Open this publication in new window or tab >>Show others...
2017 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 4, p. A701-A708Article in journal (Refereed) Published
Abstract [en]
The performance of lithium-ion batteries (LIBs) comprising SnO2 electrodes and an ionic liquid (IL) based electrolyte, i.e., 0.5 MLiTFSI in Pip14TFSI, has been studied at room temperature (i.e., 22◦C) and 80◦C. While the high viscosity and low conductivity ofthe electrolyte resulted in high overpotentials and low capacities at room temperature, the SnO2 performance at 80◦C was found to beanalogous to that seen at room temperature using a standard LP40 electrolyte (i.e., 1MLiPF6 dissolved in 1:1 ethylene carbonate anddiethyl carbonate). Significant reduction of the IL was, however, found at 80◦C, which resulted in low coulombic efficiencies duringthe first 20 cycles, most likely due to a growing SEI layer and the formation of soluble IL reduction products. X-ray photoelectronspectroscopy studies of the cycled SnO2 electrodes indicated the presence of an at least 10 nm thick solid electrolyte interphase (SEI)layer composed of inorganic components such as lithium fluoride, sulfates, and nitrides as well as organic species containing C-H,C-F and C-N bonds.
National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-316877 (URN)10.1149/2.0861704jes (DOI)000400958600021 ()
2017-03-072017-03-072017-06-14Bibliographically approved