uu.seUppsala University Publications
Change search
Refine search result
45678 301 - 350 of 366
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 301.
    Anastasi, A.
    et al.
    INFN, Lab Nazl Frascati, Frascati, Italy;Univ Messina, Sci Fis & Sci Terra, Dipartimento Sci Matemat & Informat, Messina, Italy.
    Babusci, D.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Berlowski, M.
    INFN, Lab Nazl Frascati, Frascati, Italy;Natl Ctr Nucl Res, Warsaw, Poland.
    Bloise, C.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Bossi, F.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Branchini, R.
    INFN, Sez Roma Tre, Rome, Italy.
    Budano, A.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy;INFN, Sez Roma Tre, Rome, Italy.
    Cao, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Ceradini, F.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy;INFN, Sez Roma Tre, Rome, Italy.
    Ciambrone, R.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Curciarello, F.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Czerwinski, E.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    D'Agostini, G.
    Univ Sapienza, Dipartimento Fis, Rome, Italy;INFN, Sez Roma, Rome, Italy.
    Dane, E.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    De Leo, V.
    INFN, Sez Roma Tor Vergata, Rome, Italy.
    De Lucia, E.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    De Santis, A.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    De Simone, R.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Di Cicco, A.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy;INFN, Sez Roma Tre, Rome, Italy.
    Di Domenico, A.
    Univ Sapienza, Dipartimento Fis, Rome, Italy;INFN, Sez Roma, Rome, Italy.
    Domenici, D.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    D'Uffizi, A.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Fantini, A.
    Univ Tor Vergata, Dipartimento Fis, Rome, Italy;INFN, Sez Roma Tor Vergata, Rome, Italy.
    Fantini, G.
    Gran Sasso Sci Inst, Laquila, Italy.
    Fermani, R.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Fiore, S.
    INFN, Sez Roma, Rome, Italy;ENEA, Dept Fus & Technol Nucl Safety & Secur, Frascati, RM, Italy.
    Gajos, A.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Gauzzi, R.
    Univ Sapienza, Dipartimento Fis, Rome, Italy;INFN, Sez Roma, Rome, Italy.
    Giovannella, S.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Graziani, E.
    INFN, Sez Roma Tre, Rome, Italy.
    Ivanov, V. L.
    Budker Inst Nucl Phys, Novosibirsk, Russia;Novosibirsk State Univ, Novosibirsk, Russia.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kang, X.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Kisielewska-Kaminska, D.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Kozyrev, E. A.
    Budker Inst Nucl Phys, Novosibirsk, Russia;Novosibirsk State Univ, Novosibirsk, Russia.
    Krzemien, W.
    Natl Ctr Nucl Res, Warsaw, Poland.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lukin, P. A.
    Budker Inst Nucl Phys, Novosibirsk, Russia;Novosibirsk State Univ, Novosibirsk, Russia.
    Mandaglio, G.
    INFN, Sez Catania, Catania, Italy;Univ Messina, Dipartimento Sci Chim, Biol Farmaceut & Ambientali, Messina, Italy.
    Martini, M.
    INFN, Lab Nazl Frascati, Frascati, Italy;Univ Guglielmo Marconi, Dipartimento Sci & Tecnol Appl, Rome, Italy.
    Messi, R.
    Univ Tor Vergata, Dipartimento Fis, Rome, Italy;INFN, Sez Roma Tor Vergata, Rome, Italy.
    Miscetti, S.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Moricciani, D.
    INFN, Sez Roma Tor Vergata, Rome, Italy.
    Moskal, R.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Passeri, A.
    INFN, Sez Roma Tre, Rome, Italy.
    Patera, V.
    Univ Sapienza, Dipartimento Sci Base & Appl Ingn, Rome, Italy;INFN, Sez Roma, Rome, Italy.
    del Rio, E. Perez
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Raha, N.
    INFN, Sez Roma Tor Vergata, Rome, Italy.
    Santangelo, R.
    INFN, Lab Nazl Frascati, Frascati, Italy.
    Schioppa, M.
    Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy;INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy.
    Selce, A.
    Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy;INFN, Sez Roma Tre, Rome, Italy.
    Silarski, M.
    Jagiellonian Univ, Inst Phys, Krakow, Poland.
    Sirghi, F.
    INFN, Lab Nazl Frascati, Frascati, Italy;Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele, Romania.
    Solodov, E. P.
    Budker Inst Nucl Phys, Novosibirsk, Russia;Novosibirsk State Univ, Novosibirsk, Russia.
    Tortora, L.
    INFN, Sez Roma Tre, Rome, Italy.
    Venanzoni, G.
    INFN, Sez Pisa, Pisa, Italy.
    Wislicki, W.
    Natl Ctr Nucl Res, Warsaw, Poland.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Combined limit on the production of a light gauge boson decaying into mu(+) mu(-) and pi(+) pi(-)2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 784, p. 336-341Article in journal (Refereed)
    Abstract [en]

    We searched for the mu(+) mu(-) decay of a light vector gauge boson, also known as dark photon, in the e(+) e(-) -> mu(+) mu(-) gamma(ISR) process by means of the Initial State Radiation (ISR) method. We used 1.93fb(-1) of data collected by the KLOE experiment at the DA Phi NE phi-factory. No structures have been observed over the irreducible mu(+) mu(-) background. A 90% CL limit on the ratio epsilon(2)= alpha'/alpha between the dark coupling constant and the fine structure constant of 3 x 10(-6)-2 x 10(-7) has been set in the dark photon mass region between 519 MeV and 973 MeV. This new limit has been combined with the published result obtained investigating the hypothesis of the dark photon decaying into hadrons in e(+) e(-) -> pi(+) pi(-) gamma(ISR) events. The combined 90% CL limit increases the sensitivity especially in the rho-omega interference region and excludes epsilon(2) greater than (13 - 2) x 10(-7). For dark photon masses greater than 600 MeV the combined limit is lower than 8 x 10(-7) resulting more stringent than present constraints from other experiments.

  • 302. Anastasi, Antonio
    et al.
    Caldeira Balkeståh, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Cao, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Ikegami Andersson, Walter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Papenbrock, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Measurement of the ϕ→π0e+e− transition form factor with the KLOE detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 757, p. 362-367Article in journal (Refereed)
    Abstract [en]

    A measurement of the vector to pseudoscalar conversion decay ϕ→π0e+e− with the KLOE experiment is presented. A sample of ∼9500 signal events was selected from a data set of 1.7 fb−1 of e+e− collisions at s√∼mϕ collected at the DAΦNE e+e− collider. These events were used to obtain the first measurement of the transition form factor |Fϕπ0(q2)| and a new measurement of the branching ratio of the decay: BR(ϕ→π0e+e−)=(1.35±0.05+0.05−0.10)×10−5. The result improves significantly on previous measurements and is in agreement with theoretical predictions.

  • 303. Arbey, A.
    et al.
    Mahmoudi, F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear and Particle Physics.
    SUSY constraints from relic density: High sensitivity to pre-BBN expansion rate2008In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 669, no 1, p. 46-51Article in journal (Refereed)
    Abstract [en]

    The sensitivity of the lightest supersymmetric particle relic density calculation to the variation of the cosmological expansion rate before nucleosynthesis is discussed. Such a modification of the expansion rate, even extremely modest and with no consequence on the cosmological observations can greatly, enhance the calculated relic density, and therefore change the constraints on the SUSY parameter space drastically. We illustrate this variation in two examples of SUSY models, and show that it is unsafe to use the lower bound of the WMAP limits in order to constrain supersymmetry. We therefore suggest to use only the upper value Omega(DM)h(2) < 0.135. (C) 2008 Elsevier B.V. All rights reserved.

  • 304. Archilli, F.
    et al.
    Babusci, D.
    Badoni, D.
    Balwierz, I.
    Bencivenni, G.
    Bini, C.
    Bloise, C.
    Bocci, V.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Bulychjev, S. A.
    Caldeira Balkeståhl, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Campana, P.
    Capon, G.
    Ceradini, F.
    Ciambrone, P.
    Czerwinski, E.
    Dane, E.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    De Zorzi, G.
    Di Domenico, A.
    Di Donato, C.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Gonnella, F.
    Graziani, E.
    Happacher, F.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Iafolla, L.
    Iarocci, E.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kowalewska, A.
    Kulikov, V.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Loddo, F.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Matsyuk, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Nguyen, F.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Redmer, Christoph F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Sciubba, A.
    Silarski, M.
    Stucci, S.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Versaci, R.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Zdebik, J.
    Search for a vector gauge boson in phi meson decays with the KLOE detector KLOE-2 Collaboration2012In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 706, no 4-5, p. 251-255Article in journal (Refereed)
    Abstract [en]

    The existence of a light dark force mediator has been tested with the KLOE detector at DA Phi NE. This particle, called U. is searched for using the decay chain phi -> eta U, eta -> pi(+)pi(-)pi(0), U -> e(+)e(-). No evidence is found in 1.5 fb(-1) of data. The resulting exclusion plot covers the mass range 5 < M-U < 470 MeV, setting an upper limit on the ratio between the U boson coupling constant and the One structure constant, alpha'/alpha, of <= 2 x 10(-5) at 90% C.L. for 50 < M-U < 420 MeV.

  • 305.
    Arhrib, Abdesslam
    et al.
    Abdelmalek Essaadi University, Morocco.
    Benbrik, Rachid
    Cadi Ayyad University and Faculté Polydisciplinaire de Safi, Morocco.
    Enberg, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Klemm, William
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. School of Physics and Astronomy, University of Manchester, UK.
    Moretti, Stefano
    School of Physics and Astronomy, University of Southampton, UK.
    Munir, Shoaib
    Korea Institute for Advanced Study, Seoul, Korea.
    Identifying a light charged Higgs boson at the LHC Run II2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 774, p. 591-598Article in journal (Refereed)
    Abstract [en]

    We analyse the phenomenological implications of a light Higgs boson, h, within the CP-conserving 2-Higgs Doublet Model (2HDM) Type-I, for the detection prospects of the charged H± state at Run II of the Large Hadron Collider (LHC), assuming s√=13 TeV as energy and O(100 fb−1) as luminosity. When sufficiently light, this h state can open up the bosonic decay channel H±→W±(∗)h, which may have a branching ratio significantly exceeding those of the H±→τν and H±→cs channels. We perform a broad scan of the 2HDM Type-I parameter space, assuming the heavier of the two CP-even Higgs bosons, H, to be the observed SM-like state with a mass near 125 GeV. Through these scans we highlight regions in which mH±<mt+mb that are still consistent with the most recent limits from experimental searches. We find in these regions that, when the H±→W±(∗)h decay mode is the dominant one, the h can be highly fermiophobic, with a considerably large decay rate in the γγ channel. This can result in the total cross section of the σ(pp→H±h→W±(∗)+4γ) process reaching up to O(100 fb). We therefore investigate the possibility of observing this spectacular signal at the LHC Run II.

