    Andreasson, Jakob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Bajt, S.
    Burian, T.
    Chalupsky, J.
    Chapman, H. N.
    Cihelka, J.
    Doria, D.
    Doeppner, T.
    Duesterer, S.
    Dzelzainis, T.
    Faeustlin, R. R.
    Fortmann, C.
    Foerster, E.
    Galtier, E.
    Glenzer, S. H.
    Goede, S.
    Gregori, G.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajkova, V.
    Heimann, P. A.
    Irsig, R.
    Juha, L.
    Jurek, M.
    Krzywinski, J.
    Laarmann, T.
    Lee, H. J.
    Lee, R. W.
    Li, B.
    Meiwes-Broer, K. -H
    Mithen, J. P.
    Nagler, B.
    Nelson, A. J.
    Przystawik, A.
    Redmer, R.
    Riley, D.
    Rosmej, F.
    Sobierajski, R.
    Tavella, F.
    Thiele, R.
    Tiggesbaeumker, J.
    Toleikis, S.
    Tschentscher, T.
    Vysin, L.
    Whitcher, T. J.
    White, S.
    Wark, J. S.
    Electronic Structure of an XUV Photogenerated Solid-Density Aluminum Plasma2010Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 104, nr 22, s. 225001-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.

  • 204.
    Vu, Emy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för biologisk grundutbildning.
    Towards determining a high-resolution structure of the coat proteins on PR7722016Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [en]

    The Virus PR772 infects E. Coli and has an icosahedral shape with a inner lipid membrane. The diameter of the virus is 66 nm and a purification of the virus gave 0.8 mg/mL pure viral particles. The structures of the coat proteins of the virus PR772 are still unknown and it would be interesting to study them. Coat proteins will be expressed in a larger amount for crystallization. X-ray crystallography can, in principle, be used to determine high-resolution structures of the coat proteins, P6 and P30. 

  • 205. Wang, Conan K
    et al.
    Hu, Shu-Hong
    Martin, Jennifer L
    Sjögren, Tove
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Bohlin, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Avdelningen för farmakognosi.
    Claeson, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Avdelningen för farmakognosi.
    Göransson, Ulf
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Avdelningen för farmakognosi.
    Rosengren, K Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Avdelningen för farmakognosi.
    Tang, Jun
    Tan, Ning-Hua
    Craik, David J
    Combined X-ray and NMR Analysis of the Stability of the Cyclotide Cystine Knot Fold That Underpins Its Insecticidal Activity and Potential Use as a Drug Scaffold2009Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 284, nr 16, s. 10672-10683Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cyclotides are a family of plant defense proteins that are highly resistant to adverse chemical, thermal, and enzymatic treatment. Here, we present the first crystal structure of a cyclotide, varv F, from the European field pansy, Viola arvensis, determined at a resolution of 1.8 A. The solution state NMR structure was also determined and, combined with measurements of biophysical parameters for several cyclotides, provided an insight into the structural features that account for the remarkable stability of the cyclotide family. The x-ray data confirm the cystine knot topology and the circular backbone, and delineate a conserved network of hydrogen bonds that contribute to the stability of the cyclotide fold. The structural role of a highly conserved Glu residue that has been shown to regulate cyclotide function was also determined, verifying its involvement in a stabilizing hydrogen bond network. We also demonstrate that varv F binds to dodecylphosphocholine micelles, defining the binding orientation and showing that its structure remains unchanged upon binding, further demonstrating that the cyclotide fold is rigid. This study provides a biological insight into the mechanism by which cyclotides maintain their native activity in the unfavorable environment of predator insect guts. It also provides a structural basis for explaining how a cluster of residues important for bioactivity may be involved in self-association interactions in membranes. As well as being important for their bioactivity, the structural rigidity of cyclotides makes them very suitable as a stable template for peptide-based drug design.

  • 206.
    Wang, Kun
    et al.
    Stockholm Univ, Dept Mol Biosci, Wenner Gren Inst, Svante Arrhenius V 20C, SE-10691 Stockholm, Sweden.
    Sybers, David
    Vrije Univ Brussel, Dept Bioengn Sci, Res Grp Microbiol, Pl Laan 2, B-1050 Brussels, Belgium.
    Maklad, Hassan Ramadan
    Vrije Univ Brussel, Dept Bioengn Sci, Res Grp Microbiol, Pl Laan 2, B-1050 Brussels, Belgium.
    Lemmens, Liesbeth
    Vrije Univ Brussel, Dept Bioengn Sci, Res Grp Microbiol, Pl Laan 2, B-1050 Brussels, Belgium.
    Lewyllie, Charlotte
    Vrije Univ Brussel, Dept Bioengn Sci, Res Grp Microbiol, Pl Laan 2, B-1050 Brussels, Belgium;Vrije Univ Brussel, Dept Biol, Lab Cell Genet, Pl Laan 2, B-1050 Brussels, Belgium.
    Zhou, Xiaoxiao
    Univ Duisburg Essen, Mol Enzymtechnol & Biochem, Biofilm Ctr, ZWU,Fak Chem, Univ Str 2, D-45117 Essen, Germany.
    Schult, Frank
    Univ Duisburg Essen, Mol Enzymtechnol & Biochem, Biofilm Ctr, ZWU,Fak Chem, Univ Str 2, D-45117 Essen, Germany.
    Bräsen, Christopher
    Univ Duisburg Essen, Mol Enzymtechnol & Biochem, Biofilm Ctr, ZWU,Fak Chem, Univ Str 2, D-45117 Essen, Germany.
    Siebers, Bettina
    Univ Duisburg Essen, Mol Enzymtechnol & Biochem, Biofilm Ctr, ZWU,Fak Chem, Univ Str 2, D-45117 Essen, Germany.
    Valegård, Karin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Lindås, Ann-Christin
    Stockholm Univ, Dept Mol Biosci, Wenner Gren Inst, Svante Arrhenius V 20C, SE-10691 Stockholm, Sweden.
    Peeters, Eveline
    Vrije Univ Brussel, Dept Bioengn Sci, Res Grp Microbiol, Pl Laan 2, B-1050 Brussels, Belgium.
    A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1542Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadR(sa)) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius. Functional and structural analyses show that FadR(sa) binds to DNA at semi-palindromic recognition sites in two distinct stoichiometric binding modes depending on the operator sequence. Genome-wide transcriptomic and chromatin immunoprecipitation analyses demonstrate that the protein binds to only four genomic sites, acting as a repressor of a 30-kb gene cluster comprising 23 open reading frames encoding lipases and beta-oxidation enzymes. Fatty acyl-CoA molecules cause dissociation of FadR(sa) binding by inducing conformational changes in the protein. Our results indicate that, despite its similarity in overall structure to bacterial TetR-family FadR regulators, FadR(sa) displays a different acyl-CoA binding mode and a distinct regulatory mechanism.

  • 207. Weierstall, Uwe
    et al.
    James, Daniel
    Wang, Chong
    White, Thomas A.
    Wang, Dingjie
    Liu, Wei
    Spence, John C. H.
    Doak, R. Bruce
    Nelson, Garrett
    Fromme, Petra
    Fromme, Raimund
    Grotjohann, Ingo
    Kupitz, Christopher
    Zatsepin, Nadia A.
    Liu, Haiguang
    Basu, Shibom
    Wacker, Daniel
    Han, Gye Won
    Katritch, Vsevolod
    Boutet, Sebastien
    Messerschmidt, Marc
    Williams, Garth J.
    Koglin, Jason E.
    Seibert, Marvin M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Klinker, Markus
    Gati, Cornelius
    Shoeman, Robert L.
    Barty, Anton
    Chapman, Henry N.
    Kirian, Richard A.
    Beyerlein, Kenneth R.
    Stevens, Raymond C.
    Li, Dianfan
    Shah, Syed T. A.
    Howe, Nicole
    Caffrey, Martin
    Cherezov, Vadim
    Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography2014Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 5, s. 3309-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-mu m-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.

  • 208.
    Wiedorn, Max O.
    et al.
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Oberthuer, Dominik
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Bean, Richard
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Schubert, Robin
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany;Integrated Biol Infrastruct Life Sci Facil Europe, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Werner, Nadine
    Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany.
    Abbey, Brian
    La Trobe Univ, Ctr Excellence Adv Mol Imaging, La Trobe Inst Mol Sci, Dept Chem & Phys,ARC, Bundoora, Vic 3086, Australia.
    Aepfelbacher, Martin
    Univ Med Ctr Hamburg Eppendorf UKE, Inst Med Microbiol Virol & Hyg, D-20246 Hamburg, Germany.
    Adriano, Luigi
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Allahgholi, Aschkan
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Al-Qudami, Nasser
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Andreasson, Jakob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Czech Acad Sci, ELI Beamlines, Inst Phys, Na Slovance 2, Prague 18221, Czech Republic;Chalmers Univ Technol, Dept Phys, Condensed Matter Phys, S-41296 Gothenburg, Sweden.
    Aplin, Steve
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Awel, Salah
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Ayyer, Kartik
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Bajt, Sasa
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Barak, Imrich
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Bari, Sadia
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Bielecki, Johan
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Botha, Sabine
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany.
    Boukhelef, Djelloul
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Brehm, Wolfgang
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Brockhauser, Sandor
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany;Hungarian Acad Sci, BRC, Temesvari Krt 62, H-6726 Szeged, Hungary.
    Cheviakov, Igor
    Univ Med Ctr Hamburg Eppendorf UKE, Inst Med Microbiol Virol & Hyg, D-20246 Hamburg, Germany.
    Coleman, Matthew A.
    Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
    Cruz-Mazo, Francisco
    Univ Seville, Dept Ingn Aeroesp & Mecan Fluidos ETSI, Seville 41092, Spain.
    Danilevski, Cyril
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Darmanin, Connie
    La Trobe Univ, Ctr Excellence Adv Mol Imaging, La Trobe Inst Mol Sci, Dept Chem & Phys,ARC, Bundoora, Vic 3086, Australia.
    Doak, R. Bruce
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany.
    Domaracky, Martin
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Doerner, Katerina
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Du, Yang
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Fangohr, Hans
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany;Univ Southampton, Engn & Environm, Southampton SO17 1BJ, Hants, England.
    Fleckenstein, Holger
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Frank, Matthias
    Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
    Fromme, Petra
    Arizona State Univ, Sch Mol Sci & Biodesign, Ctr Appl Struct Discovery, Tempe, AZ 85287 USA.
    Ganan-Calvo, Alfonso M.
    Univ Seville, Dept Ingn Aeroesp & Mecan Fluidos ETSI, Seville 41092, Spain.
    Gevorkov, Yaroslav
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Hamburg Univ Technol, Vis Syst E2, Harburger Schlostr 20, D-21079 Hamburg, Germany.
    Giewekemeyer, Klaus
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Ginn, Helen Mary
    Div Struct Biol, Oxford OX3 7BN, England;Diamond Light Source, Res Complex Harwell, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England;Univ Oxford, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England.
    Graafsma, Heinz
    DESY, Notkestr 85, D-22607 Hamburg, Germany;Mid Sweden Univ, Holmgatan 10, S-85170 Sundsvall, Sweden.
    Graceffa, Rita
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Greiffenberg, Dominic
    Paul Scherrer Inst, Forsch Str 111, CH-5232 Villigen, Switzerland.
    Gumprecht, Lars
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Goettlicher, Peter
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Czech Acad Sci, ELI Beamlines, Inst Phys, Na Slovance 2, Prague 18221, Czech Republic.
    Hauf, Steffen
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Heymann, Michael
    Max Planck Inst Biochem, Dept Cellular & Mol Biophys, D-82152 Martinsried, Germany.
    Holmes, Susannah
    La Trobe Univ, Ctr Excellence Adv Mol Imaging, La Trobe Inst Mol Sci, Dept Chem & Phys,ARC, Bundoora, Vic 3086, Australia.
    Horke, Daniel A.
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Hunter, Mark S.
    SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA.
    Imlau, Siegfried
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Kaukher, Alexander
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Kim, Yoonhee
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Klyuev, Alexander
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Knoska, Juraj
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Kobe, Bostjan
    Univ Queensland, Inst Mol Biosci, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia;Univ Queensland, Australian Infect Dis Res Ctr, Brisbane, Qld 4072, Australia.
    Kuhn, Manuela
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Kupitz, Christopher
    Univ Wisconsin, Phys Dept, 3135 N Maryland Ave, Milwaukee, WI 53211 USA.
    Kueper, Jochen
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Dept Chem, Martin Luther King Pl 6, D-20146 Hamburg, Germany.
    Lahey-Rudolph, Janine Mia
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Lubeck, Inst Biochem, Ctr Struct & Cell Biol Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany.
    Laurus, Torsten
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Le Cong, Karoline
    Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany.
    Letrun, Romain
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Xavier, P. Lourdu
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Maia, Luis
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Maia, Filipe R.N.C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA.
    Mariani, Valerio
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Messerschmidt, Marc
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Metz, Markus
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Mezza, Davide
    Paul Scherrer Inst, Forsch Str 111, CH-5232 Villigen, Switzerland.
    Michelat, Thomas
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Mills, Grant
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Monteiro, Diana C. F.
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Morgan, Andrew
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Mühlig, Kerstin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Munke, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Muennich, Astrid
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Nette, Julia
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Nugent, Keith A.
    La Trobe Univ, Ctr Excellence Adv Mol Imaging, La Trobe Inst Mol Sci, Dept Chem & Phys,ARC, Bundoora, Vic 3086, Australia.
    Nuguid, Theresa
    Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany.
    Orville, Allen M.
    Diamond Light Source, Res Complex Harwell, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England;Univ Oxford, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England.
    Pandey, Suraj
    Univ Wisconsin, Phys Dept, 3135 N Maryland Ave, Milwaukee, WI 53211 USA.
    Pena, Gisel
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Villanueva-Perez, Pablo
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Poehlsen, Jennifer
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Previtali, Gianpietro
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Redecke, Lars
    Univ Med Ctr Hamburg Eppendorf UKE, Inst Med Microbiol Virol & Hyg, D-20246 Hamburg, Germany;Univ Lubeck, Inst Biochem, Ctr Struct & Cell Biol Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany.
    Riekehr, Winnie Maria
    Univ Lubeck, Inst Biochem, Ctr Struct & Cell Biol Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany.
    Rohde, Holger
    Univ Med Ctr Hamburg Eppendorf UKE, Inst Med Microbiol Virol & Hyg, D-20246 Hamburg, Germany.
    Round, Adam
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Safenreiter, Tatiana
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Sarrou, Iosifina
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Sato, Tokushi
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Schmidt, Marius
    Univ Wisconsin, Phys Dept, 3135 N Maryland Ave, Milwaukee, WI 53211 USA.
    Schmitt, Bernd
    Paul Scherrer Inst, Forsch Str 111, CH-5232 Villigen, Switzerland.
    Schoenherr, Robert
    Univ Lubeck, Inst Biochem, Ctr Struct & Cell Biol Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany.
    Schulz, Joachim
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Sellberg, Jonas A.
    KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Appl Phys, Biomed & Xray Phys, S-10691 Stockholm, Sweden.
    Seibert, M. Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Seuring, Carolin
    SAS, Inst Mol Biol, Dubravska Cesta 21, Bratislava 84551, Slovakia.
    Shelby, Megan L.
    Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
    Shoeman, Robert L.
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany.
    Sikorski, Marcin
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Silenzi, Alessandro
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Stan, Claudiu A.
    Rutgers Univ Newark, Phys Dept, Newark, NJ 07102 USA.
    Shi, Xintian
    Paul Scherrer Inst, Forsch Str 111, CH-5232 Villigen, Switzerland.
    Stern, Stephan
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Sztuk-Dambietz, Jola
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Szuba, Janusz
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Tolstikova, Aleksandra
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Trebbin, Martin
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Buffalo, Dept Chem, 359 Nat Sci Complex, Buffalo, NY 14260 USA;Univ Hamburg, Inst Nanostruct & Solid State Phys, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Trunk, Ulrich
    DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Vagovic, Patrik
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Ve, Thomas
    Griffith Univ, Inst Glyc, Southport, Qld 4222, Australia.
    Weinhausen, Britta
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    White, Thomas A.
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Wrona, Krzysztof
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Xu, Chen
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Yefanov, Oleksandr
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Zatsepin, Nadia
    Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
    Zhang, Jiaguo
    Paul Scherrer Inst, Forsch Str 111, CH-5232 Villigen, Switzerland.
    Perbandt, Markus
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany;Univ Med Ctr Hamburg Eppendorf UKE, Inst Med Microbiol Virol & Hyg, D-20246 Hamburg, Germany.
    Mancuso, Adrian P.
    European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Betzel, Christian
    Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Inst Biochem & Mol Biol, Lab Struct Biol Infect & Inflammat, Notkestr 85, D-22607 Hamburg, Germany;Integrated Biol Infrastruct Life Sci Facil Europe, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Chapman, Henry
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.
    Barty, Anton
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Megahertz serial crystallography2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 4025Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

  • 209.
    Yefanov, Oleksandr
    et al.
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Oberthuer, Dominik
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Bean, Richard
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Wiedorn, Max O.
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Ctr Ultrafast Imaging, Luru Chaussee 149, D-22761 Hamburg, Germany.
    Knoska, Juraj
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Pena, Gisel
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Awel, Salah
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Gumprecht, Lars
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Domaracky, Martin
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Sarrou, Iosifina
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Xavier, P. Lourdu
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Metz, Markus
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Bajt, Sasa
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Mariani, Valerio
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Gevorkov, Yaroslav
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Hamburg Univ Technol, Inst Vis Syst, Vis Syst E-2,Harburger Schlossstr 20, D-21079 Hamburg, Germany.
    White, Thomas A.
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Tolstikova, Aleksandra
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Villanueva-Perez, Pablo
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Seuring, Carolin
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Aplin, Steve
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Estillore, Armando D.
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Küpper, Jochen
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Ctr Ultrafast Imaging, Luru Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Dept Phys, Luru Chaussee 149, D-22761 Hamburg, Germany.
    Klyuev, Alexander
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Kuhn, Manuela
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Laurus, Torsten
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Graafsma, Heinz
    Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany.
    Monteiro, Diana C. F.
    Univ Hamburg, Ctr Ultrafast Imaging, Luru Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Dept Phys, Luru Chaussee 149, D-22761 Hamburg, Germany.
    Trebbin, Martin
    Univ Buffalo, Dept Chem, 359 Nat Sci Complex, Buffalo, NY 14260 USA;Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA.
    Maia, Filipe
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA.
    Cruz-Mazo, Francisco
    Univ Seville, ETSI, Dept Ingn Aeroespacial & Mecon Fluidos, Seville 41092, Spain.
    Ganan-Calvo, Alfonso M.
    Univ Seville, ETSI, Dept Ingn Aeroespacial & Mecon Fluidos, Seville 41092, Spain.
    Heymann, Michael
    Univ Stuttgart, Inst Biomat & Biomol Syst, Intelligent Biointegrat Syst Grp, D-70569 Stuttgart, Germany.
    Darmanin, Connie
    La Trobe Univ, La Trobe Inst Mol Sci, ARC Ctr Excellence Adv Mol Imaging, Melbourne, Vic 3086, Australia.
    Abbey, Brian
    La Trobe Univ, La Trobe Inst Mol Sci, ARC Ctr Excellence Adv Mol Imaging, Melbourne, Vic 3086, Australia.
    Schmidt, Marius
    Univ Wisconsin, Phys Dept, 3135 N Maryland Ave, Milwaukee, WI 53211 USA.
    Fromme, Petra
    Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA;Arizona State Univ, Biodesign Ctr Appl Struct Discovery, Tempe, AZ 85287 USA.
    Giewekemeyer, Klaus
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Sikorski, Marcin
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Graceffa, Rita
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Vagovic, Patrik
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Kluyver, Thomas
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Bergemann, Martin
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Fangohr, Hans
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Sztuk-Dambietz, Jolanta
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Hauf, Steffen
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Raab, Natascha
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Bondar, Valerii
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
    Mancuso, Adrian P.
    European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany;La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, Melbourne, Vic 3086, Australia.
    Chapman, Henry
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany;Univ Hamburg, Ctr Ultrafast Imaging, Luru Chaussee 149, D-22761 Hamburg, Germany;Univ Hamburg, Dept Phys, Luru Chaussee 149, D-22761 Hamburg, Germany.
    Barty, Anton
    Deutsch Elekt Synchrotron, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
    Evaluation of serial crystallographic structure determination within megahertz pulse trains2019Ingår i: STRUCTURAL DYNAMICS-US, ISSN 2329-7778, Vol. 6, nr 6, artikel-id 064702Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

  • 210. Yoon, Chun Hong
    et al.
    Schwander, Peter
    Abergel, Chantal
    Andersson, Inger
    Andreasson, Jakob
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Aquila, Andrew
    Bajt, Sasa
    Barthelmess, Miriam
    Barty, Anton
    Bogan, Michael J.
    Bostedt, Christoph
    Bozek, John
    Chapman, Henry N.
    Claverie, Jean-Michel
    Coppola, Nicola
    DePonte, Daniel P.
    Ekeberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Epp, Sascha W.
    Erk, Benjamin
    Fleckenstein, Holger
    Foucar, Lutz
    Graafsma, Heinz
    Gumprecht, Lars
    Hajdu, Janos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Hampton, Christina Y.
    Hartmann, Andreas
    Hartmann, Elisabeth
    Hartmann, Robert
    Hauser, Gunter
    Hirsemann, Helmut
    Holl, Peter
    Kassemeyer, Stephan
    Kimmel, Nils
    Kiskinova, Maya
    Liang, Mengning
    Loh, Ne-Te Duane
    Lomb, Lukas
    Maia, Filipe R. N. C.
    Martin, Andrew V.
    Nass, Karol
    Pedersoli, Emanuele
    Reich, Christian
    Rolles, Daniel
    Rudek, Benedikt
    Rudenko, Artem
    Schlichting, Ilme
    Schulz, Joachim
    Seibert, Marvin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Seltzer, Virginie
    Shoeman, Robert L.
    Sierra, Raymond G.
    Soltau, Heike
    Starodub, Dmitri
    Steinbrener, Jan
    Stier, Gunter
    Strueder, Lothar
    Svenda, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Ullrich, Joachim
    Weidenspointner, Georg
    White, Thomas A.
    Wunderer, Cornelia
    Ourmazd, Abbas
    Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering2011Ingår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 19, nr 17, s. 16542-16549Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.

  • 211.
    Yu, Young-Sang
    et al.
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.;Univ Illinois, Dept Chem, Chicago, IL 60607 USA..
    Farmand, Maryam
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Kim, Chunjoong
    Univ Illinois, Dept Chem, Chicago, IL 60607 USA.;Chungnam Natl Univ, Dept Mat Sci & Engn, Taejon 305764, Chungnam, South Korea..
    Liu, Yijin
    SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA..
    Grey, Clare P.
    Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England.;SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA..
    Strobridge, Fiona C.
    Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England..
    Tyliszczak, Tolek
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Celestre, Rich
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Denes, Peter
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Joseph, John
    Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA..
    Krishnan, Harinarayan
    Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA..
    Maia, Filipe R.N.C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Kilcoyne, A. L. David
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Marchesini, Stefano
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Leite, Talita Perciano Costa
    Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA..
    Warwick, Tony
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Padmore, Howard
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Cabana, Jordi
    Univ Illinois, Dept Chem, Chicago, IL 60607 USA..
    Shapiro, David A.
    Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA..
    Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography2018Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, artikel-id 921Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.

  • 212.
    Zawada, Katarzyna E.
    et al.
    Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA;Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA.
    Okamoto, Kenta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Kasson, Peter M.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA;Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA.
    Influenza Hemifusion Phenotype Depends on Membrane Context: Differences in Cell-Cell and Virus-Cell Fusion2018Ingår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 430, nr 5, s. 594-601Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Influenza viral entry into the host cell cytoplasm is accomplished by a process of membrane fusion mediated by the viral hemagglutinin protein. Hem agglutinin acts in a pH-triggered fashion, inserting a short fusion peptide into the host membrane followed by refolding of a coiled-coil structure to draw the viral envelope and host membranes together. Mutations to this fusion peptide provide an important window into viral fusion mechanisms and protein-membrane interactions. Here, we show that a well-described fusion peptide mutant, G1S, has a phenotype that depends strongly on the viral membrane context. The G1S mutant is well known to cause a "hemifusion" phenotype based on experiments in transfected cells, where cells expressing G1S hemagglutinin can undergo lipid mixing in a pH triggered fashion similar to virus but will not support fusion pores. We compare fusion by the G1S hemagglutinin mutant expressed either in cells or in influenza virions and show that this hemifusion phenotype occurs in transfected cells but that native virions are able to support full fusion, albeit at a slower rate and 10-100x reduced infectious titer. We explain this with a quantitative model where the G1S mutant, instead of causing an absolute block of fusion, alters the protein stoichiometry required for fusion. This change slightly slows fusion at high hemagglutinin density, as on the viral surface, but at lower hemagglutinin density produces a hemifusion phenotype. The quantitative model thus reproduces the observed virus-cell and cell-cell fusion phenotypes, yielding a unified explanation where membrane context can control the observed viral fusion phenotype. (C) 2018 Elsevier Ltd. All rights reserved.

  • 213.
    Zhang, Jin
    et al.
    Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China.;Zhejiang Univ, Soft Matter Res Ctr, Hangzhou 310027, Zhejiang, Peoples R China..
    Zhang, Haiyang
    Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China.;Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Dept Biol Sci & Engn, Beijing 100083, Peoples R China..
    Wu, Tao
    Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China.;Zhejiang Univ, Soft Matter Res Ctr, Hangzhou 310027, Zhejiang, Peoples R China..
    Wang, Qi
    Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China.;Zhejiang Univ, Soft Matter Res Ctr, Hangzhou 310027, Zhejiang, Peoples R China..
    van der Spoel, David
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents2017Ingår i: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 13, nr 3, s. 1034-1043Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Quantitative prediction of physical properties of liquids is important for many applications. Computational methods based on either explicit or implicit solvent models can be used to approximate thermodynamics properties of liquids. Here, we evaluate the predictive power of implicit solvent models for solvation free energy of organic molecules in organic solvents. We compared the results calculated with four generalized Born (GB) models (GB(still), GB(HCT), GB(OBC)I, and GB(OBC)IT), the Poisson Boltzmann (PB) model, and the density-based solvent model SMD with previous solvation free energy calculations (Zhang et al. J. Chem. Inf. Model. 2015, SS, 1192-1201) and experimental data. The comparison indicates that both PB and GB give poor agreement with explicit solvent calculations and even worse agreement with experiments (root mean -square deviation approximate to 15 kJ/mol). The main problem seems to be the prediction of the apolar contribution, which should include the solvent entropy. The quantum mechanical-based SMD model gives significantly better agreement with experimental data than do PB or GB, but it is not as good as explicit solvent calculation results. The dielectric constant a of the solvent is found to be a powerful predictor for the polar contribution to the free energy in implicit models; however, the Onsager relation may not hold for realistic solvent, as suggested by explicit solvent and SMD calculations. From the comparison, we also find that with an optimization of the apolar contribution, the PB model gives slightly better agreement with experiments than the SMD model, whereas the correlation between the optimized GB models and experiments remains poor. Further optimization of the apolar contribution is needed for GB models to be able to treat solvents other than water.

  • 214. Zhu, Chuanbao
    et al.
    Raber, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Teknisk-naturvetenskapliga fakulteten, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Eriksson, Leif A.
    Hydrolysis Process of the Second Generation Platinum-Based Anticancer Drug cis-Amminedichlorocyclohexylamineplatinum(II)2005Ingår i: The Journal of Physical Chemistry B, ISSN 1089-5647, Vol. 109, nr 24, s. 12195-12205Artikel i tidskrift (Refereegranskat)
  • 215.
    Östlin, Christofer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Timneanu, Nicusor
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Jönsson, H. Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik.
    Ekeberg, Tomas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär biofysik.
    Martin, Andrew V.
    University of Melbourne, School of Physics, ARC Centre of Excellence for Advanced Molecular Imaging.
    Caleman, Carl
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Molekyl- och kondenserade materiens fysik. Center for Free-Electron Laser Science, DESY, Notkestraße 85, DE-22607 Hamburg, Germany .
    Reproducibility of Single Protein Explosions Induced by X-ray Lasers2018Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 18, s. 12381-12389Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Single particle imaging (SPI) using X-ray pulses has become increasingly attainable with the advent of high-intensity free electron lasers. Eliminating the need for crystallized samples enables structural studies of molecules previously inaccessible by conventional crystallography. While this emerging technique already demonstrates substantial promise, some obstacles need to be overcome before SPI can reach its full potential. One such problem is determining the spatial orientation of the sample at the time of X-ray interaction. Existing solutions rely on diffraction data and are computationally demanding and sensitive to noise. In this in silico study, we explore the possibility of aiding these methods by mapping the ion distribution as the sample undergoes a Coulomb explosion following the intense ionization. By detecting the ions ejected from the fragmented sample, the orientation of the original sample should be possible to determine. Knowledge of the orientation has been shown earlier to be of substantial advantage in the reconstruction of the original structure. 150 explosions of each of twelve separate systems – four polypeptides with different amounts of surface bound water – were simulated with molecular dynamics (MD) and the average angular distribution of carbon and sulfur ions was investigated independently. The results show that the explosion maps are reproducible in both cases, supporting the idea that orientation information is preserved. Additional water seems to restrict the carbon ion trajectories further through a shielding mechanism, making the maps more distinct. For sulfurs, water has no significant impact on the trajectories, likely due to their higher mass and greater ionization cross section, indicating that they could be of particular interest. Based on these findings, we conclude that explosion data can aid spatial orientation in SPI experiments and could substantially improve the capabilities of the novel technique.

2345 201 - 215 av 215
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf