uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
67891011 401 - 450 of 548
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 401.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Borgegård, S.-O.
    Plant species richness on islands over a century of primary succession: Lake Hjälmaren1988Inngår i: Ecology, Vol. 69, s. 916-927Artikkel i tidsskrift (Fagfellevurdert)
  • 402.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Borgegård, S.-O.
    Primary succession over sixty years on hundred-year old islets in Lake Hjälmaren, Sweden1988Inngår i: Vegetatio, Vol. 77, s. 159-168Artikkel i tidsskrift (Fagfellevurdert)
  • 403.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Clymo, R.S.
    Transport of carbon and phosphorus compounds about Sphagnum1989Inngår i: Proceedings of the Royal Society of London B Biological Sciences, Vol. 237, s. 63-84Artikkel i tidsskrift (Fagfellevurdert)
  • 404.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Emanuelsson, Urban
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Centrum för biologisk mångfald.
    Kautsky, Lena
    Stockholm University.
    3. Ecology and Ecosystems2003Inngår i: Environmental Science: Understanding, protecting and managing the environment in the Baltic Sea Region / [ed] Lars Rydén, Pawel Migula and Magnus Andersson, Uppsala: Baltic University Press , 2003, 1, s. 68-91Kapittel i bok, del av antologi (Annet (populærvitenskap, debatt, mm))
  • 405.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Emanuelsson, Urban
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Centrum för biologisk mångfald.
    Kautsky, Lena
    Ecology and ecosystems2003Inngår i: Environmental science: understanding, protecting, and managing the environment in the Baltic Sea region / [ed] Lars Rydén, Pawel Migula, Magnus Andersson, Uppsala: Baltic University Press , 2003, s. 68-91Kapittel i bok, del av antologi (Annet vitenskapelig)
  • 406.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Jeglum, John K.
    The biology of peatlands2013 (oppl. 2)Bok (Annet vitenskapelig)
  • 407.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    McDonald, A.J.S.
    Photosynthesis in Sphagnum at different water contents1985Inngår i: Journal of Bryology, Vol. 13, s. 579-584Artikkel i tidsskrift (Fagfellevurdert)
  • 408.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    McDonald, A.J.S.
    Tolerance of Sphagnum to water level1985Inngår i: Journal of Bryology, Vol. 13, s. 571-578Artikkel i tidsskrift (Fagfellevurdert)
  • 409.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Sjörs, H.
    Löfroth, M.
    Mires1999Inngår i: Acta Phytogeographica Suecica, Vol. 84, s. 91-112Artikkel i tidsskrift (Fagfellevurdert)
  • 410.
    Rydin, Håkan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Snoeijs, P.
    Diekmann, M.
    Swedish plant geography1999Bok (Fagfellevurdert)
  • 411.
    Sadeghayobi, Elham
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Gut passage time and seed dispersal in the Galapagos giant tortoise (Chelonoidis nigra) and its role for seed dispersal2011Independent thesis Advanced level (degree of Master (Two Years)), 30 poäng / 45 hpOppgave
  • 412.
    Sadeghayobi, Elham
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Blake, Stephen
    Wikelski, Martin
    Gibbs, James
    Mackie, Roderick
    Cabrera, Fredy
    Digesta retention time in the Galapagos tortoise (Chelonoidis nigra)2011Inngår i: Comparative Biochemistry and Physiology A, ISSN 1095-6433, E-ISSN 1531-4332, Vol. 160, nr 4, s. 493-497Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The retention time of food in the digestive tract of animals has important implications for digestive physiology. Retention time impacts digestive efficiency and among herbivores affects plant-animal interactions including herbivory and seed dispersal. Poorly studied yet iconic Galapagos tortoises are large-bodied generalist herbivores and ecosystem engineers which migrate seasonally. Potentially variable digesta retention times due to strong seasonal and attitudinal temperature gradients may influence tortoise seed dispersal abilities and rates of herbivory. We fed captive adult tortoises living in semi-natural conditions on Galapagos with inert particles and seeds from locally available fruits to determine whether seed size and ambient temperature influenced retention time. Median retention time varied from 6 to 28 days, with a mode of 12 days. Seed size had no effect on any of our measures of retention time, but ambient temperature was inversely correlated with retention times. Long retention time facilitates long distance seed dispersal by Galapagos tortoises, which may improve effectiveness. The effect of temperature, which may double from hot lowlands to cold highlands through the seasonal cycle, on tortoise digesta retention time will strongly influence seed dispersal efficiency and may influence patterns of food selection and migration in this species.

  • 413. Salminen, Tiina A
    et al.
    Eklund, D. Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Joly, Valentin
    Blomqvist, Kristina
    Matton, Daniel P
    Edqvist, Johan
    Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts.2018Inngår i: Plants (Basel, Switzerland), ISSN 2223-7747, Vol. 7, nr 1, artikkel-id E6Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main components of the cuticle, which is the waterproof layer covering the epidermis of many aerial organs of land plants. Although the in vivo functions of the group of lipid binding proteins known as lipid transfer proteins (LTPs) are still rather unclear, there is accumulating evidence suggesting a role for LTPs in the transfer and deposition of monomers required for cuticle assembly. In this review, we first present an overview of the data connecting LTPs with cuticle synthesis. Furthermore, we propose liverworts and mosses as attractive model systems for revealing the specific function and activity of LTPs in the biosynthesis and evolution of the plant cuticle.

  • 414.
    Salojarvi, Jarkko
    et al.
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Smolander, Olli-Pekka
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Nieminen, Kaisa
    Nat Resources Inst Finland Luke, Green Technol, Helsinki, Finland..
    Rajaraman, Sitaram
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Safronov, Omid
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Safdari, Pezhman
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Lamminmaki, Airi
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Immanen, Juha
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Lan, Tianying
    Univ Buffalo, Dept Biol Sci, Buffalo, NY USA..
    Tanskanen, Jaakko
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Nat Resources Inst Finland Luke, Green Technol, Helsinki, Finland..
    Rastas, Pasi
    Univ Cambridge, Dept Zool, Cambridge, England.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland..
    Amiryousefi, Ali
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Jayaprakash, Balamuralikrishna
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Natl Inst Hlth & Welf THL, Kuopio, Finland..
    Kammonen, Juhana I.
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Hagqvist, Risto
    Nat Resources Inst Finland Luke, Green Technol, Haapastensyrja, Layliainen, Finland..
    Eswaran, Gugan
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Ahonen, Viivi Helena
    Univ Eastern Finland, Dept Environm & Biol Sci, Kuopio, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Work Environm Labs, Finnish Inst Occupat Hlth, Kuopio, Finland..
    Serra, Juan Alonso
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Asiegbu, Fred O.
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Forest Sci, Helsinki, Finland..
    Barajas-Lopez, Juan de Dios
    Blande, Daniel
    Univ Eastern Finland, Dept Environm & Biol Sci, Kuopio, Finland..
    Blokhina, Olga
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland..
    Blomster, Tiina
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Broholm, Suvi
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland..
    Brosche, Mikael
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Tartu, Inst Technol, Tartu, Estonia..
    Cui, Fuqiang
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Zhejiang Agr & Forestry Univ, Sch Forest Biotechnol, Hangzhou, Zhejiang, Peoples R China..
    Dardick, Chris
    USDA, Appalachian Fruit Res Stn, Agr Res Serv, Kearnysville, WV USA..
    Ehonen, Sanna E.
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Elomaa, Paula
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland..
    Escamez, Sacha
    Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, Umea, Sweden..
    Fagerstedt, Kurt V.
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Fujii, Hiroaki
    Univ Turku, Dept Biochem, Mol Plant Biol, Turku, Finland..
    Gauthier, Adrien
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;UniLaSalle, Unite AGRI TERR, Campus Rouen, Mont St Aignan, France..
    Gollan, Peter J.
    Univ Turku, Dept Biochem, Mol Plant Biol, Turku, Finland..
    Halimaa, Pauliina
    Heino, Pekka I.
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Div Genet, Helsinki, Finland..
    Himanen, Kristiina
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland..
    Hollender, Courtney
    USDA, Appalachian Fruit Res Stn, Agr Res Serv, Kearnysville, WV USA..
    Kangasjarvi, Saijaliisa
    Univ Turku, Dept Biochem, Mol Plant Biol, Turku, Finland..
    Kauppinen, Leila
    Univ Helsinki, Dept Biosci, Helsinki, Finland..
    Kelleher, Colin T.
    Natl Bot Gardens Ireland, DBN Plant Mol Lab, Dublin, Ireland..
    Kontunen-Soppela, Sari
    Univ Eastern Finland, Dept Environm & Biol Sci, Joensuu, Finland..
    Koskinen, J. Patrik
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Blueprint Genet, Helsinki, Finland..
    Kovalchuk, Andriy
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Forest Sci, Helsinki, Finland..
    Karenlampi, Sirpa O.
    Univ Eastern Finland, Dept Environm & Biol Sci, Kuopio, Finland..
    Karkonen, Anna K.
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Nat Resources Inst Finland Luke, Green Technol, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland..
    Lim, Kean-Jin
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland..
    Leppala, Johanna
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Macpherson, Lee
    Kings Coll London, Dept Haemato Oncol, London, England..
    Mikola, Juha
    Univ Helsinki, Dept Environm Sci, Helsinki, Finland..
    Mouhu, Katriina
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland..
    Mahonen, Ari Pekka
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Niinemets, Ulo
    Estonian Univ Life Sci, Inst Agr & Environm Sci, Tartu, Estonia..
    Oksanen, Elina
    Univ Eastern Finland, Dept Environm & Biol Sci, Joensuu, Finland..
    Overmyer, Kirk
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Palva, E. Tapio
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Div Genet, Helsinki, Finland..
    Pazouki, Leila
    Estonian Univ Life Sci, Inst Agr & Environm Sci, Tartu, Estonia..
    Pennanen, Ville
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Div Genet, Helsinki, Finland..
    Puhakainen, Tuula
    Univ Helsinki, Dept Biosci, Div Genet, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Sci Agr Soc Finland, Agr & Food Sci, Lemu, Finland..
    Poczai, Peter
    Univ Helsinki, Finnish Museum Nat Hist Botany, Helsinki, Finland..
    Possen, Boy J. H. M.
    Nat Resources Inst Finland Luke, Management & Prod Renewable Resources, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Royal Haskoning DHV, Maastricht Airport, Beek, Netherlands..
    Punkkinen, Matleena
    Univ Turku, Dept Biochem, Mol Plant Biol, Turku, Finland..
    Rahikainen, Moona M.
    Univ Turku, Dept Biochem, Mol Plant Biol, Turku, Finland..
    Rousi, Matti
    Nat Resources Inst Finland Luke, Management & Prod Renewable Resources, Helsinki, Finland..
    Ruonala, Raili
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Univ Cambridge, Sainsbury Lab, Cambridge, England.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland..
    van der Schoot, Christiaan
    Norwegian Univ Life Sci, Dept Plant Sci, As, Norway..
    Shapiguzov, Alexey
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Russian Acad Sci, Inst Plant Physiol, Moscow, Russia..
    Sierla, Maija
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Sipila, Timo P.
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Sutela, Suvi
    Univ Oulu, Genet & Physiol Unit, Oulu, Finland..
    Teeri, Teemu H.
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Agr Sci, Helsinki, Finland..
    Tervahauta, Arja I.
    Univ Eastern Finland, Dept Environm & Biol Sci, Kuopio, Finland..
    Vaattovaara, Aleksia
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Vahala, Jorma
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Vetchinnikova, Lidia
    Russian Acad Sci, Karelian Res Ctr, Forest Res Inst, Petrozavodsk, Russia..
    Welling, Annikki
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Finnish Food Safety Author Evira, Chem & Toxicol Res Unit, Helsinki, Finland..
    Wrzaczek, Michael
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland..
    Xu, Enjun
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Helsinki, Finland.;Chinese Acad Sci, Inst Bot, Beijing, Peoples R China..
    Paulin, Lars G.
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Schulman, Alan H.
    Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Nat Resources Inst Finland Luke, Green Technol, Helsinki, Finland..
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Albert, Victor A.
    Univ Buffalo, Dept Biol Sci, Buffalo, NY USA..
    Auvinen, Petri
    Univ Helsinki, Inst Biotechnol, Helsinki, Finland..
    Helariutta, Yka
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland.;Univ Helsinki, Inst Biotechnol, Helsinki, Finland.;Univ Cambridge, Sainsbury Lab, Cambridge, England..
    Kangasjarvi, Jaakko
    Univ Helsinki, Dept Biosci, Div Plant Biol, Helsinki, Finland.;Univ Helsinki, Viikki Plant Sci Ctr, Helsinki, Finland..
    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch2017Inngår i: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 49, nr 6, s. 904-+Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.

  • 415.
    Sandström, Anneli
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Svensson, Brita M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Milberg, Per
    Linkoping Univ, IFM Biol, Conservat Ecol Grp, SE-58183 Linkoping, Sweden..
    An example of how to build conservation evidence from case studies: Fire and raking to enhance Pulsatilla vernalis populations2017Inngår i: Journal for Nature Conservation, ISSN 1617-1381, E-ISSN 1618-1093, Vol. 36, s. 58-64Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Can data collected by practitioners during practical conservation work be used as decision support? To find out, we used unpublished data from attempts to enhance populations of the vascular plant Pulsatilla vernalis in Sweden. About half of the 50 located cases had generated data useful for meta-analysis. We could show that burning had a positive effect while mechanical disturbance had negligible effects on number of plants in short-term follow-ups. Furthermore, we suggest that follow-up variables related to flowering are inferior for monitoring intervention success as flowering varies greatly between years. In the broader context, our example shows that simple records from practical conservation work can be a rich source of information. It was also obvious that there is great potential for more useful evidence by making just small improvements in field protocols, documentation, and archiving. Finally, we suggest that biologists and researchers need to develop an appreciation of "different levels of evidence", and that in circumstances where we lack relevant experiments or observational studies, case studies might be useful for improving interventions. (C) 2017 Elsevier GmbH. All rights reserved.

  • 416.
    Satler, Jordan D.
    et al.
    Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA.
    Herre, Edward Allen
    Smithsonian Trop Res Inst, Unit 9100,POB 0498,Diplomat PO, Washington, DC 34002 USA.
    Jandér, K. Charlotte
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Eaton, Deren A. R.
    Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA.
    Machado, Carlos A.
    Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
    Heath, Tracy A.
    Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA.
    Nason, John D.
    Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA.
    Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps2019Inngår i: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 73, nr 11, s. 2295-2311Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one‐to‐one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome‐wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction. Using a model‐based approach adapted from the study of gene family evolution, our results demonstrate the importance of host switching of pollinator wasps at this fine phylogenetic and regional scale. Although we estimate a modest amount of cospeciation, simulations reveal the number of putative cospeciation events to be consistent with what would be expected by chance. Additionally, model selection tests identify host switching as a critical parameter for explaining cophylogenetic patterns in this system. Our study demonstrates a promising approach through which the history of evolutionary association between interacting lineages can be rigorously modeled and tested in a probabilistic phylogenetic framework.

  • 417.
    Saunders, Manu E.
    et al.
    Univ New England, UNE Business Sch, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia..
    Duffy, Meghan A.
    Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA..
    Heard, Stephen B.
    Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada..
    Kosmala, Margaret
    Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA..
    Leather, Simon R.
    Harper Adams Univ, Crop & Environm Sci, Newport TF10 8NB, Shrops, England..
    McGlynn, Terrence P.
    Calif State Univ Dominguez Hills, Dept Biol, Carson, CA 90747 USA.;Nat Hist Museum Los Angeles Cty, Dept Entomol, Los Angeles, CA 90007 USA..
    Ollerton, Jeff
    Univ Northampton, Fac Arts Sci & Technol, Ave Campus, Northampton NN2 6JD, England..
    Parachnowitsch, Amy L.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Bringing ecology blogging into the scientific fold: measuring reach and impact of science community blogs2017Inngår i: Royal Society Open Science, E-ISSN 2054-5703, Vol. 4, nr 10, artikkel-id 170957Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The popularity of science blogging has increased in recent years, but the number of academic scientists who maintain regular blogs is limited. The role and impact of science communication blogs aimed at general audiences is often discussed, but the value of science community blogs aimed at the academic community has largely been overlooked. Here, we focus on our own experiences as bloggers to argue that science community blogs are valuable to the academic community. We use data fromour own blogs (n=7) to illustrate some of the factors influencing reach and impact of science community blogs. We then discuss the value of blogs as a standalone medium, where rapid communication of scholarly ideas, opinions and short observational notes can enhance scientific discourse, and discussion of personal experiences can provide indirect mentorship for junior researchers and scientists from underrepresented groups. Finally, we argue that science community blogs can be treated as a primary source and provide some key points to consider when citing blogs in peer-reviewed literature.

  • 418.
    Savio, Domenico
    et al.
    Vienna Univ Technol, CWRS, A-1040 Vienna, Austria.;Vienna Univ Technol, Inst Chem Engn, Res Grp Environm Microbiol & Mol Ecol, A-1040 Vienna, Austria..
    Sinclair, Lucas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Ijaz, Umer Z.
    Univ Glasgow, Sch Engn, Glasgow, Lanark, Scotland..
    Parajka, Juraj
    Vienna Univ Technol, CWRS, A-1040 Vienna, Austria.;Vienna Univ Technol, Inst Hydraul Engn & Water Resource Management, A-1040 Vienna, Austria..
    Reischer, Georg H.
    Vienna Univ Technol, Inst Chem Engn, Res Grp Environm Microbiol & Mol Ecol, A-1040 Vienna, Austria.;Interuniv Cooperat Ctr Water & Hlth, London, England..
    Stadler, Philipp
    Vienna Univ Technol, CWRS, A-1040 Vienna, Austria.;Vienna Univ Technol, Inst Water Qual Resource & Waste Management, A-1040 Vienna, Austria..
    Blaschke, Alfred P.
    Vienna Univ Technol, CWRS, A-1040 Vienna, Austria.;Vienna Univ Technol, Inst Hydraul Engn & Water Resource Management, A-1040 Vienna, Austria..
    Bloeschl, Guenter
    Vienna Univ Technol, CWRS, A-1040 Vienna, Austria.;Vienna Univ Technol, Inst Hydraul Engn & Water Resource Management, A-1040 Vienna, Austria..
    Mach, Robert L.
    Vienna Univ Technol, Inst Chem Engn, Res Grp Environm Microbiol & Mol Ecol, A-1040 Vienna, Austria..
    Kirschner, Alexander K. T.
    Interuniv Cooperat Ctr Water & Hlth, London, England.;Med Univ Vienna, Inst Hyg & Appl Immunol Water Hyg, Vienna, Austria..
    Farnleitner, Andreas H.
    Vienna Univ Technol, CWRS, A-1040 Vienna, Austria.;Vienna Univ Technol, Inst Chem Engn, Res Grp Environm Microbiol & Mol Ecol, A-1040 Vienna, Austria.;Interuniv Cooperat Ctr Water & Hlth, London, England..
    Eiler, Alexander
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Bacterial diversity along a 2600 km river continuum2015Inngår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 17, nr 12, s. 4994-5007Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The bacterioplankton diversity in large rivers has thus far been under-sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA-gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free-living and particle-associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the Polynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater-affiliated bacteria. Based on views of the meta-community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.

  • 419.
    Savolainen, Outi
    et al.
    Univ Oulu, Dept Genet & Physiol, Oulu 90014, Finland.;Univ Oulu, Bioctr Oulu, Oulu 90014, Finland..
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    GENOMICS Geography matters for Arabidopsis2016Inngår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 537, nr 7620, s. 314-315Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    A free database describes genome sequences, gene expression and molecular modifications to DNA for more than 1,000 Arabidopsis thaliana plants, providing valuable information on the complex history and current variation of this species.

  • 420. Savolainen, Outi
    et al.
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Merila, Juha
    Ecological genomics of local adaptation2013Inngår i: Nature reviews genetics, ISSN 1471-0056, E-ISSN 1471-0064, Vol. 14, nr 11, s. 807-820Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    It is increasingly important to improve our understanding of the genetic basis of local adaptation because of its relevance to climate change, crop and animal production, and conservation of genetic resources. Phenotypic patterns that are generated by spatially varying selection have long been observed, and both genetic mapping and field experiments provided initial insights into the genetic architecture of adaptive traits. Genomic tools are now allowing genome-wide studies, and recent theoretical advances can help to design research strategies that combine genomics and field experiments to examine the genetics of local adaptation. These advances are also allowing research in non-model species, the adaptation patterns of which may differ from those of traditional model species.

  • 421.
    Schaepers, Alexander
    et al.
    Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden..
    Petrén, Hampus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Wheat, Christopher W.
    Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden..
    Wiklund, Christer
    Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden..
    Friberg, Magne
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Female fecundity variation affects reproducibility of experiments on host plant preference and acceptance in a phytophagous insect2017Inngår i: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 284, nr 1849, artikkel-id 20162643Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reproducibility is a scientific cornerstone. Many recent studies, however, describe a reproducibility crisis and call for assessments of reproducibility across scientific domains. Here, we explore the reproducibility of a classic ecological experiment - that of assessing female host plant preference and acceptance in phytophagous insects, a group in which host specialization is a key driver of diversification. We exposed multiple cohorts of Pieris napi butterflies from the same population to traditional host acceptance and preference tests on three Brassicaceae host species. Whereas the host plant rank order was highly reproducible, the propensity to oviposit on low-ranked hosts varied significantly even among cohorts exposed to similar conditions. Much variation could be attributed to among-cohort variation in female fecundity, a trait strongly correlated both to female size and to the size of the nuptial gift a female receives during mating. Small males provide small spermatophores, and in our experiment small females that mated with small males had a disproportionally low propensity to oviposit on lowranked hosts. Hence, our results provide empirical support to the theoretical prediction that female host utilization is strongly affected by non-genetic, environmental variation, and that such variation can affect the reproducibility of ecological experiments even under seemingly identical conditions.

  • 422.
    Sedlacek, Janosch
    et al.
    Univ Konstanz, Dept Biol, Ecol, Univ Str 10, D-78457 Constance, Germany.
    Cortés, Andrés
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution. Swedish Agr Univ, Dept Plant Biol, Undervisningsplan 7E, S-75007 Uppsala, Sweden.
    Wheeler, Julia
    WSL Inst Snow & Avalanche Res SLF, Fluelastr 11, CH-7260 Davos, Switzerland;Univ Basel, Inst Bot, Schonbeinstr 6, CH-4056 Basel, Switzerland;Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA.
    Bossdorf, Oliver
    Univ Tubingen, Plant Evolutionary Ecol, Inst Evolut & Ecol, Morgenstelle 5, D-72076 Tubingen, Germany.
    Hoch, Guenter
    Univ Basel, Inst Bot, Schonbeinstr 6, CH-4056 Basel, Switzerland.
    Klapste, Jaroslav
    Univ British Columbia, Dept Forest & Conservat Sci, Fac Forestry, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;Czech Univ Life Sci Prague, Dept Genet & Physiol Forest Trees, Fac Forestry & Wood Sci, Kamycka 129, Prague 16521 6, Czech Republic;Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA.
    Lexer, Christian
    Univ Vienna, Dept Bot & Biodivers Res, Rennweg 14, A-1030 Vienna, Austria.
    Rixen, Christian
    WSL Inst Snow & Avalanche Res SLF, Fluelastr 11, CH-7260 Davos, Switzerland.
    Wipf, Sonja
    WSL Inst Snow & Avalanche Res SLF, Fluelastr 11, CH-7260 Davos, Switzerland.
    Karrenberg, Sophie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    van Kleunen, Mark
    Univ Konstanz, Dept Biol, Ecol, Univ Str 10, D-78457 Constance, Germany.
    Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow Salix herbacea from different elevations and microhabitats2016Inngår i: Ecology and Evolution, ISSN 2045-7758, E-ISSN 2045-7758, Vol. 6, nr 12, s. 3940-3952Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Alpine ecosystems are seriously threatened by climate change. One of the key mechanisms by which plants can adapt to changing environmental conditions is through evolutionary change. However, we still know little about the evolutionary potential in wild populations of long-lived alpine plants. Here, we investigated heritabilities of phenological traits, leaf size, and performance traits in natural populations of the long-lived alpine dwarf shrub Salix herbacea using relatedness estimates inferred from SSR (Simple Sequence Repeat) markers. Salix herbacea occurs in early-and late-snowmelt microhabitats (ridges and snowbeds), and we assessed how performance consequences of phenological traits and leaf size differ between these microhabitats in order to infer potential for evolutionary responses. Salix herbacea showed low, but significant, heritabilities of leaf size, clonal and sexual reproduction, and moderate heritabilities of phenological traits. In both microhabitats, we found that larger leaves, longer intervals between snowmelt and leaf expansion, and longer GDD (growing-degree days) until leaf expansion resulted in a stronger increase in the number of stems (clonal reproduction). In snowbeds, clonal reproduction increased with a shorter GDD until flowering, while the opposite was found on ridges. Furthermore, the proportion of flowering stems increased with GDD until flowering in both microhabitats. Our results suggest that the presence of significant heritable variation in morphology and phenology might help S. herbacea to adapt to changing environmental conditions. However, it remains to be seen if the rate of such an evolutionary response can keep pace with the rapid rate of climate change.

  • 423. Sedlacek, Janosch F.
    et al.
    Bossdorf, Oliver
    Cortes, Andres J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Wheeler, Julia A.
    van Kleunen, Mark
    What role do plant-soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?2014Inngår i: Basic and Applied Ecology, ISSN 1439-1791, E-ISSN 1618-0089, Vol. 15, nr 4, s. 305-315Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mountain plants may respond to warming climates by migrating along altitudinal gradients or, because climatic conditions on mountain slopes can be locally very heterogeneous, by migrating to different microhabitats at the same altitude. However, in new environments, plants may also encounter novel soil microbial communities, which might affect their establishment success. Thus, biotic interactions could be a key factor in plant responses to climate change. Here, we investigated the role of plant soil feedback for the establishment success of the alpine dwarf shrub Salix herbacea L. across altitudes and late- and early snowmelt microhabitats. We collected S. herbacea seeds and soil from nine plots on three mountain-slope transects near Davos, Switzerland, and we transplanted seeds and seedlings to substrate inoculated with soil from the same plot or with soils from different microhabitats, altitudes and mountains under greenhouse conditions. We found that, on average, seeds from higher altitudes (2400-2700 m) and late-exposed snowbeds germinated better than seeds from lower altitudes (2200-2300 m) and early-exposed ridges. However, despite these differences in germination, growth was generally higher for plants from low altitudes, and there were no indications for a an home-soil advantage within the current range of S. herbacea. Interestingly, seedlings growing on soil from above the current altitudinal distribution of S. herbacea grew on average less well than on their own soil. Thus, although the lack of a home-soil advantage in the current habitat might be beneficial for S. herbacea in a changing environment, migration to habitats beyond the current altitudinal range might be limited, probably due to missing positive soil-feedback.

  • 424. Sedlacek, Janosch
    et al.
    Wheeler, Julia A.
    Cortes, Andres J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Bossdorf, Oliver
    Hoch, Guenter
    Lexer, Christian
    Wipf, Sonja
    Karrenberg, Sophie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    van Kleunen, Mark
    Rixen, Christian
    The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment2015Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, nr 4, artikkel-id e0122395Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we monitored phenological, morphological and fitness traits, as well as leaf damage, during two growing seasons. Salix herbacea leafed out earlier, but had a longer development time and produced smaller leaves on ridges relative to snowbeds. Longer phenological development times and smaller leaves were associated with reduced sexual reproduction on ridges. On snowbeds, larger leaves and intermediate development times were associated with increased clonal reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage probability depended on snowmelt and thus exposure period, but had no short-term effect on fitness traits. We conclude that the studied populations of S. herbacea can respond to shifts in snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not be adapted to different microhabitats. The studied populations are thus unlikely to react to climate change by rapid adaptation, but their responses will also not be constrained by small-scale local adaptation. In the short term, snowbed plants may persist due to high stem densities. However, in the long term, reduction in leaf size and flowering, a longer phenological development time and increased exposure to damage may decrease overall performance of S. herbacea under earlier snowmelt.

  • 425. Semerikov, Vladimir L.
    et al.
    Semerikova, Svetlana A.
    Polezhaeva, Maria A.
    Kosintsev, Pavel A.
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers2013Inngår i: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 22, nr 19, s. 4958-4971Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    While many species were confined to southern latitudes during the last glaciations, there has lately been mounting evidence that some of the most cold-tolerant species were actually able to survive close to the ice sheets. The contribution of these higher latitude outposts to the main recolonization thrust remains, however, untested. In the present study, we use the first range-wide survey of genetic diversity at cytoplasmic markers in Siberian larch (Larix sibirica; four mitochondrial (mt) DNA loci and five chloroplast (cp) DNA SSR loci) to (i) assess the relative contributions of southern and central areas to the current L.sibirica distribution range; and (ii) date the last major population expansion in both L.sibirica and adjacent Larix species. The geographic distribution of cpDNA variation was uninformative, but that of mitotypes clearly indicates that the southernmost populations, located in Mongolia and the Tien-Shan and Sayan Mountain ranges, had a very limited contribution to the current populations of the central and northern parts of the range. It also suggests that the contribution of the high latitude cryptic refugia was geographically limited and that most of the current West Siberian Plain larch populations likely originated in the foothills of the Sayan Mountains. Interestingly, the main population expansion detected through Approximate Bayesian Computation (ABC) in all four larch species investigated here pre-dates the LGM, with a mode in a range of 220000-1340000years BP. Hence, L.sibirica, like other major conifer species of the boreal forest, was strongly affected by climatic events pre-dating the Last Glacial Maximum.

  • 426. Semerikova, S. A.
    et al.
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Semerikov, V. L.
    Nuclear and cytoplasmic genetic diversity reveals long-term population decline in Abies semenovii, an endemic fir of central Asia2012Inngår i: Canadian Journal of Forest Research, ISSN 0045-5067, E-ISSN 1208-6037, Vol. 42, nr 12, s. 2142-2152Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The genus Abies is one of the largest conifer genera and many of the marginal species remain poorly characterized. Abies semenovii B. Fedtsch. is a rare mountain fir species from central Asia, and its species status is still disputed. We used both nuclear (allozymes and AFLP) and chloroplastic (cpSSR) markers to show that A. semenovii deserves to be considered as a species and that its low genetic diversity justifies more a proactive conservation policy. First, A. semenovii was significantly differentiated from the Siberian fir Abies sibirica Ledeb. and we did not detect gene flow between the two species. Second, A. semenovii has a very low nuclear genetic diversity, suggesting a prolonged restricted effective population size. Abies semenovii had low cpSSR diversity too but the identification of seven closely related haplotypes suggests that these mutations accumulated recently during a phase of population expansion. This agrees well with the palynological record and is in contrast with the situation observed in another rare Eurasian fir endemic to Kamchatka, Abies gracilis Kom., which was devoid of variation in cpSSRs but that also had a more substantial nuclear marker diversity than A. semenovii, thereby suggesting a more recent but less severe population bottleneck.

  • 427.
    Semerikova, Svetlana A.
    et al.
    Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, 8 Marta Str,202, Ekaterinburg 620144, Russia.
    Khrunyk, Yuliya Y.
    Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, 8 Marta Str,202, Ekaterinburg 620144, Russia;Ural Fed Univ, Mira St 19, Ekaterinburg 620002, Russia.
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Semerikov, Vladimir L.
    Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, 8 Marta Str,202, Ekaterinburg 620144, Russia.
    From America to Eurasia: a multigenomes history of the genus Abies2018Inngår i: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 125, s. 14-28Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to intercontinental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause.

  • 428. Seufert, Verena
    et al.
    Granath, Gustaf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Müller, Christoph
    A meta-analysis of crop response patterns to nitrogen limitation for improved model representation2019Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 14, nr 10, s. e0223508-e0223508Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The representation of carbon-nitrogen (N) interactions in global models of the natural or managed land surface remains an important knowledge gap. To improve global process-based models we require a better understanding of how N limitation affects photosynthesis and plant growth. Here we present the findings of a meta-analysis to quantitatively assess the impact of N limitation on source (photosynthate production) versus sink (photosynthate use) activity, based on 77 highly controlled experimental N availability studies on 11 crop species. Using meta-regressions, we find that it can be insufficient to represent N limitation in models merely as inhibiting carbon assimilation, because in crops complete N limitation more strongly influences leaf area expansion (-50%) than photosynthesis (-34%), while leaf starch is accumulating (+83%). Our analysis thus offers support for the hypothesis of sink limitation of photosynthesis and encourages the exploration of more sink-driven crop modelling approaches. We also show that leaf N concentration changes with N availability and that the allocation of N to Rubisco is reduced more strongly compared to other photosynthetic proteins at low N availability. Furthermore, our results suggest that different crop species show generally similar response patterns to N limitation, with the exception of leguminous crops, which respond differently. Our meta-analysis offers lessons for the improved depiction of N limitation in global terrestrial ecosystem models, as well as highlights knowledge gaps that need to be filled by future experimental studies on crop N limitation response.

  • 429.
    Shamsabad, Masoumeh Mahmoudi
    et al.
    Tarbiat Modares Univ, Dept Plant Biol, Tehran 14115154, Iran.
    Assadi, Mostafa
    AREEO, Res Inst Forests & Rangelands, POB 13185-116, Tehran, Iran.
    Parducci, Laura
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Phylogeography and population genetics of Acanthophyllum squarrosum complex (Caryophyllaceae) in the Irano-Turanian region2019Inngår i: Systematics and Biodiversity, ISSN 1477-2000, E-ISSN 1478-0933, Vol. 17, nr 4, s. 412-421Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Acanthophyllum squarrosum and two closely related species, A. heratense and A. laxiusculum (Caryophyllaceae), form a complex that covers parts of subalpine steppes of the Irano-Turanian (IT) region. In this study, we explored the genetic structure and phylogeography of this complex based on partial sequences of two chloroplasts (psbA-trnH and rpl32-trnL (UAG)) and two nuclear (EST24 and nrITS) DNA regions. We analysed 80 individuals from eight populations and detected 12 chloroplast haplotypes, 16 and eight nuclear alleles in EST24 and nrITS sequences, respectively. Phylogenetic trees and haplotype networks did not show distinct genetic groups in the complex and this could be explained by incomplete lineage sorting or introgression between species. Divergence time analysis revealed a Quaternary origin for A. squarrosum complex at approximately 1.8 million years ago (Mya) and the neutrality test results indicated that this complex experienced a recent population expansion. AMOVA analysis of the chloroplast regions showed a significant genetic differentiation among populations and low genetic differentiation within populations, but opposite results were found with nuclear markers, implying introgression between A. squarrosum complex populations.

  • 430.
    Shefferson, Richard P.
    et al.
    Univ Tokyo, Org Programs Environm Sci, Meguro Ku, Tokyo, Japan.
    Kull, Tiiu
    Estonian Univ Life Sci, Tartu, Estonia.
    Hutchings, Michael J.
    Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England.
    Selosse, Marc-Andre
    Sorbonne Univ, CNRS, Museum Natl Hist Nat, Inst Systemat Evolut Biodivers ISYEB,EPHE, 57 Rue Cuvier,CP39, F-75005 Paris, France;Univ Gdansk, Dept Plant Taxon & Nat Conservat, Gdansk, Poland.
    Jacquemyn, Hans
    Katholieke Univ Leuven, Dept Biol, Leuven, Belgium.
    Kellett, Kimberly M.
    Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA.
    Menges, Eric S.
    Archbold Biol Stn, Venus, FL USA.
    Primack, Richard B.
    Boston Univ, Dept Biol, 5 Cummington St, Boston, MA 02215 USA.
    Tuomi, Juha
    Univ Turku, Dept Biol, Turku, Finland.
    Alahuhta, Kirsi
    Univ Oulu, Dept Ecol & Genet, Oulu, Finland.
    Hurskainen, Sonja
    Univ Oulu, Dept Ecol & Genet, Oulu, Finland.
    Alexander, Helen M.
    Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA.
    Anderson, Derek S.
    Dept Nat Resources, St Paul, MN USA.
    Brys, Rein
    Res Inst Nat & Forest, Brussels, Belgium.
    Brzosko, Emilia
    Univ Bialystok, Inst Biol, Bialystok, Poland.
    Dostalik, Slavomir
    Gregg, Katharine
    West Virginia Wesleyan Coll, Dept Biol, Buckhannon, WV USA.
    Ipser, Zdenek
    Univ South Bohemia, Fac Sci, Dept Biol Ecosyst, Ceske Budejovice, Czech Republic.
    Jakalaniemi, Anne
    Univ Oulu, Dept Ecol & Genet, Oulu, Finland.
    Jersakova, Jana
    Univ South Bohemia, Fac Sci, Dept Biol Ecosyst, Ceske Budejovice, Czech Republic.
    Kettle, W. Dean
    Univ Kansas, Kansas Biol Survey, Lawrence, KS USA.
    McCormick, Melissa K.
    Smithsonian Environm Res Ctr, POB 28, Edgewater, MD 21037 USA.
    Mendoza, Ana
    Univ Nacl Autonoma Mexico, Inst Ecol, Ciudad Univ, Mexico City, DF, Mexico.
    Miller, Michael T.
    LGL Ltd, Sidney, BC, Canada.
    Moen, Asbjorn
    NTNU Univ Museum, Dept Nat Hist, Trondheim, Norway.
    Oien, Dag-Inge
    NTNU Univ Museum, Dept Nat Hist, Trondheim, Norway.
    Puttsepp, Ulle
    Estonian Univ Life Sci, Tartu, Estonia.
    Roy, Melanie
    Univ Paul Sabatier, CNRS, Lab Evolut & Divers Biol, Toulouse, France.
    Sather, Nancy
    Dept Nat Resources, St Paul, MN USA.
    Sletvold, Nina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Stipkova, Zuzana
    Czech Acad Sci, Global Change Res Inst, Brno, Czech Republic.
    Tali, Kadri
    Estonian Univ Life Sci, Tartu, Estonia.
    Warren, Robert J., II
    SUNY Buffalo State, Dept Biol, Buffalo, NY USA.
    Whigham, Dennis F.
    Smithsonian Environm Res Ctr, POB 28, Edgewater, MD 21037 USA.
    Drivers of vegetative dormancy across herbaceous perennial plant species2018Inngår i: Ecology Letters, ISSN 1461-023X, E-ISSN 1461-0248, Vol. 21, nr 5, s. 724-733Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Vegetative dormancy, that is the temporary absence of aboveground growth for 1year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.

  • 431.
    Siepielski, Adam M.
    et al.
    Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA..
    Morrissey, Michael B.
    Univ St Andrews, Sch Biol, St Andrews, Fife, Scotland..
    Buoro, Mathieu
    Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA..
    Carlson, Stephanie M.
    Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA..
    Caruso, Christina M.
    Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada..
    Clegg, Sonya M.
    Univ Oxford, Edward Grey Inst, Dept Zool, Oxford, England.;Griffith Univ, Environm Futures Res Inst, 170 Kessels Rd, Nathan, Qld, Australia..
    Coulson, Tim
    Univ Oxford, Dept Zool, Oxford, England..
    DiBattista, Joseph
    Curtin Univ, Dept Environm & Agr, Perth, WA 6845, Australia..
    Gotanda, Kiyoko M.
    Univ Oxford, Dept Zool, Oxford, England.;McGill Univ, Redpath Museum, Montreal, PQ, Canada.;McGill Univ, Dept Biol, Montreal, PQ, Canada..
    Francis, Clinton D.
    Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, San Luis Obispo, CA 93407 USA..
    Hereford, Joe
    Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA..
    Kingsolver, Joel G.
    Univ N Carolina, Dept Biol, Chapel Hill, NC USA..
    Augustine, Kate E.
    Univ N Carolina, Dept Biol, Chapel Hill, NC USA..
    Kruuk, Loeske E. B.
    Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia..
    Martin, Ryan A.
    Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA..
    Sheldon, Ben C.
    Univ Oxford, Edward Grey Inst, Dept Zool, Oxford, England..
    Sletvold, Nina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Svensson, Erik I.
    Lund Univ, Dept Biol, Lund, Sweden..
    Wade, Michael J.
    Indiana Univ, Dept Biol, Bloomington, IN USA..
    MacColl, Andrew D. C.
    Univ Nottingham, Sch Life Sci, Nottingham NG7 2RD, England..
    Precipitation drives global variation in natural selection2017Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 355, nr 6328, s. 959-962Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Climate change has the potential to affect the ecology and evolution of every species on Earth. Although the ecological consequences of climate change are increasingly well documented, the effects of climate on the key evolutionary process driving adaptation-natural selection-are largely unknown. We report that aspects of precipitation and potential evapotranspiration, along with the North Atlantic Oscillation, predicted variation in selection across plant and animal populations throughout many terrestrial biomes, whereas temperature explained little variation. By showing that selection was influenced by climate variation, our results indicate that climate change may cause widespread alterations in selection regimes, potentially shifting evolutionary trajectories at a global scale.

  • 432.
    Siepielski, Adam M.
    et al.
    Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA..
    Morrissey, Michael B.
    Univ St Andrews, Sch Biol, St Andrews, Fife, Scotland..
    Buoro, Mathieu
    Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.;Univ Pau & Pays Adour, Inst Natl Rech Agron, St Pee Sur Nivelle, France..
    Carlson, Stephanie M.
    Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA..
    Caruso, Christina M.
    Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada..
    Clegg, Sonya M.
    Univ Oxford, Edward Grey Inst, Dept Zool, Oxford, England..
    Coulson, Tim
    Univ Cambridge, Dept Zool, Cambridge, England..
    DiBattista, Joseph
    Curtin Univ, Dept Environm & Agr, Perth, WA, Australia..
    Gotanda, Kiyoko M.
    Univ Cambridge, Dept Zool, Cambridge, England.;McGill Univ, Redpath Museum, Montreal, PQ, Canada.;McGill Univ, Dept Biol, Montreal, PQ, Canada..
    Francis, Clinton D.
    Calif Polytech State Univ San Luis Obispo, Dept Biol Sci, San Luis Obispo, CA 93407 USA..
    Hereford, Joe
    Univ Calif Davis, Dept Evolut & Ecol, Davis, CA 95616 USA..
    Kingsolver, Joel G.
    Univ N Carolina, Dept Biol, Chapel Hill, NC USA..
    Augustine, Kate E.
    Univ N Carolina, Dept Biol, Chapel Hill, NC USA..
    Kruuk, Loeske E. B.
    Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia..
    Martin, Ryan A.
    Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA..
    Sheldon, Ben C.
    Univ Oxford, Edward Grey Inst, Dept Zool, Oxford, England..
    Sletvold, Nina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Svensson, Erik I.
    Lund Univ, Dept Biol, Lund, Sweden..
    Wade, Michael J.
    Indiana Univ, Dept Biol, Bloomington, IN USA..
    MacColl, Andrew D. C.
    Univ Nottingham, Sch Life Sci, Nottingham, England..
    Response to Comment on "Precipitation drives global variation in natural selection"2018Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 359, nr 6374, artikkel-id eaan5760Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    The comment by Myers-Smith and Myers focuses on three main points: (i) the lack of a mechanistic explanation for climate-selection relationships, (ii) the appropriateness of the climate data used in our analysis, and (iii) our focus on estimating climate-selection relationships across (rather than within) taxonomic groups. We address these critiques in our response.

  • 433.
    Singer, David
    et al.
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland;Univ Sao Paulo, Inst Biosci, Dept Zool, Sao Paulo, Brazil.
    Mitchell, Edward A. D.
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland;Jardin Bot Neuchatel, Neuchatel, Switzerland.
    Payne, Richard J.
    Univ York, Environm, York, N Yorkshire, England.
    Blandenier, Quentin
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland;CSIC, Real Jardin Bot, Madrid, Spain.
    Duckert, Clement
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland.
    Fernandez, Leonardo D.
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland;Univ Bernardo OHiggins, Ctr Invest Recursos Nat & Sustentabilidad CIRENYS, Santiago, Chile.
    Fournier, Bertrand
    Concordia Univ, Dept Biol, Community & Quantitat Ecol Lab, Montreal, PQ, Canada.
    Hernandez, Cristian E.
    Barrio Univ Concepcion, Univ Concepcion, Dept Zool, Fac Ciencias Nat & Oceanog, Concepcion, Chile.
    Granath, Gustaf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Rydin, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Bragazza, Luca
    WSL Swiss Fed Inst Forest Snow & Landscape Res, Lausanne, Switzerland;Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn ENAC, Lab Ecol Syst ECOS, Lausanne, Switzerland;Univ Ferrara, Dept Life Sci & Biotechnol, Ferrara, Italy.
    Koronatova, Natalia G.
    Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Lab Biogeocenol, Novosibirsk, Russia.
    Goia, Irina
    Babes Bolyai Univ, Fac Biol & Geol, Dept Taxon & Ecol, Cluj Napoca, Romania.
    Harris, Lorna I.
    McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada.
    Kajukalo, Katarzyna
    Adam Mickiewicz Univ, Fac Geog & Geol Sci, Lab Wetland Ecol & Monitoring, Poznan, Poland;Adam Mickiewicz Univ, Dept Biogeog & Paleoecol, Poznan, Poland.
    Kosakyan, Anush
    Czech Acad Sci, Biol Ctr, Inst Parasitol, Ceske Budejovice, Czech Republic.
    Lamentowicz, Mariusz
    Adam Mickiewicz Univ, Fac Geog & Geol Sci, Lab Wetland Ecol & Monitoring, Poznan, Poland;Adam Mickiewicz Univ, Dept Biogeog & Paleoecol, Poznan, Poland.
    Kosykh, Natalia P.
    Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Lab Biogeocenol, Novosibirsk, Russia.
    Vellak, Kai
    Univ Tartu, Nat Hist Museum, Inst Ecol & Earth Sci, Tartu, Estonia.
    Lara, Enrique
    Univ Neuchatel, Inst Biol, Lab Soil Biodivers, Neuchatel, Switzerland;CSIC, Real Jardin Bot, Madrid, Spain.
    Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists2019Inngår i: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 28, nr 12, s. 3089-3100Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.

  • 434.
    Sjölander, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Exploring linkage disequilibrium to date admixture using ancient DNA2016Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
    Abstract [en]

    Admixture studies based on contemporary DNA are well studied and results from these have

    shown to correlate well with other evidence. The study of using ancient DNA for determining

    admixture times is a less explored alternative for determining admixture. Admixture-induced

    Linkage Disequilibrium for Evolutionary Relationships (ALDER) is an established tool for

    determining admixture time from contemporary DNA. This project investigates the use of

    ALDER on simulated ancient DNA to determine if it can be used in actual ancient DNA

    studies. The results from this project suggest that ALDER can be used in actual studies, with

    good accuracy and reliability.

  • 435. Skarpe, C.
    et al.
    Bergström, R.
    Makhabu, S.
    Rooke, T.
    Hytteborn, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Danell, K.
    Plant-Herbivore Interactions2014Inngår i: Elephants and Savanna Woodland Ecosystems: A Study from Chobe National Park, Botswana / [ed] C. Skarpe, J. T. du Toit and S. R. Moe, Wiley-Blackwell, 2014, s. 189-206Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    To a casual observer, the importance of large herbivores for ecosystem structure and dynamics can seem more obvious in African savannas than in many other ecosystems because of their high abundance, diversity and species richness of ungulates. African savannas have also had a long uninterrupted history of mammalian herbivory, leading to the evolution of plant traits adapted to herbivory and to reciprocal traits in herbivores. In nutrient-poor savannas such as those on Kalahari sand in the Chobe National Park, Botswana, elephants, Loxodonta africana, are a main agent creating spatial and temporal variation in the vegetation and ecosystems. Within this framework, elephants and smaller herbivores interact with individual plants and plant populations, exploiting and modifying heterogeneity at many scales. Intermittent grazing in systems of migratory or highly mobile herbivores provides food plants with a recovery period, and could be one reason for the 'success' and abundance of many migratory herbivore species.

  • 436. Skarpe, C.
    et al.
    Hytteborn, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Moe, S. R.
    Aarrestad, P. A.
    Historical Changes of Vegetation in the Chobe Area2014Inngår i: Elephants and Savanna Woodland Ecosystems: A Study from Chobe National Park, Botswana / [ed] Christina Skarpe, Johan T. du Toit and Stein R. Moe, Wiley-Blackwell, 2014, s. 43-60Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Elephants are the main agent shaping the vegetation (substrate), whereas soil properties and, at a larger scale, climate constitute major controllers of elephants' activities and of their effects on vegetation. However, elephants have not been the only agents of change in the Chobe ecosystem and its vegetation during the 150 or more turbulent years covered by this chapter. There have been others. The chapter discusses the vegetation dynamics that took place concurrently with the fall and rise of the elephant population following the ivory hunt in the end of the 20th century, and explains the relative importance of elephants, smaller herbivores and direct human impact through logging, burning and livestock grazing in causing these changes. The fall and rise of the Chobe elephant population during the last 150 or so years, has affected the vegetation on the relatively nutrient rich alluvium differently from that on the nutrient-deficient sand.

  • 437.
    Skoglund, Pontus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Evolutionsbiologi.
    Sjödin, Per
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Evolutionsbiologi.
    Skoglund, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datorteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Evolutionsbiologi.
    Lascoux, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Jakobsson, Mattias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Evolutionsbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Investigating population history using temporal genetic differentiation2014Inngår i: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 31, nr 9, s. 2516-2527Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The rapid advance of sequencing technology coupled with improvements in molecular methods for obtaining genetic data from ancient sources holds the promise of producing a wealth of genomic data from time-separated individuals. However, the population genetic properties of time-structured samples have not been extensively explored. Here, we consider the implications of temporal sampling for analyses of genetic differentiation, and use a temporal coalescent framework to show that complex historical events such as size reductions, population replacements, and transient genetic barriers between populations leave a footprint of genetic differentiation that can be traced through history using temporal samples. Our results emphasize explicit consideration of the temporal structure when making inferences, and indicate that genomic data from ancient individuals will greatly increase our ability to reconstruct population history.

  • 438.
    Sletvold, Nina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    The Context Dependence of Pollinator-Mediated Selection in Natural Populations2019Inngår i: International journal of plant sciences, ISSN 1058-5893, E-ISSN 1537-5315, Vol. 180, nr 9, s. 934-943Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pollinator-mediated selection to a large extent shapes angiosperm floral diversity, but clearly not in isolation. To understand how selection by pollinators interacts with other selective factors and depends on environmental context, studies that address multiple selective agents are necessary. Here, I illustrate how antagonistic interactions, community context, and resource availability may influence selection on floral traits. I discuss approaches to quantify the context dependence of pollinator-mediated selection, emphasizing experimental studies that manipulate pollination regime in combination with other putative selective factors. I also discuss how context dependence may differ between floral traits that affect pollinator attraction versus pollination efficiency. Finally, I suggest some areas where important progress can be made. A better understanding of the context dependence of pollinator-mediated selection is essential to predict when, where, and how environmental change will alter selection on floral traits.

  • 439.
    Sletvold, Nina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Dahlgren, Johan P.
    Oien, Dag-Inge
    Moen, Asbjorn
    Ehrlen, Johan
    Climate warming alters effects of management on population viability of threatened species: results from a 30-year experimental study on a rare orchid2013Inngår i: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 19, nr 9, s. 2729-2738Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large-scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30years of demographic data to estimate the simultaneous effects of management practice and among-year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions.

  • 440.
    Sletvold, Nina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Grindeland, John Magne
    Zu, Pengjuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Ågren, Jon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Strong inbreeding depression and local outbreeding depression in the rewarding orchid Gymnadenia conopsea2012Inngår i: Conservation Genetics, ISSN 1566-0621, E-ISSN 1572-9737, Vol. 13, nr 5, s. 1305-1315Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Conservation of species threatened by habitat fragmentation is a major global challenge, and determining the genetic and demographic processes associated with isolation and reductions in population size will be critical for an increasing number of species. We conducted controlled crosses and field germination experiments to quantify the effects of inbreeding and outbreeding in the declining orchid Gymnadenia conopsea in two Norwegian populations that differ in size. We further compared our results with published estimates of inbreeding depression in orchids. There was severe inbreeding depression for seed production (delta = 0.41-0.67) and germination (delta = 0.46-0.66) in both populations, with stronger inbreeding depression in the large population. Compared to outcrossing, selfing reduced female fitness (number of seeds per fruit x proportion of seeds germinating) by 76 and 54 % in the large and small population, respectively. The magnitude of inbreeding depression for seed production was higher than the average reported for orchids, while for germination it was similar to earlier estimates. The large population also experienced considerable outbreeding depression for seed production (delta = 0.23-0.27), germination (delta = 0.33) and female fitness (delta = 0.47) following crosses with a population 1.6 km away. The strong inbreeding depression indicates that both populations harbour a substantial genetic load, and suggests that fragmentation may reinforce population decline in G. conopsea via increased inbreeding. Moreover, the local outbreeding depression indicates substantial genetic differentiation at a moderate spatial scale. This has important implications for the use of crosses between populations or plant translocations as conservation approaches.

  • 441.
    Sletvold, Nina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Grindeland, John Magne
    Ågren, Jon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Vegetation context influences the strength and targets of pollinator-mediated selection in a deceptive orchid2013Inngår i: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 94, nr 6, s. 1236-1242Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Clarifying the relationship between environmental context and the adaptive significance of floral traits is fundamental for an understanding of spatial and temporal variation in pollinator-mediated selection. We manipulated vegetation height and pollination regime of the orchid Dactylorhiza lapponica in a factorial design to test whether pollinator-mediated selection on floral traits is stronger in tall than in short vegetation, and whether this difference is larger for visual traits affecting pollinator attraction than for traits affecting pollination efficiency. In tall vegetation, pollinators mediated strong selection for taller plants (change in selection gradient for pollination, Delta beta(poll) = 0.33), more flowers (Delta beta(poll) = 0.34), and longer spurs (Delta beta(poll) = 0.42). In short vegetation, there was no significant selection on plant height, and pollinator-mediated selection on number of flowers and spur length was reduced by 52% and 25%, respectively. The results demonstrate experimentally that vegetation context can markedly influence the strength of pollinator-mediated selection on visual display traits, and indicate that this effect is weaker for traits affecting pollination efficiency. The study illustrates how crossed manipulations of environmental factors can reveal the causal links between ecological context and selection on floral traits.

  • 442.
    Sletvold, Nina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Moritz, Kim K.
    Ågren, Jon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Additive effects of pollinators and herbivores result in both conflicting and reinforcing selection on floral traits2015Inngår i: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 96, nr 1, s. 214-221Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mutualists and antagonists are known to respond to similar floral cues, and may thus cause opposing selection on floral traits. However, we lack a quantitative understanding of their independent and interactive effects. In a population of the orchid Gymnadenia conopsea, we manipulated the intensity of pollination and herbivory in a factorial design to examine whether both interactions influence selection on flowering phenology, floral display, and morphology. Supplemental hand-pollination increased female fitness by 31% and one-quarter of all plants were damaged by herbivores. Both interactions contributed to selection. Pollinators mediated selection for later flowering and herbivores for earlier flowering, while both selected for longer spurs. The strength of selection was similar for both agents, and their effects were additive. As a consequence, there was no net selection on phenology, whereas selection on spur length was strong. The experimental results demonstrate that both pollinators and herbivores can markedly influence the strength of selection on flowering phenology and floral morphology, and cause both conflicting and reinforcing selection. They also indicate that the direction of selection on phenology will vary with the relative intensity of the mutualistic and antagonistic interaction, potentially resulting in both temporal and among-population variation in optimal flowering time.

  • 443.
    Sletvold, Nina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Mousset, Mathilde
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Hagenblad, Jenny
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Hansson, Bengt
    Ågren, Jon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Strong Inbreeding Depression In Two Scandinavian Populations Of The Self-Incompatible Perennial Herb Arabidopsis Lyrata2013Inngår i: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 67, nr 10, s. 2876-2888Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Inbreeding depression is a key factor influencing mating system evolution in plants, but current understanding of its relationship with selfing rate is limited by a sampling bias with few estimates for self-incompatible species. We quantified inbreeding depression () over two growing seasons in two populations of the self-incompatible perennial herb Arabidopsis lyrata ssp. petraea in Scandinavia. Inbreeding depression was strong and of similar magnitude in both populations. Inbreeding depression for overall fitness across two seasons (the product of number of seeds, offspring viability, and offspring biomass) was 81% and 78% in the two populations. Chlorophyll deficiency accounted for 81% of seedling mortality in the selfing treatment, and was not observed among offspring resulting from outcrossing. The strong reduction in both early viability and late quantitative traits suggests that inbreeding depression is due to deleterious alleles of both large and small effect, and that both populations experience strong selection against the loss of self-incompatibility. A review of available estimates suggested that inbreeding depression tends to be stronger in self-incompatible than in self-compatible highly outcrossing species, implying that undersampling of self-incompatible taxa may bias estimates of the relationship between mating system and inbreeding depression.

  • 444.
    Sletvold, Nina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Trunschke, Judith
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Smit, Mart
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Verbeek, Jeffrey
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Ågren, Jon
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid2016Inngår i: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 70, nr 3, s. 716-724Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency-dependent pollination. Pollinators mediated strong selection for increased petal brightness (Delta beta(poll) = 0.42) and contrast (Delta beta(poll) = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Delta gamma(poll) = -0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand-pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species.

  • 445.
    Sletvold, Nina