  • 306.
    Ashoorioon, Amjad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Exit from inflation with a first-order phase transition and a gravitational wave blast2015In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 747, p. 446-453Article in journal (Refereed)
    Abstract [en]

    In double-field inflation, which exploits two scalar fields, one of the fields rolls slowly during inflation whereas the other field is trapped in a meta-stable vacuum. The nucleation rate from the false vacuum to the true one becomes substantial enough that triggers a first order phase transition and ends inflation. We revisit the question of first order phase transition in an "extended" model of hybrid inflation, realizing the double-field inflationary scenario, and correctly identify the parameter space that leads to a first order phase transition at the end of inflation. We compute the gravitational wave profile which is generated during this first order phase transition. Assuming instant reheating, the peak frequency falls in the 1 GHz to 10 GHz frequency band and the amplitude varies in the range 10(-11) less than or similar to Omega(GW)h(2) <= 10(-8), depending on the value of the cosmological constant in the false vacuum. For a narrow band of vacuum energies, the first order phase transition can happen after the end of inflation via the violation of slow-roll, with a peak frequency that varies from 1 THz to 100 THz. For smaller values of cosmological constant, even though inflation can end via slow-roll violation, the universe gets trapped in a false vacuum whose energy drives a second phase of eternal inflation. This range of vacuum energies do not lead to viable inflationary models, unless the value of the cosmological constant is compatible with the observed value, M similar to 10(-3) eV.

  • 307.
    Ashoorioon, Amjad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Danielsson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Sheikh-Jabbari, M. M.
    1/N resolution to inflationary eta-problem2012In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 713, no 4-5, p. 353-357Article in journal (Refereed)
    Abstract [en]

    We observe that the dominant one loop contribution to the graviton propagator in the theory of N (N >> 1) light scalar fields phi(a) (with masses smaller than M-pI/root N) minimally coupled to Einstein gravity is proportional to N while that of graviton-scalar-scalar interaction vertex is N independent. We use this to argue that the coefficient of the R phi(2)(a) term appearing at one loop level is 1/N suppressed. This observation provides a resolution to the quantum eta-problem, that the slow-roll parameter eta receives order one quantum loop corrections for inflationary models built within the framework of scalar fields minimally coupled to Einstein gravity, for models involving large number of fields. As particular examples, we employ this to argue in favor of the absence of eta-problem in multi-field inflationary scenarios of M-flation and N-flation.

  • 308. Babusci, D.
    et al.
    Badoni, D.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bini, C.
    Bloise, C.
    Bocci, V.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Caldeira Balkeståhl, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Capon, G.
    Ceradini, F.
    Ciambrone, P.
    Czerwiński, E.
    Dané, E.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    De Simone, P.
    Di Domenico, A.
    Di Donato, C.
    Di Micco, B.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Gonnella, F.
    Graziani, E.
    Happacher, F.
    Höistad, B.
    Iafolla, L.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Leverington, B.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Nguyen, F.
    Passeri, A.
    Patera, V.
    Prado Longhi, I.
    Ranieri, A.
    Redmer, C. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Versaci, R.
    Wiślicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Xu, G.
    Zdebik, J.
    Measurement of Γ(η→π+π-γ)/Γ(η→π+π-π0) with the KLOE detector2013In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 718, no 3, p. 910-914Article in journal (Refereed)
    Abstract [en]

    The ratio Rη=Γ(η→π+π-γ)/Γ(η→π+π-π0) has been measured by analysing 22 million φ→ηγ decays collected by the KLOE experiment at DAΦNE, corresponding to an integrated luminosity of 558 pb-1. The η→π+π-γ proceeds both via the ρ resonant contribution, and possibly a non-resonant direct term, connected to the box anomaly. Our result, Rη=0.1856±0.0005stat±0.0028syst, points out a sizable contribution of the direct term to the total width. The di-pion invariant mass for the η→π+π-γ decay could be described in a model-independent approach in terms of a single free parameter, α. The determined value of the parameter α is α=(1.32±0.08stat-0.09syst+0.10±0.02theo) GeV-2.

  • 309. Babusci, D.
    et al.
    Badoni, D.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bini, C.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkestahl, Li Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Capon, G.
    Ceradini, F.
    Ciambrone, P.
    Curciarello, F.
    Czerwinski, E.
    Dane, E.
    De Leo, V.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    De Simone, P.
    Di Domenico, A.
    Di Donato, C.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Gonnella, F.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Iafolla, L.
    Iarocci, E.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kluge, W.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Loddo, F.
    Lukin, P.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Mueller, S.
    Nguyen, F.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Redmer, C. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Versaci, R.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Zdebik, J.
    Precision measurement of sigma (e(+)e(-) -> pi(+)pi(-)gamma)/sigma(e(+)e(-) ->mu(+)mu(-)gamma) and determination of the pi(+)pi(-) contribution to the muon anomaly with the KLOE detector2013In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 720, no 4-5, p. 336-343Article in journal (Refereed)
    Abstract [en]

    We have measured the ratio cr (e(+)e(-) -> pi(+)pi(-)gamma)/sigma(e(+)e(-) -> mu(+)mu(-)gamma), with the KLOE detector at DA Phi NE for a total integrated luminosity of similar to 240 pb(-1). From this ratio we obtain the cross section sigma (e(+)e(-) -> pi(+)pi(-)gamma). From the cross section we determine the pion form factor vertical bar F-pi vertical bar(2) and the two-pion contribution to the muon anomaly a(mu) for 0.592< M-pi pi < 0.975 GeV, Delta(pi pi) a(mu) = (385.1 +/- 1.1(stat) +/- 2.7(sys+theo)) x 10(-10). This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly. (c) 2013 Elsevier B.V. All rights reserved.

  • 310. Babusci, D.
    et al.
    Badoni, D.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bini, C.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkestahl, Li Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Capon, G.
    Ceradini, F.
    Ciambrone, R.
    Curciarello, F.
    Czerwiriski, E.
    Dane, E.
    De Leo, V.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    Di Domenico, A.
    Di Donato, C.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Gonnella, F.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Iafolla, L.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kacprzak, K.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Leverington, B.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciahi, D.
    Moskal, P.
    Nguyen, F.
    Passeriu, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Redmer, C. F.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Zdebik, J.
    A new limit on the CP violating decay K-S -> 3 pi(0) with the KLOE experiment2013In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 723, no 1-3, p. 54-60Article in journal (Refereed)
    Abstract [en]

    We have carried out a new direct search for the CP violating decay K-S -> 3 pi(0) with 1.7 fb(-1) of e(+)e(-) collisions collected by the KLOE detector at the Phi-factory DA Phi NE. We have searched for this decay in a sample of about 5.9 x 10(8) KSKL events tagging the K-S by means of the K-L interaction in the calorimeter and requiring six prompt photons. With respect to our previous search, the analysis has been improved by increasing of a factor four the tagged sample and by a more effective background rejection of fake K-S tags and spurious clusters. We find no candidates in data and simulated background samples, while we expect 0.12 standard model events. Normalizing to the number of K-S -> 2 pi(0) events in the same sample, we set the upper limit on BR(K-S -> 3 pi(0)) <= 2.6 x 10(-8) at 90% C.L., five times lower than the previous limit. We also set the upper limit on the eta(000) parameter, vertical bar eta(000)vertical bar <= 0.0088 at 90% C.L., improving by a factor two the latest direct measurement. (c) 2013 Elsevier B.V. All rights reserved.

  • 311. Babusci, D.
    et al.
    Badoni, D.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bini, C.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkeståhl, Li Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Capon, G.
    Ceradini, F.
    Ciambrone, P.
    Czerwinski, E.
    Dane, E.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    Di Domenico, A.
    Di Donato, C.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Gonnella, F.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Iafolla, L.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Leverington, B.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Nguyen, F.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Redmer, C. F.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Zdebik, J.
    Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector2013In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 720, no 1-3, p. 111-115Article in journal (Refereed)
    Abstract [en]

    We present a new limit on the production of a light dark-force mediator with the KLOE detector at DA Phi NE. This boson, called U, has been searched for in the decay phi -> eta U, U -> e(+)e(-), analyzing the. decay eta -> pi(0)pi(0)pi(0) in a data sample of 1.7 fb(-1). No structures are observed in the e(+)e(-) invariant mass distribution over the background. This search is combined with a previous result obtained from the decay eta -> pi(+)pi(-)pi(0), increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of alpha'/alpha < 1.7 x 10(-5) for 30 < M-U < 400 MeV and alpha'/alpha <= 8 x 10(-6) for the sub-region 50 < M-U <210 MeV. This result assumes the Vector Meson Dominance expectations for the phi eta gamma* transition form factor. The dependence of this limit on the transition form factor has also been studied.

  • 312. Babusci, D.
    et al.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkestahl, L. Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Capon, G.
    Ceradini, F.
    Ciambrone, P.
    Curciarello, F.
    Czerwinski, E.
    Dane, E.
    De Leo, V.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    De Simone, P.
    Di Cicco, A.
    Di Domenico, A.
    Di Donato, C.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gajos, A.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Graziani, E.
    Happacher, F.
    Heijkenskjold, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kacprzak, K.
    Kaminska, G. D.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, R.
    Nguyen, F.
    Palladino, A.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Santangelo, R.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Taccini, C.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Zdebik, J.
    Test of CPT and Lorentz symmetry in entangled neutral kaons with the KLOE experiment2014In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 730, p. 89-94Article in journal (Refereed)
    Abstract [en]

    Neutral kaon pairs produced in phi decays in anti-symmetric entangled state can be exploited to search for violation of CPT symmetry and Lorentz invariance. We present an analysis of the CP-violating process phi -> KSKL -> pi(+)pi(-)pi(+)pi(-) based on 1.7 fb(-1) of data collected by the KLOE experiment at the Frascati phi-factory DA Phi NE. The data are used to perform a Measurement of the CPT-violating parameters Delta a(mu) for neutral kaons in the context of the Standard Model Extension framework. The parameters measured in the reference frame of the fixed stars are: Delta a(0) = (-6.0 +/- 7.7(stat)+/- 3.1(syst)) X 10(-18) GeV, Delta a(x) = (0.9 +/- 1.5(stat)+/- 0.6(syst)) X 10(-18) GeV, Delta a(y) = (-2.0 +/- 1.5(stat)+/- 0.5(syst)) X 10(-18) GeV, Delta a(z) = (3.1 +/- 1.7(stat)+/- 0.5(syst)) X 10(-18) GeV. These are presently the most precise measurements in the quark sector of the Standard Model Extension. (C) 2014 The Authors. Published by Elsevier B.V.

  • 313. Babusci, D.
    et al.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkeståhl, L. Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Ceradini, F.
    Ciambrone, P.
    Curciarello, F.
    Czerwinski, E.
    Dane, E.
    De Leo, V.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    De Simone, P.
    Di Cicco, A.
    Di Domenico, A.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gajos, A.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Holstad, B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kacprzak, K.
    Kaminska, D.
    Krzemien, W.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Nguyen, F.
    Palladino, A.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Zdebik, J.
    Search for light vector boson production in e(+)e(-) -> mu(+)mu(-)gamma interactions with the KLOE experiment2014In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 736, p. 459-464Article in journal (Refereed)
    Abstract [en]

    We have searched for a light vector boson U, the possible carrier of a "dark force", with the KLOE detector at the DA Phi NE e(+)e(-) collider, motivated by astrophysical evidence for the presence of dark matter in the Universe. Using e(+)e(-) collisions collected with an integrated luminosity of 239.3 pb(-1), we look for a dimuon mass peak in the reaction e(+)e(-) -> mu(+)mu(-)gamma, corresponding to the decay U -> mu(+)mu(-). We find no evidence for a U vector boson signal. We set a 90% CL upper limit for the mixing parameter squared between the photon and the U boson of 1.6 x 10(-5) to 8.6 x 10(-7) for the mass region 520 < m(U) < 980 MeV.  

  • 314. Babusci, D.
    et al.
    Balwierz-Pytko, I.
    Bencivenni, G.
    Bloise, C.
    Bossi, F.
    Branchini, P.
    Budano, A.
    Balkeståhl, Li Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Ceradini, F.
    Ciambrone, P.
    Curciarello, F.
    Czerwinski, E.
    Dane, E.
    De Leo, V.
    De Luciah, E.
    De Robertis, G.
    De Santis, A.
    De Simone, P.
    Di Cicco, A.
    Di Domenico, A.
    Di Salvo, R.
    Domenici, D.
    Erriqueza, O.
    Fanizzia, G.
    Fantinio, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gajos, A.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kaminska, D.
    Krzemien, W.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Palladino, A.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Study of the Dalitz decay phi -> eta e(+)e(-) with the KLOE detector2015In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 742, p. 1-6Article in journal (Refereed)
    Abstract [en]

    We have studied the vector to pseudoscalar conversion decay phi -> eta e(+)e(-), with.. eta -> pi(0)pi(0)pi(0), with the KLOE detector at DA phi NE. The data set of 1.7 fb(-1) of e(+)e(-) collisions at root s similar to M-phi contains a clear conversion decay signal of similar to 31,000 events from which we measured a value of BR(phi -> eta e(+)e-) = (1.075 +/- 0.007 +/- 0.038) x 10(-4). The same sample is used to determine the transition form factor by a fit to the e(+)e(-) invariant mass spectrum, obtaining b(phi eta)=( 1.28 +/- 0.10(-0.08)(+0.09)) GeV-2, that improves by a factor of five the precision of the previous measurement and is in good agreement with VMD expectations.

  • 315. Babuscih, D.
    et al.
    Balwierz-Pytkog, I.
    Bencivenni, G.
    Bloise, C.
    Bossi, F.
    Branchinir, P.
    Budano, A.
    Balkeståhl, Li Caldeira
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Ceradini, F.
    Ciambrone, P.
    Curciarello, F.
    Czerwinski, E.
    Dane, E.
    De Leo, V.
    De Lucia, E.
    De Robertis, G.
    De Santis, A.
    De Simone, P.
    Di Cicco, A.
    Di Domenico, A.
    Di Salvo, R.
    Domenici, D.
    Erriquez, O.
    Fanizzi, G.
    Fantini, A.
    Felici, G.
    Fiore, S.
    Franzini, P.
    Gajos, A.
    Gauzzi, P.
    Giardina, G.
    Giovannella, S.
    Graziani, E.
    Happacher, F.
    Heijkenskjöld, Lena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kaminska, D.
    Krzemien, W.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Lee-Franzini, J.
    Loddo, F.
    Loffredo, S.
    Mandaglio, G.
    Martemianov, M.
    Martini, M.
    Mascolo, M.
    Messi, R.
    Miscetti, S.
    Morello, G.
    Moricciani, D.
    Moskal, P.
    Palladino, A.
    Passeri, A.
    Patera, V.
    Longhi, I. Prado
    Ranieri, A.
    Santangelo, P.
    Sarra, I.
    Schioppa, M.
    Sciascia, B.
    Silarski, M.
    Tortora, L.
    Venanzoni, G.
    Wislicki, W.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Measurement of the absolute branching ratio of the K+ -> pi(+) pi(-) pi(+) (gamma) decay with the KLOE detector2014In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 738, p. 128-133Article in journal (Refereed)
    Abstract [en]

    The absolute branching ratio of the K+ -> pi(+) pi(-) pi(+) (gamma) decay, inclusive of final-state radiation, has been measured using similar to 17 million tagged K+ mesons collected with the KLOE detector at DA Phi NE, the Frascati phi-factory. The result is: BR(K+ -> pi(+) pi(-) pi(+) (gamma)) = 0.05565 +/- 0.00031(stat) +/- 0.00025(syst) a factor similar or equal to 5 more precise with respect to the previous result. This work completes the program of precision measurements of the dominant kaon branching ratios at KLOE.

  • 316. Bargholtz, Chr.
    et al.
    Bashkanov, M.
    Bogoslawsky, D.
    Calén, Hans
    Uppsala University, The Svedberg Laboratory.
    Cappellaro, F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Clement, H.
    Demiroers, L.
    Ekström, Curt
    Uppsala University, The Svedberg Laboratory.
    Fransson, Kjell E.
    Uppsala University, The Svedberg Laboratory.
    Gerén, L.
    Gustafsson, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Ivanov, G.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Jiganov, E.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Keleta, S. Negasi
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Koch, I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Kullander, Sven O.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Kupsc, Andrzej
    Uppsala University, The Svedberg Laboratory.
    Kuznetsov, A.
    Laukhin, I. V.
    Lindberg, K.
    Marciniewski, Pawel
    Uppsala University, The Svedberg Laboratory.
    Meier, R.
    Morosov, B.
    Oelert, W.
    Pauly, C.
    Pettersson, Hanna I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Petukhov, Y.
    Povtorejko, A.
    Ruber, Roger J. M. Y.
    Uppsala University, The Svedberg Laboratory.
    Schönning, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Scobel, W.
    Shafigullin, R.
    Shwartz, B.
    Skorodko, T.
    Sopov, V.
    Stepaniak, J.
    Tchernyshev, V.
    Tegner, P. -E
    Thörngren-Engblom, P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Tikhomirov, V.
    Turowiecki, A.
    Wagner, G. J.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Yamamoto, A.
    Zabierowski, J.
    Zartova, I.
    Zlomanczuk, Jozef
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Measurement of the eta -> pi(+)pi(-)e(+)e(-) decay branching ratio2007In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 644, no 5-6, p. 299-303Article in journal (Refereed)
    Abstract [en]

    The reaction pd -> He-3 eta at threshold was used to provide a clean source of eta mesons for decay studies with the WASA detector at CELSIUS. The branching ratio of the decay eta -> pi(+)pi(-)e(+)e(-) is measured to be (4.3 +/- 1.3 +/- 0.4) x 10(-4).

  • 317.
    Bashkanov, M.
    et al.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Bogoslawsky, D.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Calén, Hans
    Uppsala University, The Svedberg Laboratory.
    Cappellaro, F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Clement, H.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Demiroers, L.
    Hamburg University, Hamburg, Germany.
    Ekström, Curt
    Uppsala University, The Svedberg Laboratory.
    Fransson, Kjell
    Uppsala University, The Svedberg Laboratory.
    Greiff, J.
    Uppsala University, The Svedberg Laboratory.
    Gustafsson, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Ivanov, G.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Jiganov, E.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Khakimova, O.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Kaskulov, M. M.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Keleta, Samson
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Koch, I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Kren, F.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Kullander, Sven
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, The Svedberg Laboratory.
    Kuznetsov, A.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Marciniewski, Pawel
    Uppsala University, The Svedberg Laboratory.
    Meier, R.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Morosov, B.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Oelert, W.
    Forschungszentrum Jülich, Germany.
    Pauly, C.
    Hamburg University, Hamburg, Germany.
    Petukho, Y.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Povtorejko, A.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Ruber, Roger
    Uppsala University, The Svedberg Laboratory.
    Scobel, W.
    Hamburg University, Hamburg, Germany.
    Skorodko, T.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Shwartz, B.
    Budker Institute of Nuclear Physics, Novosibirsk, Russia.
    Sopov, V.
    Institute of Theoretical and Experimental Physics, Moscow, Russia.
    Stepaniak, J.
    Soltan Institute of Nuclear Studies, Warsaw and Lodz, Poland.
    Tchernyshev, V.
    Institute of Theoretical and Experimental Physics, Moscow, Russia.
    Thorngren-Engblom, Pia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Tikhomirov, V.
    Joint Institute for Nuclear Research, Dubna, Russia.
    Turowiecki, A.
    Institute of Experimental Physics, Warsaw, Poland.
    Wagner, G. J.
    Physikalisches Institut der Universität Tübingen, D-72076 Tübingen, Germany.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Yamamoto, A.
    High Energy Accelerator Research Organization, Tsukuba, Japan.
    Zabierowski, J.
    Soltan Institute of Nuclear Studies, Warsaw and Lodz, Poland.
    Zlomanczuk, Jozef
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, Nuclear Physics.
    Exclusive measurements of pd -> He-3 pi pi: The ABC effect revisited2006In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 637, no 4-5, p. 223-228Article in journal (Refereed)
    Abstract [en]

    Exclusive measurements of the reactions pd -> He-3 pi(+)7 pi(-) and pd -> He-3 pi(0)pi(0) have been carried out at T-p = 0.893 GeV at the CELSIUS storage ring using the WASA detector. The pi(+)pi(-) channel evidences a pronounced enhancement at low invariant pi pi masses-as anticipated from previous inclusive measurements of the ABC effect. This enhancement is seen to be even much larger in the isoscalar pi(0)pi(0) channel. The differential distributions prove this enhancement to be of scalar-isoscalar nature. Delta Delta calculations give a good description of the data, if a boundstate condition is imposed for the intermediate Delta Delta system.

  • 318.
    Baum, Sebastian
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Cantatore, G.
    Hoffmann, D. H. H.
    Karuza, M.
    Semertzidis, Y. K.
    Upadhye, A.
    Zioutas, K.
    Detecting solar chameleons through radiation pressure2014In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 739, p. 167-173Article in journal (Refereed)
    Abstract [en]

    Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and "fifth force" searches on Earth, one needs to screen them. One possibility is the so-called "chameleon" mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earthexploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  • 319. Beisert, Niklas
    et al.
    Freyhult, Lisa
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Fluctuations and energy shifts in the Bethe ansatz.2005In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 622, no 3-4, p. 343-348Article in journal (Refereed)
  • 320. Bonelli, Giulio
    et al.
    Tanzini, Alessandro
    Zabzine, Maxim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Topological branes, p-algebras and generalized Nahm equations2009In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 672, no 4-5, p. 390-395Article in journal (Refereed)
    Abstract [en]

    Inspired by the recent advances in multiple M2-brane theory, we consider the generalizations of Nahm equations for arbitrary p-algebras. We construct the topological p-algebra quantum mechanics associated to them and we show that this can be obtained as a truncation of the topological p-brane theory previously studied by the authors. The resulting topological p-algebra quantum mechanics is discussed in detail and the relation with the M2-M5 system is pointed out in the p = 3 case, providing a geometrical argument for the emergence of the 3-algebra structure in the Bagger-Lambert-Gustavsson theory.

  • 321.
    Cacciapaglia, Giacomo
    et al.
    Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPNL, F-69622 Villeurbanne, France.
    Carvalho, Alexandra
    Akad Tee, NICPB, Tallinn, Estonia.
    Deandrea, Aldo
    Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPNL, F-69622 Villeurbanne, France.
    Flacke, Thomas
    Inst for Basic Sci Korea, Ctr Theoret Phys Universe, Daejeon 34126, South Korea.
    Fuks, Benjamin
    Sorbonne Univ, UMR 7589, LPTHE, 4 Pl Jussieu, F-75252 Paris 05, France;CNRS, 4 Pl Jussieu, F-75252 Paris 05, France;Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France.
    Majumder, Devdatta
    Univ Kansas, Lawrence, KS 66045 USA.
    Panizzi, Luca
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Univ Southampton, Sch Phys & Astron, Highfield, Southampton SO17 1BJ, Hants, England.
    Shao, Hua-Sheng
    Sorbonne Univ, UMR 7589, LPTHE, 4 Pl Jussieu, F-75252 Paris 05, France;CNRS, 4 Pl Jussieu, F-75252 Paris 05, France.
    Next-to-leading-order predictions for single vector-like quark production at the LHC2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 793, p. 206-211Article in journal (Refereed)
    Abstract [en]

    We propose simulation strategies for single production of third generation vector-like quarks at the LHC, implementing next-to-leading-order corrections in QCD and studying in detail their effect on cross sections and differential distributions. We also investigate the differences and the relative incertitudes induced by the use of the Four-Flavour Number Scheme versusthe Five-Flavour Number Scheme. As a phenomenological illustration, we concentrate on the production of vector-like quarks coupling to the third generation of the Standard Model in association with a jet and assuming standard couplings to gauge and Higgs bosons. 

  • 322.
    Davies, P. J.
    et al.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Grawe, H.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany..
    Moschner, K.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany.;RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Blazhev, A.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Wadsworth, R.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Boutachkov, P.
    Tech Univ Darmstadt, IKP, D-64289 Darmstadt, Germany..
    Ameil, F.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany..
    Yagi, A.
    Osaka Univ, Nucl Phys Res Ctr, Ibaraki, Osaka 5670047, Japan..
    Baba, H.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Back, T.
    Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden..
    Dewald, M.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Doornenbal, P.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan.;Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany..
    Faestermann, T.
    Gengelbach, Aila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Gerl, J.
    Gernhaeeuserk, R.
    Go, S.
    Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan..
    Gorska, M.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany..
    Gregor, E.
    Tech Univ Darmstadt, IKP, D-64289 Darmstadt, Germany..
    Isobe, T.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Jenkins, D. G.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Hotaka, H.
    Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan..
    Jolie, J.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Kojouharov, I.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany..
    Kurz, N.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany..
    Lewitowicz, M.
    CNRS, IN2P3, CEA, GANIL,DSM, F-14076 Caen 5, France..
    Lorusso, G.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Maier, L.
    Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany..
    Merchan, E.
    Tech Univ Darmstadt, IKP, D-64289 Darmstadt, Germany..
    Naqvi, F.
    Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06511 USA..
    Nishibata, H.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.;Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan..
    Nishimura, D.
    Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan..
    Nishimura, S.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Nowacki, F.
    CNRS, IN2p3, IPHC, F-67037 Strasbourg, France.;Univ Strasbourg, F-67037 Strasbourg, France..
    Pietralla, N.
    Tech Univ Darmstadt, IKP, D-64289 Darmstadt, Germany..
    Schaffne, H.
    Soderstrom, P-A
    Jung, H. S.
    Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan..
    Steiger, K.
    Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany..
    Sumikama, T.
    Tohoku Univ, Dept Phys, Aoba Ku, 6-3 Aramaki Aoba, Sendai, Miyagi 9808578, Japan..
    Taprogge, J.
    CSIC, Inst Estruct Mat, E-28006 Madrid, Spain..
    Thoele, P.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Warr, N.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Watanabe, H.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Werner, V.
    Tech Univ Darmstadt, IKP, D-64289 Darmstadt, Germany.;Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06511 USA..
    Xu, Z. Y.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Yoshinaga, K.
    RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan..
    Zhu, Y.
    Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan..
    The role of core excitations in the structure and decay of the 16(+) spin-gap isomer in Cd-962017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 767, p. 474-479Article in journal (Refereed)
    Abstract [en]

    The first evidence for beta-delayed proton emission from the 16(+) spin gap isomer in Cd-96 is presented. The data were obtained from the Rare Isotope Beam Factory, at the RIKEN Nishina Center, using the BigRIPS spectrometer and the EURICA decay station. beta p branching ratios for the ground state and 16(+) isomer have been extracted along with more precise lifetimes for these states and the lifetime for the ground state decay of Cd-95. Large scale shell model (LSSM) calculations have been performed and WKB estimates made for l = 0, 2, 4 proton emission from three resonance-like states in Ag-96, that are populated by the beta decay of the isomer, and the results compared to the new data. The calculations suggest that l = 2 proton emission from the resonance states, which reside similar to 5 MeV above the proton separation energy, dominates the proton decay. The results highlight the importance of core-excited wavefunction components for the 16(+) state.

  • 323. de, Angelis G
    et al.
    Fahlander, C
    Gadea, A
    Farnea, E
    Bazzacco, D
    Belcari, N
    Blasi, N
    Bizzeti, PG
    Bizzeti-Sona, A
    de, Acuna D
    De, Poli M
    Grawe, H
    Johnson, A
    Lo, Bianco G
    Lunardi, S
    Napoli, DR
    Nyberg, J
    Uppsala University, The Svedberg Laboratory.
    Pavan, P
    Persson, J
    Uppsala University, The Svedberg Laboratory.
    Alvarez, CR
    Rudolph, D
    Schubart, R
    Spolaore, P.
    Wyss, R.
    Xu, F.
    Rotation induced octupole correlations in the neutron-deficient Te-109 nucleus1998In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 437, no 3-4, p. 236-242Article in journal (Refereed)
    Abstract [en]

    High spin states in the neutron deficient nucleus 109Te have been populated with the 58Ni+54Fe reaction at 220 MeV and investigated through γ-spectroscopy methods at the GASP spectrometer making use of reaction channel selection with the ISIS Si-ball. The level scheme has been extended up to an excitation energy of ≈12.1 MeV. The spins and parities of the observed levels are assigned tentatively supporting the identification of two bands of opposite parity connected by strong dipole transitions inferred to be of E1 character. Octupole correlations in 109Te induced by rotation are suggested as the cause of this effect.

  • 324.
    Enberg, Rikard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Ingelman, Gunnar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Motyka, Leszek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Hard colour singlet exchange and gaps between jets at the Tevatron2002In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 524, no 3-4, p. 273-282Article in journal (Refereed)
    Abstract [en]

    The new kind of events with a rapidity gap between two high-ET jets, observed in high energy  collisions at the Tevatron, is found to be well described by the exchange of a colour singlet gluon system in the BFKL framework. This requires going beyond the conventional asymptotic Mueller–Tang approximation, which results in qualitatively different features of the basic parton–parton scattering amplitude. Non-leading corrections to the BFKL equation are included by incorporation of the consistency constraint and the running QCD coupling. Hadronisation and other non-perturbative QCD effects are treated through a complete Monte Carlo simulation, providing a gap survival probability that varies event-by-event, facilitating comparison with experimental results.

  • 325.
    Enberg, Rikard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Klemm, William
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. School of Physics and Astronomy, University of Manchester, UK.
    Moretti, Stefano
    School of Physics and Astronomy, University of Southampton, UK.
    Munir, Shoaib
    Korea Institute for Advanced Study, Seoul, Korea.
    Electroweak production of light scalar-pseudoscalar pairs from extended Higgs sectors2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 764, p. 121-125Article in journal (Refereed)
    Abstract [en]

    In models with extended Higgs sectors, it is possible that the Higgs boson discovered at the LHC is not the lightest one. We show that in a realistic model (the Type I 2-Higgs Doublet Model), when the sum of the masses of a light scalar and a pseudoscalar (h and A) is smaller than the Z boson mass, the Electroweak (EW) production of an hA pair, which is generally neglected, can dominate over QCD production by orders of magnitude. This is because in the gg-initiated process, hA production via a resonant Z in the s-channel is prohibited according to the Landau-Yang theorem, which is not the case for the qq-initiated process. We explore the parameter space of the model to highlight regions giving such hA solutions while being consistent with all constraints from collider searches, b-physics and EW precision data. We also single out a few benchmark points to discuss their salient features, including the hA search channels that can be exploited at Run II of the LHC.

  • 326. Evans, Jason L.
    et al.
    Feldstein, Brian
    Klemm, William
    Murayama, Hitoshi
    Yanagida, Tsutomu T.
    Hermitian Flavor Violation2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 703, no 5, p. 599-605Article in journal (Refereed)
    Abstract [en]

    The fundamental constraint on two Higgs doublet models comes from the requirement of sufficiently suppressing flavor-changing neutral currents. There are various standard approaches for dealing with this problem, but they all tend to share a common feature; all of the Higgs doublets couple very weakly to the first generation quarks. Here we consider a simple two Higgs doublet model which is able to have large couplings to the first generation, while also being safe from flavor constraints. We assume only that there is an SUf(3)SU(3)f flavor symmetry which is respected by the couplings of one of the Higgs doublets, and which is broken by Hermitian Yukawa couplings of the second doublet. As a result of the large permitted couplings to the first generation quarks, this scenario may be used to address the excess in W+dijetW+dijet events recently observed by CDF at the Tevatron. Moreover, Hermitian Yukawa coupling matrices arise naturally in a broad class of solutions to the strong CP problem, providing a compelling context for the model.

  • 327. Fjelstad, Jens
    et al.
    Hwang, Stephen
    Equivalence of Chern-Simons gauge theory and WZNW model using a BRST symmetry1999In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, ., Vol. 466, p. 227-233Article in journal (Refereed)
    Abstract [en]

    The equivalence between the Chern-Simons gauge theory on a three-dimensional manifold with boundary and the WZNW model on the boundary is established in a simple and general way using the BRST symmetry. Our approach is based on restoring gauge invariance of the Chern-Simons theory in the presence of a boundary. This gives a correspondence to the WZNW model that does not require solving any constraints, fixing the gauge or specifying boundary conditions.

  • 328.
    Freyhult, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics.
    Kristjansen, Charlotte
    A Universality test of the quantum string Bethe ansatz.2006In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 638, no 2-3, p. 258-264Article in journal (Refereed)
  • 329.
    Freyhult, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Theoretical Physics.
    Niemi, Antti J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Theoretical Physics.
    Chirality and fermion number in a knotted soliton background2003In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 557, no 1-2, p. 121-124Article in journal (Refereed)
    Abstract [en]

    We consider the coupling of a single Dirac fermion to the three component unit vector field which appears as an order parameter in the Faddeev model. Classically, the coupling is determined by requiring that it preserves a certain local frame independence. But quantum mechanically the separate left- and right-chiral fermion number currents suffer from a frame anomaly. We employ this anomaly to compute the fermion number of a knotted soliton. The result coincides with the self-linking number of the soliton. In particular, the anomaly structure of the fermions relates directly to the inherent chiral properties of the soliton. Our result suggests that interactions between fermions and knotted solitons can lead to phenomena akin the Callan–Rubakov effect.

  • 330.
    Fäldt, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Kupsc, Andrzej
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Hadronic structure functions in the e(+) e(-) -> (Lambda)over-bar Lambda reaction2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 772, p. 16-20Article in journal (Refereed)
    Abstract [en]

    Cross-section distributions are calculated for the reaction e(+)e(-) -> J/psi -> (Lambda) over bar(-> (p) over bar pi(+)) Lambda(-> p pi(-)), and related annihilation reactions mediated by vector mesons. The hyperon-decay distributions depend on a number of structure functions that are bilinear in the, possibly complex, psionic form factors G(M)(psi) and G(E)(psi) of the Lambda hyperon. The relative size and relative phase of these form factors can be uniquely determined from the unpolarized joint-decay distributions of the Lambda and anti-Lambda hyperons. Also the decay-asymmetry parameters of Lambda and anti-Lambda hyperons can be determined.

  • 331.
    Fäldt, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Wilkin, C.
    UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
    Comparison of the pp → π+pn and pp → π+d production rates2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 770, p. 146-148Article in journal (Refereed)
    Abstract [en]

    Fully constrained bubble chamber data on the pp -> pi(+)pn and pp -> pi(+)d reactions are used to investigate the ratio of the counting rates for the two processes at low pn excitation energies. Whereas the ratio is in tolerable agreement with that found in a high resolution spectrometer experiment, the angular distribution in the final pn rest frame shows that the deviation from the predictions of final state interaction theory must originate primarily from higher partial waves in the pn system. These considerations might also be significant for the determination of the S -wave Ap scattering length from data on the pp -> K+Lambda p reaction.

  • 332.
    Fäldt, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Wilkin, C.
    Estimation of the ratio of the pn -> pn pi(0)pi(0)/pn -> d pi(0)pi(0) cross sections2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 701, no 5, p. 619-622Article in journal (Refereed)
    Abstract [en]

    Evidence has recently been presented for the existence of a dibaryon of mass 2380 MeV/c(2) and width 70 MeV/c(2), which decays strongly into the d pi(0)pi(0) channel [M. Bashkanov, et al., Phys. Rev. Lett. 102 (2009) 052301; P. Adlarson, et al., arXiv:1104.0123]. The decay rate of such a hypothesised dibaryon into the {pn}i=0 pi(0)pi(0) channel is estimated in a weakly model-dependent way by using final state interaction theory. It is shown that, if the resonance exists, it should show up as strongly in this channel as in d pi(0)pi(0). The sum of the two decay modes would saturate most of the inelasticity predicted in the relevant partial waves in the 2380 MeV/c(2) region.

  • 333. Guchait, M.
    et al.
    Mahmoudi, F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Sridhar, K.
    Associated production of a Kaluza-Klein excitation of a gluon with a t(t)over-bar pair at the LHC2008In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 666, no 4, p. 347-351Article in journal (Refereed)
    Abstract [en]

    In certain model-realizations of the Randall-Sundrum scenario, the Kaluza-Klein (KK) excitations of the gluon, g(KK) have enhanced couplings to right-handed top quarks. In the absence of a ggg(KK) coupling in these models, the single production of a g(KK) from an initial gg state is not possible. The search for other production mechanisms at the LHC. therefore, becomes important. We suggest that the associated production of a g(KK) with a t (t) over bar pair is such a mechanism. Our parton-level study, which neglects detection efficiencies, shows that through this process the LHC can probe KK gluon masses in the range of 2.8-3.0 TeV.

  • 334. Hilger, T.
    et al.
    Thomas, R.
    Kaempfer, B.
    Leupold, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    The impact of chirally odd condensates on the rho meson2012In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 709, no 3, p. 200-206Article in journal (Refereed)
    Abstract [en]

    Based on QCD sum rules we explore the consequences of a scenario for the rho meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. This clean-cut scenario causes a lowering of the rho spectral moment by about 120 MeV. The complementarity of mass shift and broadening is discussed. A simple parametrization of the rho spectral function leads to a width of about 280 MeV if no shift of the peak position is assumed.

  • 335.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Measurement of σ(e+eπ+π) from threshold to 0.85 GeV2 using initial state radiation with the KLOE detector2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 700, no 2, p. 102-110Article in journal (Refereed)
  • 336.
    Jackura, A.
    et al.
    Indiana Univ, Phys Dept, Bloomington, IN 47405 USA;Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA.
    Fernandez-Ramirez, C.
    Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
    Mikhasenko, M.
    Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany;Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
    Pilloni, A.
    Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA.
    Mathieu, V.
    Indiana Univ, Phys Dept, Bloomington, IN 47405 USA;Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA.
    Nys, J.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
    Pauk, V.
    Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA.
    Szczepaniak, A. P.
    Indiana Univ, Phys Dept, Bloomington, IN 47405 USA;Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA;Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA.
    Fox, G.
    Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA.
    Aghasyan, M.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Akhunzyanov, R.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Alexeev, M. G.
    Univ Turin, Dept Phys, I-10125 Turin, Italy.
    Alexeev, G. D.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Amoroso, A.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Andrieux, V.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France;Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Anfimov, N. V.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Anosov, V.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Antoshkin, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Augsten, K.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia;Czech Tech Univ, Prague 16636, Czech Republic.
    Augustyniak, W.
    Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
    Austregesilo, A.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Azevedo, C. D. R.
    Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal.
    Badelek, B.
    Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland.
    Balestra, F.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Ball, M.
    Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
    Barth, J.
    Univ Bonn, Phys Inst, D-53115 Bonn, Germany. AS CR, Inst Sci Instruments, Brno 61264, Czech Republic.
    Beck, R.
    Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
    Bedfer, Y.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Bernhard, J.
    CERN, CH-1211 Geneva 23, Switzerland;Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Bicker, K.
    CERN, CH-1211 Geneva 23, Switzerland;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Bielert, E. R.
    CERN, CH-1211 Geneva 23, Switzerland.
    Birsa, R.
    Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
    Bodlak, M.
    Charles Univ Prague, Fac Math & Phys, Prague 18000, Czech Republic.
    Bordalo, P.
    LIP, P-1000149 Lisbon, Portugal;Univ Lisbon, Inst Super Tecn, Lisbon, Portugal.
    Bradamante, F.
    Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel;Univ Trieste, Dept Phys, I-34127 Trieste, Italy.
    Bressan, A.
    Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel;Univ Trieste, Dept Phys, I-34127 Trieste, Italy.
    Buechele, M.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Burtsev, V. E.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Chang, W. -C
    Chatterjee, C.
    Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India.
    Chiosso, M.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Choi, I.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Chumakov, A. G.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Chung, S. -U
    Cicuttin, A.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy;Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy.
    Crespo, M. L.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy;Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy.
    DallaTorre, S.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Dasgupta, S. S.
    Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India.
    Dasgupta, S.
    Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Denisov, O. Yu.
    Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Dhara, L.
    Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India.
    Donskov, S. V.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Doshita, N.
    Yamagata Univ, Yamagata 9928510, Japan.
    Dreisbach, Ch.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Duennweber, W.
    Dusaev, R. R.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Dziewiecki, M.
    Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
    Efremov, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Franco, C.
    LIP, P-1000149 Lisbon, Portugal.
    von Hohenesche, N. Du Fresne
    CERN, CH-1211 Geneva 23, Switzerland;Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Friedrich, J. M.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Frolov, V.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia;CERN, CH-1211 Geneva 23, Switzerland.
    Fuchey, E.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Gautheron, F.
    Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
    Gavrichtchouk, O. P.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Gerassimov, S.
    Lebedev Phys Inst, Moscow 119991, Russia;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Giarra, J.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Giordano, F.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Gnesi, I.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Gorzellik, M.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Grasso, A.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    GrossePerdekamp, M.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Grube, B.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Grussenmeyer, T.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Guskov, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Hahne, D.
    Univ Bonn, Phys Inst, D-53115 Bonn, Germany. AS CR, Inst Sci Instruments, Brno 61264, Czech Republic.
    Hamar, G.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    von Harrach, D.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Heinsius, F. H.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Heitz, R.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Herrmann, F.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Horikawa, N.
    Nagoya Univ, Nagoya, Aichi 464, Japan;Chubu Univ, Kasugai, Aichi 4878501, Japan.
    d'Hose, N.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Hsieh, C. -Y
    Huber, S.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Ishimoto, S.
    Yamagata Univ, Yamagata 9928510, Japan;KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan.
    Ivanov, A.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Ivanshin, Yu.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Iwata, T.
    Yamagata Univ, Yamagata 9928510, Japan.
    Jary, V.
    Czech Tech Univ, Prague 16636, Czech Republic.
    Joosten, R.
    Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
    Joerg, P.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Kabuss, E.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Kerbizi, A.
    Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Ketzer, B.
    Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
    Khaustov, G. V.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Khokhlov, Yu. A.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia;Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia.
    Kisselev, Yu.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Klein, F.
    Univ Bonn, Phys Inst, D-53115 Bonn, Germany. AS CR, Inst Sci Instruments, Brno 61264, Czech Republic.
    Koivuniemi, J. H.
    Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany;Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Kolosov, V. N.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Kondo, K.
    Yamagata Univ, Yamagata 9928510, Japan.
    Koenigsmann, K.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Konorov, I.
    Lebedev Phys Inst, Moscow 119991, Russia;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Konstantinov, V. F.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Kotzinian, A. M.
    Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy;Yerevan Phys Inst, Yerevan 0036, Armenia.
    Kouznetsov, O. M.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Karl, Z.
    Czech Tech Univ, Prague 16636, Czech Republic.
    Kraemer, M.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Kremser, R.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Krinner, F.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Kroumchtein, Z. V.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Kulinich, Y.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Kunne, F.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Kurek, K.
    Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
    Kurjata, R. P.
    Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
    Kuznetsov, I. I.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Kveton, A.
    Czech Tech Univ, Prague 16636, Czech Republic.
    Lednev, A. A.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Levchenko, E. A.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Levillain, M.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Levorato, S.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Lian, Y. -S
    Lichtenstadt, J. J.
    Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
    Longo, R.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Lyubovitskij, V. E.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Maggiora, A.
    Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Magnon, A.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Makins, N.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Makke, N.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy;Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy.
    Mallot, G. K.
    CERN, CH-1211 Geneva 23, Switzerland.
    Mamon, S. A.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Marianski, B.
    Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
    Martin, A.
    Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Marzec, J.
    Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
    Matousek, J.
    Charles Univ Prague, Fac Math & Phys, Prague 18000, Czech Republic;Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Matsuda, H.
    Yamagata Univ, Yamagata 9928510, Japan.
    Matsuda, T.
    Univ Miyazaki, Miyazaki 8892192, Japan.
    Meshcheryakov, G. V.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Meyer, M.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France;Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Meyer, W.
    Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
    Mikhailov, Yu. V.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Mitrofanov, E.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Miyachi, Y.
    Yamagata Univ, Yamagata 9928510, Japan.
    Nagaytsev, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Nerling, F.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Neyret, D.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Novy, J.
    CERN, CH-1211 Geneva 23, Switzerland;Czech Tech Univ, Prague 16636, Czech Republic.
    Nowak, W. -D
    Nukazuka, G.
    Yamagata Univ, Yamagata 9928510, Japan.
    Nunes, A. S.
    LIP, P-1000149 Lisbon, Portugal.
    Olshevsky, A. G.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Orlov, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Ostrick, M.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Panzieri, D.
    Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy;Univ Piemonte Orientale, I-15100 Alessandria, Italy.
    Parsamyan, B.
    Univ Turin, Dept Phys, I-10125 Turin, Italy;Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Paul, S.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Peng, J. -C
    Pereira, F.
    Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal.
    Pesek, M.
    Charles Univ Prague, Fac Math & Phys, Prague 18000, Czech Republic.
    Pesekova, M.
    Charles Univ Prague, Fac Math & Phys, Prague 18000, Czech Republic.
    Peshekhonov, D. V.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Pierre, N.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany;Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Platchkov, S.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Pochodzalla, J.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Polyakov, V. A.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Pretz, J.
    Univ Bonn, Phys Inst, D-53115 Bonn, Germany. AS CR, Inst Sci Instruments, Brno 61264, Czech Republic;RWTH Aachen Univ III, Phys Inst, D-52056 Aachen, Germany.
    Quaresma, M.
    LIP, P-1000149 Lisbon, Portugal.
    Quintans, C.
    LIP, P-1000149 Lisbon, Portugal.
    Ramos, S.
    LIP, P-1000149 Lisbon, Portugal;Univ Lisbon, Inst Super Tecn, Lisbon, Portugal.
    Regali, C.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Reicherz, G.
    Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
    Riedl, C.
    Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
    Rogacheva, N. S.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Ryabchikov, D. I.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany;Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Rybnikov, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Rychter, A.
    Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
    Salac, R.
    Czech Tech Univ, Prague 16636, Czech Republic.
    Samoylenko, V. D.
    Kurchatov Inst, Natl Res Ctr, Inst High Energy Phys, State Sci Ctr Inst, Protvino 142281, Russia.
    Sandacz, A.
    Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
    Santos, C.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Sarkar, S.
    Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India.
    Savin, I. A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Sawada, T.
    Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
    Sbrizzai, G.
    Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Schiavon, R.
    Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Schlueter, T.
    LP Res Inc, Tokyo, Japan.
    Schmidt, K.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Schmieden, H.
    Univ Bonn, Phys Inst, D-53115 Bonn, Germany. AS CR, Inst Sci Instruments, Brno 61264, Czech Republic.
    Schönning, Karin
    CERN, CH-1211 Geneva 23, Switzerland.
    Seder, E.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Selyunin, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Silva, L.
    LIP, P-1000149 Lisbon, Portugal.
    Sinha, L.
    Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India.
    Sirtl, S.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Slunecka, M.
    Smolik, J.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Srnka, A.
    Steffen, D.
    CERN, CH-1211 Geneva 23, Switzerland;Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Stolarski, M.
    LIP, P-1000149 Lisbon, Portugal.
    Subrt, .
    CERN, CH-1211 Geneva 23, Switzerland;Czech Tech Univ, Prague 16636, Czech Republic.
    Sulc, M.
    Tech Univ Liberec, Liberec 46117, Czech Republic.
    Suzuki, H.
    Yamagata Univ, Yamagata 9928510, Japan;Chubu Univ, Kasugai, Aichi 4878501, Japan.
    Szabelski, A.
    Univ Trieste, Dept Phys, I-34127 Trieste, Italy;Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy;Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
    Szameitat, T.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Sznajder, R.
    Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
    Tasevsky, M.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Tessaro, S.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Tessarotto, F.
    Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
    Thiel, A.
    Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
    Tomsa, J.
    Charles Univ Prague, Fac Math & Phys, Prague 18000, Czech Republic.
    Tosello, F.
    Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy.
    Tskhay, V.
    Lebedev Phys Inst, Moscow 119991, Russia.
    Uhl, S.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Vasilishin, B. I.
    Tomsk Polytech Univ, Tomsk 634050, Russia.
    Vauth, A.
    CERN, CH-1211 Geneva 23, Switzerland.
    Veloso, J.
    Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal.
    Vidon, A.
    Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France.
    Virius, M.
    Czech Tech Univ, Prague 16636, Czech Republic.
    Wallner, S.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany.
    Weisrock, T.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    Wilfert, M.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
    ter Wolbeek, J.
    Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany.
    Zaremba, K.
    Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
    Zavada, R.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Zavertyaev, M.
    Lebedev Phys Inst, Moscow 119991, Russia.
    Zemlyanichkina, E.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Zhuravlev, N.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
    Ziembicki, M.
    Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
    New analysis of eta pi tensor resonances measured at the COMPASS experiment2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 779, p. 464-472Article in journal (Refereed)
    Abstract [en]

    We present a new amplitude analysis of the eta pi D-wave in the reaction pi(-) p -> eta pi(-) p measured by COMPASS. Employing an analytical model based on the principles of the relativistic S-matrix, we find two resonances that can be identified with the a(2)(1320) and the excited a(2)(1700), and perform a comprehensive analysis of their pole positions. For the mass and width of the a(2) we find M = (1307 +/- 1 6) MeV and Gamma=(112 +/- 1 +/- 8) MeV, and for the excited state a(2)' we obtain M = (1720 +/- 10 +/- 60) MeV and Gamma = (280 +/- 10 +/- 70) MeV, respectively.

  • 337. Jakobsson, Bo
    et al.
    Golubev, Pavel
    Jäderström, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Avdeichikov, Vladimir
    Carlén, Lars
    Westerberg, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Probing the liquid–gas coexistence in p+Xe reactions from 200 to 1400 MeV2007In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 644, no 4, p. 228-231Article in journal (Refereed)
    Abstract [en]

    The nuclear equation of state (EOS) is probed from statistical parameters, determined in an excitation function experiment on p + Xe-nat reactions at 200-1400 MeV. Total charge (Z) distributions follow a cascade-[multi]fragmentation-evaporation (CFEM) model well. The caloric curve in regions supposedly dominated by fast processes is compatible with a pure statistical multifragmentation (SMM) process, where the temperature (T)-excitation energy (epsilon*) relation starts in the Fermi liquid phase and progresses into a liquid/gas coexistence region, where it remains up to 1400 MeV. A local peak in T at epsilon* = 2.1 MeV agrees with the idea of sudden fragmentation.

     

  • 338.
    Johansson, Arne
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Wilkin, Colin
    UCL, London, Physics and Astronomy Department.
    Hard bremsstrahlung in the pp→ppγ reaction2009In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 673, no 1, p. 5-8Article in journal (Refereed)
    Abstract [en]

    The pp→ppγ reaction has been measured at a beam energy of 310 MeV by detecting both final protons in the PROMICE-WASA facility and identifying a missing-mass peak. For those events where the pp excitation is less than 3 MeV, the final diproton is almost purely in the 1S0 state and, under these conditions, there is complete coverage in the photon c.m. angle θγ. The linear behaviour observed in cos2θγ shows that there is almost no influence of an E2 multipole at this energy, though E1 and M2 must be rather similar in size.

  • 339. Kanungo, R.
    et al.
    Nociforo, C.
    Prochazka, A.
    Utsuno, Y.
    Aumann, T.
    Boutin, D.
    Cortina-Gil, D.
    Davids, B.
    Diakaki, M.
    Farinon, F.
    Geissel, H.
    Gernhäuser, R.
    Gerl, J.
    Janik, R.
    Jonson, B.
    Kindler, B.
    Knöbel, R.
    Krücken, R.
    Lantz, Mattias
    Chalmers University of Technology.
    Lenske, H.
    Litvinov, Y.
    Mahata, K.
    Maierbeck, P.
    Musumarra, A.
    Nilsson, T.
    Otsuka, T.
    Perro, C.
    Scheidenberger, C.
    Sitar, B.
    Strmen, P.
    Sun, B.
    Szarka, I.
    Tanihata, I.
    Weick, H.
    Winkler, M.
    Structure of 33Mg sheds new light on the island of inversion2010In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 685, no 4-€“5, p. 253-257Article in journal (Refereed)
    Abstract [en]

    The first reaction spectroscopy on the ground state structure of 33Mg through the measurement ofthe longitudinal momentum distribution from the one-neutron removal reaction using a C target at 898 A MeV is reported. The experiment was performed at the FRS, GSI. The distribution has a relativelynarrow width (150 ± 3 MeV/c (FWHM)) and the one-neutron removal cross-section is 74 ± 4 mb. An in-creased contribution from the 2p3/2 orbital is required to explain the observation showing its loweringcompared to existing model predictions. This provides new information regarding the configuration of 33Mg and the island of inversion.

  • 340. Khandramai, V. L.
    et al.
    Pasechnik, Roman S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Shirkov, D. V.
    Solovtsova, O. P.
    Teryaev, O. V.
    Four-loop QCD analysis of the Bjorken sum rule2012In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 706, no 4-5, p. 340-344Article in journal (Refereed)
    Abstract [en]

    We study the polarized Bjorken sum rule (BSR) at low momentum transfers in the range 0.22 < Q < 1.73 GeV with the four-loop (NLO)-L-3 expression for the coefficient function C-Bj(alpha(s)) in the framework of the common QCD perturbation theory (PT) and the singularity-free analytic perturbation theory (APT). The analysis of the PT series for C-Bj(alpha(s)) gives a hint to its asymptotic nature manifesting itself in the region Q < 1 GeV. It relates to the observation that the accuracy of both the three- and four-loop PT predictions happens to be at the same 10% level. On the other hand, the usage of the two-loop APT allows one to describe the precise low energy JLab data down to Q similar to 300 MeV and gives a possibility for reliable extraction of the higher twist (HT) corrections. At the same time, above Q similar to 700 MeV the APT two-loop order with HT is equivalent to the four-loop PT with HT compatible to zero and is adequate to current accuracy of the data.

  • 341. Kren, F.
    et al.
    Bashkanov, M.
    Bogoslawsky, D.
    Calén, Hans
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Clement, H.
    Demiroers, L.
    Ekström, Curt
    Uppsala University, The Svedberg Laboratory.
    Fransson, K.
    Uppsala University, The Svedberg Laboratory.
    Greiff, J.
    Uppsala University, The Svedberg Laboratory.
    Gustafsson, L.
    Uppsala University, Disciplinary Domain of Science and Technology, Faculty of Science and Technology.
    Höistad, Bo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Ivanov, G.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Jiganov, E.
    Johansson, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Khakimova, O.
    Keleta, S.
    Uppsala University.
    Koch, I.
    Uppsala University.
    Kullander, Sven
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Kupsc, Andrzej
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Marciniewski, Pawel
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Meier, R.
    Morosov, B.
    Pauly, C.
    Petrén, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Petukhov, Y.
    Povtorejko, A.
    Ruber, R. J. M. Y.
    Uppsala University, The Svedberg Laboratory.
    Schönning, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Scobel, W.
    Skorodko, T.
    Shwartz, B.
    Stepaniak, J.
    Thörngren-Engblom, P.
    Uppsala University.
    Tikhomirov, V.
    Wagner, G. J.
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Yamamoto, A.
    Zabierowski, J.
    Zlomanczuk, Jozef
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Exclusive measurements of pp -> d pi(+)pi(0): Double-pionic fusion without ABC effect2010In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 684, no 2-3, p. 110-113Article in journal (Refereed)
    Abstract [en]

    Exclusive measurements of the reaction pp -> d pi(+)pi(0) have been carried out at T-p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi(+)pi(0) channel exhibits no enhancement at low invariant pi pi masses, i.e. no ABC effect. Therefore this most basic isovector double-pionic fusion reaction qualifies as an ideal test case for the conventional t-channel Delta Delta excitation process. Indeed, the obtained differential distributions reveal the conventional t-channel Delta Delta mechanism as the appropriate reaction process, which also accounts for the observed energy dependence of the total cross section.

  • 342. Lebiedowicz, P.
    et al.
    Pasechnik, Roman
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Szczurek, A.
    Measurement of exclusive production of scalar chi(c0) meson in proton-(anti)proton collisions via chi(c0) -> pi(+)pi(-) decay2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 701, no 4, p. 434-444Article in journal (Refereed)
    Abstract [en]

    We consider a measurement of exclusive production of scalar chi(c)(0(++)) meson in the proton-proton collisions at LHC and RHIC and in the proton-antiproton collisions at the Tevatron via chi(c0) -> pi(+)pi(-) decay. The corresponding amplitude for exclusive double-diffractive chi(c0) meson production was obtained within the k(t)-factorization approach including virtualities of active gluons and the corresponding cross section is calculated with unintegrated gluon distribution functions (UGDFs) known from the literature. The four-body pp -> pp pi(+)pi(-) reaction constitutes an irreducible background to the exclusive chi(c0) meson production. We include absorption effects due to proton-proton interaction and pion-pion rescattering. We calculate several differential distributions for pp((p) over bar) -> pp((p) over bar)chi(c0) process including the absorptive corrections. The influence of kinematical cuts on the signal-to-background ratio is investigated. Corresponding experimental consequences are discussed.

  • 343. Lemasson, A.
    et al.
    Navin, A.
    Rejmund, M.
    Keeley, N.
    Zelevinsky, V.
    Bhattacharyya, S.
    Shrivastava, A.
    Bazin, D.
    Beaumel, D.
    Blumenfeld, Y.
    Chatterjee, A.
    Gupta, D.
    de France, G.
    Jacquot, B.
    Labiche, M.
    Lemmon, R.
    Nanal, V.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pillay, R. G.
    Raabe, R.
    Ramachandran, K.
    Scarpaci, J. A.
    Schmitt, C.
    Simenel, C.
    Stefan, I.
    Timis, C. N.
    Pair and single neutron transfer with Borromean 8He2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 697, no 5, p. 454-458Article in journal (Refereed)
    Abstract [en]

    Direct observation of the survival of 199Au residues after 2n transfer in the He 8 + Au 197 system and the absence of the corresponding 67Cu in the He 8 + Cu 65 system at various energies are reported. The measurements of the surprisingly large cross sections for 199Au, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to 1n transfer cross sections from 8He to a heavy target. A comparison of the transfer cross sections for 6,8He on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.

  • 344. Lemasson, A.
    et al.
    Navin, A.
    Rejmund, M.
    Keeley, N.
    Zelevinsky, V.
    Bhattacharyya, S.
    Shrivastava, A.
    Bazin, D.
    Beaumel, D.
    Blumenfeld, Y.
    Chatterjee, A.
    Gupta, D.
    de France, G.
    Jacquot, B.
    Labiche, M.
    Lemmon, R.
    Nanal, V.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pillay, R. G.
    Raabe, R.
    Ramachandran, K.
    Scarpaci, J. A.
    Schmitt, C.
    Simenel, C.
    Stefan, I.
    Timis, C. N.
    Pair and single neutron transfer with Borromean He-82011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 697, no 5, p. 454-458Article in journal (Refereed)
    Abstract [en]

    Direct observation of the survival of Au-199 residues after 2n transfer in the He-8 + Au-197 system and the absence of the corresponding Cu-67 in the He-8 + Cu-65 system at various energies are reported. The measurements of the surprisingly large cross sections for Au-199, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to in transfer cross sections from He-8 to a heavy target. A comparison of the transfer cross sections for He-6.8 on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.

  • 345. Maciula, R.
    et al.
    Pasechnik, Roman S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Szczurek, A.
    Exclusive double-diffractive production of open charm in proton-proton and proton-antiproton collisions2010In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 685, no 2-3, p. 165-169Article in journal (Refereed)
    Abstract [en]

    We calculate differential cross sections for exclusive double diffractive (EDD) production of open charm in proton-proton and proton-antiproton collisions. Sizeable cross sections are found. The EDD contribution Constitutes about 1% of the total inclusive cross section for open charm production. A few differential distributions are shown and discussed. The EDD contribution falls faster both with transverse momentum of the c quark/antiquark and the c (c) over bar invariant mass than in the inclusive case.

  • 346.
    Mandal, Tanumoy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mitra, Subhadip
    Seth, Satyajit
    Probing Compositeness with the CMS eejj & eej Data2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 758, p. 219-225Article in journal (Refereed)
    Abstract [en]

    Quark-lepton compositeness is a well-known beyond the Standard Model (SM) scenario with heavy exotic particles like leptoquarks (LQs) and leptogluons (LGs) etc. These particles can couple to leptons and jets simultaneously. In this letter, we use the recent CMS scalar LQ search data in the eejj and eej channels to probe this scenario. We recast the data in terms of a color octet partner of the SM electron (or a first generation spin-1/2 LG) that couples to an electron and a gluon via a dimension five operator suppressed by the quark-lepton compositeness scale (Lambda). By combining different production processes of the color octet electron (e(8)) at the LHC, we use the CMS 8 TeV data to obtain a simultaneous bound on Lambda and the mass of the e(8) (M-e8). We also study the reach of the 13 TeV LHC to discover the e(8) and interpret the required luminosity in terms of M-e8 and Lambda.

  • 347.
    Marganiec, J.
    et al.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany.;GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;ExtreMe Matter Inst EMMI, DE-64291 Darmstadt, Germany.;Res Div GSI, DE-64291 Darmstadt, Germany..
    Wamers, F.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany.;GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;ExtreMe Matter Inst EMMI, DE-64291 Darmstadt, Germany.;Res Div GSI, DE-64291 Darmstadt, Germany.;FIAS, DE-60438 Frankfurt, Germany..
    Aksouh, F.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Aksyutina, Yu.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Alvarez-Pol, H.
    Univ Santiago Compostela, Dept Fis Particulas, ES-15782 Santiago De Compostela, Spain..
    Aumann, T.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany.;GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Beceiro-Novo, S.
    Univ Santiago Compostela, Dept Fis Particulas, ES-15782 Santiago De Compostela, Spain..
    Bertulani, C. A.
    Texas A&M Univ, Dept Phys & Astron, Commerce, TX 75429 USA..
    Boretzky, K.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Borge, M. J. G.
    CSIC, Inst Estruct Mat, ES-28006 Madrid, Spain..
    Chartier, M.
    Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England..
    Chatillon, A.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Chulkov, L. V.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;NRC Kurchatov Inst, RU-123182 Moscow, Russia..
    Cortina-Gil, D.
    Univ Santiago Compostela, Dept Fis Particulas, ES-15782 Santiago De Compostela, Spain..
    Emling, H.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Ershova, O.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Goethe Univ Frankfurt, Inst Angew Phys, DE-60438 Frankfurt, Germany..
    Fraile, L. M.
    Univ Complutense Madrid, Dept Atom Mol & Nucl Phys, ES-28040 Madrid, Spain..
    Fynbo, H. O. U.
    Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark..
    Galaviz, D.
    CSIC, Inst Estruct Mat, ES-28006 Madrid, Spain..
    Geissel, H.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Heil, M.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Hoffmann, D. H. H.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany..
    Hoffmann, J.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Johansson, H. T.
    Fys Chalmers Tekniska Hogskola, SE-41296 Gothenburg, Sweden..
    Jonson, B.
    Fys Chalmers Tekniska Hogskola, SE-41296 Gothenburg, Sweden..
    Karagiannis, C.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Kiselev, O. A.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Kratz, J. V.
    Johannes Gutenberg Univ Mainz, Inst Kernphys, DE-55122 Mainz, Germany..
    Kulessa, R.
    Uniwersytet Jagellonski, Inst Fizyki, PL-30059 Krakow, Poland..
    Kurz, N.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Langer, C.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Goethe Univ Frankfurt, Inst Angew Phys, DE-60438 Frankfurt, Germany..
    Mattias, Lantz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Le Bleis, T.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Tech Univ Munich, Phys Dept E12, DE-85748 Garching, Germany..
    Lemmon, R.
    STFC Daresbury Lab, Nucl Phys Grp, Warrington WA4 4AD, Cheshire, England..
    Litvinov, Yu. A.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Mahata, K.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Bhabha Atom Res Ctr, Div Nucl Phys, Bombay 400085, Maharashtra, India..
    Muentz, C.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Nilsson, T.
    Fys Chalmers Tekniska Hogskola, SE-41296 Gothenburg, Sweden..
    Nociforo, C.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Nyman, G.
    Fys Chalmers Tekniska Hogskola, SE-41296 Gothenburg, Sweden..
    Ott, W.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Panin, V.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany.;GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Paschalis, S.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England..
    Perea, A.
    CSIC, Inst Estruct Mat, ES-28006 Madrid, Spain..
    Plag, R.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Goethe Univ Frankfurt, Inst Angew Phys, DE-60438 Frankfurt, Germany..
    Reifarth, R.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Goethe Univ Frankfurt, Inst Angew Phys, DE-60438 Frankfurt, Germany..
    Richter, A.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany..
    Rodriguez-Tajes, C.
    Univ Santiago Compostela, Dept Fis Particulas, ES-15782 Santiago De Compostela, Spain..
    Rossi, D.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA..
    Riisager, K.
    Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark..
    Savran, D.
    ExtreMe Matter Inst EMMI, DE-64291 Darmstadt, Germany.;Res Div GSI, DE-64291 Darmstadt, Germany.;FIAS, DE-60438 Frankfurt, Germany..
    Schrieder, G.
    Tech Univ Darmstadt, Inst Kernphys, DE-64289 Darmstadt, Germany..
    Simon, H.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Stroth, J.
    Goethe Univ Frankfurt, Inst Angew Phys, DE-60438 Frankfurt, Germany..
    Suemmerer, K.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Tengblad, O.
    CSIC, Inst Estruct Mat, ES-28006 Madrid, Spain..
    Typel, S.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Weick, H.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany..
    Wiescher, M.
    Univ Notre Dame, JINA, Notre Dame, IN USA..
    Wimmer, C.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, DE-64291 Darmstadt, Germany.;Goethe Univ Frankfurt, Inst Angew Phys, DE-60438 Frankfurt, Germany..
    Coulomb and nuclear excitations of narrow resonances in Ne-172016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 759, p. 200-205Article in journal (Refereed)
    Abstract [en]

    New experimental data for dissociation of relativistic Ne-17 projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in Ne-17. Distributions of internal energy in the 150 + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on Ne-17 and its mirror nucleus N-17. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the Ne-17 structure.

  • 348.
    Morozov, A.
    et al.
    ITEP, Moscow 117218, Russia;Inst Informat Transmiss Problems, Moscow 127994, Russia.
    Popolitov, Aleksandr
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Physics. ITEP, Moscow 117218, Russia;Inst Informat Transmiss Problems, Moscow 127994, Russia.
    Shakirov, Sh.
    Inst Informat Transmiss Problems, Moscow 127994, Russia;Harvard Univ, Cambridge, MA 02138 USA;Math Sci Res Inst, Berkeley, CA 94720 USA.
    On (q, t)-deformation of Gaussian matrix model2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 784, p. 342-344Article in journal (Refereed)
    Abstract [en]

    The recently discovered general formulas for perturbative correlators in basic matrix models can be interpreted as the Schur-preservation property of Gaussian measures. Then substitution of Schur by, say, Macdonald polynomials, definesa q, t-deformation of the matrix model. Eigenvalue integral representations and Virasoro-like constraints are immediate consequences.

  • 349. Nahrgang, Marlene
    et al.
    Leupold, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Bleicher, Marcus
    Equilibration and relaxation times at the chiral phase transition including reheating2012In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 711, no 1, p. 109-116Article in journal (Refereed)
    Abstract [en]

    We investigate the relaxational dynamics of the order parameter of chiral symmetry breaking, the sigma mean-field, with a heat bath consisting of quarks and antiquarks. A semiclassical stochastic Langevin equation of motion is obtained from the linear sigma model with constituent quarks. The equilibration of the system is studied for a first order phase transition and a critical point, where a different behavior is found. At the first order phase transition we observe the phase coexistence and at a critical point the phenomenon of critical slowing down with large relaxation times. We go beyond existing Langevin studies and include reheating of the heat bath by determining the energy dissipation during the relaxational process. The energy of the entire system is conserved. In a critical point scenario we again observe critical slowing down.

  • 350.
    Nair, Shankar Sunil
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Perotti, Elisabetta
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Leupold, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Constraining P and CP violation in the main decay of the neutral Sigma hyperon2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Phys. Lett., Vol. 788, p. 535-541Article in journal (Refereed)
    Abstract [en]

    On general grounds based on quantum field theory the decay amplitude for Sigma(0) -> Lambda gamma consists of a parity conserving magnetic and a parity violating electric dipole transition moment. Because of the subsequent self-analyzing weak decay of the Lambda hyperon the interference between magnetic and electric dipole transition moment leads to an asymmetry in the angular distribution. Comparing the decay distributions for the Sigma(0) hyperon and its antiparticle gives access to possible C and CP violation. Based on flavor SU(3) symmetry the present upper limit on the neutron electric dipole moment can be translated to an upper limit for the angular asymmetry. It turns out to be far below any experimental resolution that one can expect in the foreseeable future. Thus any true observation of a CP violating angular asymmetry would constitute physics beyond the standard model, even if extended by a CP violating QCD theta-vacuumangle term.

45678 301 - 350 of 366
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf