uu.seUppsala University Publications
Change search
Refine search result
1234567 51 - 100 of 785
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence for the H -> b(b)over-bar decay with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 24Article in journal (Refereed)
    Abstract [en]

    A search for the decay of the Standard Model Higgs boson into a b (b) over bar pair when produced in association with a W or Z boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb(-1), were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays Z -> vv, W -> lv and Z -> ll. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. The combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90 +/- 0.18(stat.)(-0.19)(+0.21)(syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to b-quarks in the Standard Model.

  • 52.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva.
    Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at √s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 085Article in journal (Refereed)
    Abstract [en]

    A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb(-1) of root s = 13 TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via (t) over tilde (1) -> t((*)) (chi) over tilde (0)(1) and (t) over tilde (1) -> b (chi) over tilde (+/-)(1) -> bW((*)) (chi) over tilde (0)(1), where (chi) over tilde (0)(1) ((chi) over tilde (+/-)(1) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to t (chi) over tilde (0)(1), top-squark masses in the range 450-1000 GeV are excluded for (chi) over tilde (0)(1) masses below 160 GeV. In the case where m((t) over tilde1) similar to m(t) + m((chi) over tilde 10), top-squark masses in the range 235-590 GeV are excluded.

  • 53. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for dark matter in association with a Higgs boson decaying to two photons at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 11, article id 112004Article in journal (Refereed)
    Abstract [en]

    A search for dark matter in association with a Higgs boson decaying to two photons is presented. This study is based on data collected with the ATLAS detector, corresponding to an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV in 2015 and 2016. No significant excess over the expected background is observed. Upper limits at 95% confidence level are set on the visible cross section for beyond the Standard Model physics processes, and the production cross section times branching fraction of the Standard Model Higgs boson decaying into two photons in association with missing transverse momentum in three different benchmark models. Limits at 95% confidence level are also set on the observed signal in two-dimensional mass planes. Additionally, the results are interpreted in terms of 90% confidence-level limits on the dark-matternucleon scattering cross section, as a function of the dark-matter particle mass, for a spin-independent scenario.

  • 54. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena in a lepton plus high jet multiplicity final state the ATLAS experiment using root S=13 TeV proton-proton collision data2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, article id 088Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in final states characterized by high jet multiplicity, an isolated lepton (electron or muon) and either zero or at least three b-tagged jets is presented. The search uses 36.1 fb−1 of s√=13s=13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider in 2015 and 2016. The dominant sources of background are estimated using parameterized extrapolations, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. No significant excess over the Standard Model expectation is observed and 95% confidence-level limits are extracted constraining four simplified models of R-parity-violating supersymmetry that feature either gluino or top-squark pair production. The exclusion limits reach as high as 2.1 TeV in gluino mass and 1.2 TeV in top-squark mass in the models considered. In addition, an upper limit is set on the cross-section for Standard Model tt¯tt¯tt¯tt¯ production of 60 fb (6.5 × the Standard Model prediction) at 95% confidence level. Finally, model-independent limits are set on the contribution from new phenomena to the signal-region yields.

  • 55. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena with large jet multiplicities and missing transverse momentum using large-radius jets and flavour-tagging at ATLAS in 13 TeV pp collisions2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 34Article in journal (Refereed)
    Abstract [en]

    A search is presented for particles that decay producing a large jet multiplicity and invisible particles. The event selection applies a veto on the presence of isolated electrons or muons and additional requirements on the number of b-tagged jets and the scalar sum of masses of large-radius jets. Having explored the full ATLAS 2015-2016 dataset of LHC proton-proton collisions at root s = 13 TeV, which corresponds to 36.1 fb(-1) of integrated luminosity, no evidence is found for physics beyond the Standard Model. The results are interpreted in the context of simplified models inspired by R-parity-conserving and R-parity-violating supersymmetry, where gluinos are pair-produced. More generic models within the phenomenological minimal supersymmetric Standard Model are also considered.

  • 56. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, M.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, M.U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, P.H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Study of WW gamma and WZ gamma production in pp collisions at root s=8 TeV and search for anomalous quartic gauge couplings with the ATLAS experiment2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 9, article id 646Article in journal (Refereed)
    Abstract [en]

    This paper presents a study of WW gamma and WZ gamma triboson production using events from proton-proton collisions at a centre-of-mass energy of root s = 8 TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb(-1). The WW gamma production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos (e upsilon mu upsilon gamma). Upper limits on the production cross-section of the e upsilon mu upsilon gamma final state and theWW gamma and WZ gamma final states containing an electron or a muon, two jets, a photon, and a neutrino (e upsilon j j gamma or mu upsilon j j gamma) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for newphysics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which WW gamma and WZ gamma production are sensitive.

  • 57.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    University of Belgrade, Institute of Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Université Grenoble-Alpes, Laboratoire de Physique Subatomique et de Cosmologie.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    DESY, Hamburg and Zeuthen.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    University of Washington, Department of Physics.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of top quark pair differential cross sections in the dilepton channel in pp collisions at √s=7 and 8 TeV with ATLAS2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 94, no 9, article id 092003Article in journal (Refereed)
    Abstract [en]

    Measurements of normalized differential cross sections of top quark pair (t¯t) production are presented as a function of the mass, the transverse momentum and the rapidity of the t¯t system in proton-proton collisions at center-of-mass energies of √s=7 and 8 TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1 at 7 TeV and 20.2  fb−1 at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a b hadron. The measured distributions are corrected for detector effects and selection efficiency to cross sections at the parton level. The differential cross sections are compared with different Monte Carlo generators and theoretical calculations of t¯t production. The results are consistent with the majority of predictions in a wide kinematic range.

  • 58.
    Aaboud, M.
    et al.
    Université Mohamed Premier, Faculté des Sciences, Oujda; LPTPM, Oujda.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    University of Belgrade, Institute of Physics, Belgrade.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Université Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    University of Washington, Department of Physics, Seattle WA.
    Zwalinski, L.
    CERN, Geneva.
    Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at √s=13 TeV with ATLAS2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 1, article id 063Article in journal (Refereed)
    Abstract [en]

    The inclusive cross-section for the associated production of a W boson and top quark is measured using data from proton-proton collisions at √s=13 TeV. The dataset corresponds to an integrated luminosity of 3.2 fb−1, and was collected in 2015 by the ATLAS detector at the Large Hadron Collider at CERN. Events are selected requiring two opposite sign isolated leptons and at least one jet; they are separated into signal and control regions based on their jet multiplicity and the number of jets that are identified as containing b hadrons. The W t signal is then separated from the t ($) over bar background using boosted decision tree discriminants in two regions. The cross-section is extracted by fitting templates to the data distributions, and is measured to be σ W t  = 94 ± 10(stat.) − 22 + 28 (syst.) ± 2(lumi.) pb. The measured value is in good agreement with the SM prediction of σtheory = 71.7±1.8 (scale)± 3.4 (PDF) pb [1].

  • 59. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC2017In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 13, no 9, p. 852-858Article in journal (Refereed)
    Abstract [en]

    Light-by-light scattering (gamma gamma -> gamma gamma) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using 480 mu b(-1) of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 +/- 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb (gamma gamma) -> Pb-(center dot) + Pb-(center dot) gamma gamma, for photon transverse energy E-T > 3 GeV, photon absolute pseudorapidity vertical bar eta vertical bar < 2.4, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 +/- 24 (stat.) +/- 17 (syst.) nb, which is in agreement with the standard model predictions.

  • 60. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet fragmentation in Pb plus Pb and pp collisions at root s(NN)=2.76 TeV with the ATLAS detector at the LHC2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 6, article id 379Article in journal (Refereed)
    Abstract [en]

    The distributions of transverse momentum and longitudinal momentum fraction of charged particles in jets are measured in Pb+Pb and pp collisions with the ATLAS detector at the LHC. The distributions are measured as a function of jet transverse momentum and rapidity. The analysis utilises an integrated luminosity of 0.14 nb(-1) of Pb+Pb data and 4.0 pb(-1) of pp data collected in 2011 and 2013, respectively, at the same centre-of-mass energy of 2.76 TeV per colliding nucleon pair. The distributions measured in pp collisions are used as a reference for those measured in Pb+Pb collisions in order to evaluate the impact on the internal structure of jets from the jet energy loss of fast partons propagating through the hot, dense medium created in heavy-ion collisions. Modest but significant centrality-dependent modifications of fragmentation functions in Pb+Pb collisions with respect to those in pp collisions are seen. No significant dependence of modifications on jet p(T) and rapidity selections is observed except for the fragments with the highest transverse momenta for which some reduction of yields is observed for more forward jets.

  • 61. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at √s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2017, no 10, article id 112Article in journal (Refereed)
    Abstract [en]

    This article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb−1 of pp collisions at s=13" role="presentation">s√=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model ppHZγ production and decay) upper limit on the production cross section times the branching ratio for ppHZγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level.

  • 62. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of lepton differential distributions and the topquark mass in tt¯ production in pp collisions at √s = 8TeV with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, article id 804Article in journal (Refereed)
    Abstract [en]

    This paper presents single lepton and dilepton kinematic distributions measured in dileptonic tt¯ events produced in 20.2fb−1 of s√=8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge eμ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of mpolet=173.2±0.9±0.8±1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.

  • 63. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of multi-particle azimuthal correlations in pp, p plus Pb and low-multiplicity Pb plus Pb collisions with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 6, article id 428Article in journal (Refereed)
    Abstract [en]

    Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in pp collisions at root S = 5.02 and 13 TeV and in p + Pb collisions at root S-NN = 5.02 TeV, and compared to the results obtained for low-multiplicity Pb + Pb collisions at root S-NN = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in p + Pb and low-multiplicity Pb + Pb collisions. On the other hand, the pp results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in Pb + Pb, smaller in p + Pb and smallest in pp collisions. The pp results show no dependence on the collision energy, nor on the multiplicity.

  • 64. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Dark Matter Produced in Association with a Higgs Boson Decaying to b¯b Using 36  fb−1 of pp Collisions at √s=13  TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 18, article id 181804Article in journal (Refereed)
    Abstract [en]

    Several extensions of the standard model predict associated production of dark-matter particles with a Higgs boson. Such processes are searched for in final states with missing transverse momentum and a Higgs boson decaying to a b¯b pair with the ATLAS detector using 36.1  fb−1 of pp collisions at a center-of-mass energy of 13 TeV at the LHC. The observed data are in agreement with the standard model predictions and limits are placed on the associated production of dark-matter particles and a Higgs boson.

  • 65. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at root s=8 TeV with the ATLAS Detector2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 19, article id 191803Article in journal (Refereed)
    Abstract [en]

    A search for heavy pseudoscalar (A) and scalar (H) Higgs bosons decaying into a top quark pair (t (t) over bar) has been performed with 20.3 fb(-1) of proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy root s = 8 TeV. Interference effects between the signal process and standard model t (t) over bar production, which are expected to distort the signal shape from a single peak to a peak-dip structure, are taken into account. No significant deviation from the standard model prediction is observed in the t (t) over bar invariant mass spectrum in final states with an electron or muon, large missing transverse momentum, and at least four jets. The results are interpreted within the context of a type-II two-Higgs-doublet model. Exclusion limits on the signal strength are derived as a function of the mass m(A/H) and the ratio of the vacuum expectation values of the two Higgs fields, tan beta, for m(A/H) > 500 GeV.

  • 66. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new high-mass phenomena in the dilepton final state using 36 fb−1 of proton-proton collision data at √s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 182Article in journal (Refereed)
    Abstract [en]

    A search is conducted for new resonant and non-resonant high-mass phenomena in dielectron and dimuon final states. The search uses 36.1 fb−1 of proton-proton collision data, collected at s=13" role="presentation">s√=13 TeV by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the Standard Model prediction is observed. Upper limits at 95% credibility level are set on the cross-section times branching ratio for resonances decaying into dileptons, which are converted to lower limits on the resonance mass, up to 4.1 TeV for the E6-motivated Z χ . Lower limits on the qqℓℓ contact interaction scale are set between 2.4 TeV and 40 TeV, depending on the model.

  • 67. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for supersymmetry in events with b-tagged jets and missing transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 11, article id 195Article in journal (Refereed)
    Abstract [en]

    A search for the supersymmetric partners of the Standard Model bottom and top quarks is presented. The search uses 36.1 fb(-1) of pp collision data at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Direct production of pairs of bottom and top squarks ((b) over bar (1) and (t) over bar (1)) is searched for in final states with b-tagged jets and missing transverse momentum. Distinctive selections are de fi ned with either no charged leptons (electrons or muons) in the fi nal state, or one charged lepton. The zero-lepton selection targets models in which the (b) over bar (1) is the lightest squark and decays via (b) over bar (1) -> b((chi) over bar1)(0), where (chi) over bar (0)(1) is the lightest neutralino. The one-lepton fi nal state targets models where bottom or top squarks are produced and can decay into multiple channels, (b) over bar (1) -> b((chi) over bar1)(0) and (b) over bar (1) -> b((chi) over bar1)(+/-), or (t) over bar (1) -> t((chi) over bar1)(0) and (t) over bar (1) -> b((chi) over bar1)(+/-), where (X) over bar (+/-)(1) is the lightest chargino and the mass difference m((chi) over bar1)(+/-) - m((chi) over bar1)(0) is set to 1 GeV. No excess above the expected Standard Model background is observed. Exclusion limits at 95% con fi dence level on the mass of third-generation squarks are derived in various supersymmetry-inspired simpli fi ed models.

  • 68. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Study of ordered hadron chains with the ATLAS detector2017In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 96, article id 092008Article in journal (Refereed)
    Abstract [en]

    The analysis of the momentum difference between charged hadrons in high-energy proton-proton collisions is performed in order to study coherent particle production. The observed correlation pattern agrees with a model of a helical QCD string fragmenting into a chain of ground-state hadrons. A threshold momentum difference in the production of adjacent pairs of charged hadrons is observed, in agreement with model predictions. The presence of low-mass hadron chains also explains the emergence of charge-combination-dependent two-particle correlations commonly attributed to Bose-Einstein interference. The data sample consists of 190  μb−1 of minimum-bias events collected with proton-proton collisions at a center-of-mass energy √s=7  TeV in the early low-luminosity data taking with the ATLAS detector at the LHC.

  • 69. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at root s=8 TeV with the ATLAS detector2017In: Physical review D, ISSN 2470-0010, Vol. 95, no 11, article id 112005Article in journal (Refereed)
    Abstract [en]

    A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of root s = 8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb(-1) recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying vertical bar eta(gamma)vertical bar< 1.37 or 1.56 <vertical bar eta(gamma)vertical bar< 2.37 and transverse energies of respectively E-T,1(gamma) > 40 GeV and E-T,2(gamma) > 30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 +/- 0.8 pb. The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%.

  • 70. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at √s=13 TeV using the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 191Article in journal (Refereed)
    Abstract [en]

    Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and t (t) over bar system kinematic observables in proton-proton collisions at a centre-of-mass energy of root s = 13TeV. The data set corresponds to an integrated luminosity of 3.2 fb(-1), recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the t (t) over bar final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated chi(2) and p-values.

  • 71. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for dark matter at root s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 6, article id 393Article in journal (Refereed)
    Abstract [en]

    Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750-1200 GeV for dark-matter candidate masses below 230-480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M-* to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Z gamma and the Z boson subsequently decays into neutrinos.

  • 72. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the q(q)over-bar(('))b(b)over-bar final state in pp collisions at root s =13 TeV with the ATLAS detector2017In: Physics Letters, ISSN 0370-2693, Vol. 774, p. 494-515Article in journal (Refereed)
    Abstract [en]

    A search for heavy resonances decaying to a W or Z boson and a Higgs boson in the q(q)over-bar(('))b(b)over-bar final state is described. The search uses 36.1 fb(-1)of proton-proton collision data at root s = 13 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2015 and 2016. The data are in agreement with the Standard Model expectations, with the largest excess found at a resonance mass of 3.0 TeV with a local (global) significance of 3.3 (2.1) sigma. The results are presented in terms of constraints on a simplified model with a heavy vector triplet. Upper limits are set on the production cross-section times branching ratio for resonances decaying to a W (Z) boson and a Higgs boson, itself decaying to b(b)over-bar, in the mass range between 1.1 and 3.8 TeV at 95% confidence level; the limits range between 83 and 1.6 fb (77 and 1.1 fb) at 95% confidence level.

  • 73. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for pair production of heavy vector-like quarks decaying to high-p(T) W bosons and b quarks in the lepton-plus-jets final state in pp collisions at root s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 141Article in journal (Refereed)
    Abstract [en]

    A search is presented for the pair production of heavy vector-like T quarks, primarily targeting the T quark decays to a W boson and a b-quark. The search is based on 36: 1 fb(-1) of pp collisions at root s = 13TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, including at least one b-tagged jet and a large-radius jet identified as originating from the hadronic decay of a high-momentum W boson. No significant deviation from the Standard Model expectation is observed in the reconstructed T mass distribution. The observed 95% confidence level lower limit on the T mass are 1350 GeV assuming 100% branching ratio to Wb. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying to Wt and other final states. The results are thus reinterpreted to provide a 95% con fidence level lower limit on the B quark mass at 1250 GeV assuming 100% branching ratio to Wt; in the SU(2) singlet scenario, the limit is 1080 GeV. Mass limits on both T and B production are also set as a function of the decay branching ratios. The 100% branching ratio limits are found to be applicable to heavy vector-like Y and X production that decay to Wb and Wt, respectively.

  • 74. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Georg August Univ, Phys Inst 2, Gottingen, Germany.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, Pedro Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the W-boson mass in pp collisions at root s=7 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, article id 110Article in journal (Refereed)
    Abstract [en]

    A measurement of the mass of the W boson is presented based on proton-proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb(-1) of integrated luminosity. The selected data sample consists of 7.8 x 10(6) candidates in the W -> mu nu channel and 5.9 x 10(6) candidates in the W -> e nu channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding

    m(W) = 80370 +/- 7 (stat.) +/- 11(exp. syst.)

    +/- 14 (mod. syst.) MeV

    = 80370 +/- 19 MeV,

    where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W- bosons yields m(W+) - m(W-) = -29 +/- 28 MeV.

  • 75. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of top-quark pair to Z-boson cross-section ratios at root s=13, 8, 7 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 2, article id 117Article in journal (Refereed)
    Abstract [en]

    Ratios of top-quark pair to Z-boson cross sections measured from proton-proton collisions at the LHC centre-of-mass energies of s√=13s=13 TeV, 8 TeV, and 7 TeV are presented by the ATLAS Collaboration. Single ratios, at a given s√s for the two processes and at different s√s for each process, as well as double ratios of the two processes at different s√s , are evaluated. The ratios are constructed using previously published ATLAS measurements of the tt¯tt¯ and Z-boson production cross sections, corrected to a common phase space where required, and a new analysis of Z → ℓ+ℓ− where ℓ = e, μ at s√=13s=13 TeV performed with data collected in 2015 with an integrated luminosity of 3.2 fb−1. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the Z → e+e− and the Z → μ+μ− channels for each s√s value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-x values near 0.1 and the light-quark sea for x < 0.02.

  • 76. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet pT correlations in Pb + Pb and pp collisions at √sNN=2.76TeV" role="presentation"> with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 774, p. 379-402Article in journal (Refereed)
    Abstract [en]

    Measurements of dijet Pt correlations in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of root s(NN) = 2.76 TeV are presented. The measurements are performed with the ATLAS detector at the Large Hadron Collider using Pb+Pb and pp data samples corresponding to integrated luminosities of 0.14 nb(-1)and 4.0 pb(-1) respectively. Jets are reconstructed using the anti-k(t) algorithm with radius parameter values R = 0.3 and R = 0.4. A background subtraction procedure is applied to correct the jets for the large underlying event present in Pb+Pb collisions. The leading and sub-leading jet transverse momenta are denoted p(T1) and p(T2). An unfolding procedure is applied to the two-dimensional (p(T1) , p(T2)) distributions to account for experimental effects in the measurement of both jets. Distributions of (1/N)dN/dx(J), where X-J = p(T2)/p(T1) , are presented as a function of p(T1) and collision centrality. The distributions are found to be similar in peripheral Pb+Pb collisions and pp collisions, but highly modified in central Pb+Pb collisions. Similar features are present in both the R = 0.3 and R = 0.4 results, indicating that the effects of the underlying event are properly accounted for in the measurement. The results are qualitatively consistent with expectations from partonic energy loss models.

  • 77. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet pT correlations in Pb + Pb and pp collisions at √sNN=2.76TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, Vol. 774, p. 379-402Article in journal (Refereed)
    Abstract [en]

    Measurements of dijet Pt correlations in Pb+Pb and pp collisions at a nucleon-nucleon centre-of-mass energy of root s(NN) = 2.76 TeV are presented. The measurements are performed with the ATLAS detector at the Large Hadron Collider using Pb+Pb and pp data samples corresponding to integrated luminosities of 0.14 nb(-1)and 4.0 pb(-1) respectively. Jets are reconstructed using the anti-k(t) algorithm with radius parameter values R = 0.3 and R = 0.4. A background subtraction procedure is applied to correct the jets for the large underlying event present in Pb+Pb collisions. The leading and sub-leading jet transverse momenta are denoted p(T1) and p(T2). An unfolding procedure is applied to the two-dimensional (p(T1) , p(T2)) distributions to account for experimental effects in the measurement of both jets. Distributions of (1/N)dN/dx(J), where X-J = p(T2)/p(T1) , are presented as a function of p(T1) and collision centrality. The distributions are found to be similar in peripheral Pb+Pb collisions and pp collisions, but highly modified in central Pb+Pb collisions. Similar features are present in both the R = 0.3 and R = 0.4 results, indicating that the effects of the underlying event are properly accounted for in the measurement. The results are qualitatively consistent with expectations from partonic energy loss models.

  • 78. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Charged-particle distributions at low transverse momentum in root s=13 TeV pp interactions measured with the ATLAS detector at the LHC2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 9, article id 502Article in journal (Refereed)
    Abstract [en]

    Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 mu b(-1). The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

  • 79. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet activity in top quark events using the e mu final state with two b-tagged jets in pp collisions at root s=8 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 9, article id 074Article in journal (Refereed)
    Abstract [en]

    Measurements of the jet activity in t (t) over bar events produced in proton-proton collisions at root s = 8 TeV are presented, using 20.3 fb(-1) of data collected by the ATLAS experiment at the Large Hadron Collider. The events were selected in the dilepton e mu decay channel with two identified b-jets. The numbers of additional jets for various jet transverse momentum ( p(T)) thresholds, and the normalised differential cross-sections as a function of p(T) for the five highest-p(T) additional jets, were measured in the jet pseudorapidity range broken vertical bar eta broken vertical bar < 4.5. The gap fraction, the fraction of events which do not contain an additional jet in a central rapidity region, was measured for several rapidity intervals as a function of the minimum p(T) of a single jet or the scalar sum of p(T) of all additional jets. These fractions were also measured in different intervals of the invariant mass of the e mu b<(b)over bar> b system. All measurements were corrected for detector effects, and found to be mostly well-described by predictions from next-to-leading-order and leading-order t (t) over bar t event generators with appropriate parameter choices. The results can be used to further optimise the parameters used in such generators.

  • 80. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in root s=13 TeV pp collisions with the ATLAS detector2016In: Physical Review D, ISSN 2470-0010, Vol. 94, no 5, article id 052009Article in journal (Refereed)
    Abstract [en]

    The results of a search for the top squark, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC pp collision data at a center-of-mass energy of root s = 13 TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb(-1). The analysis targets two types of signal models: gluino-mediated pair production of top squarks with a nearly mass-degenerate top squark and neutralino and direct pair production of top squarks, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and top squark masses are set at 95% confidence level. The results extend the LHC run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low top squark mass region and add an excluded top squark mass region from 745 to 780 GeV for the direct top squark model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vectorlike top quarks.

  • 81. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena in different-flavour high-mass dilepton final states in pp collisions at root s=13Tev with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 10, article id 541Article in journal (Refereed)
    Abstract [en]

    A search is performed for a heavy particle decaying into different flavour dilepton pairs (, or ), using 3.2 fb of proton-proton collision data at TeV collected in 2015 by the ATLAS detector at the Large Hadron Collider. No excess over the Standard Model prediction is observed. Limits at the 95 % credibility level are set on the mass of a boson with lepton-flavour-violating couplings at 3.0, 2.7 and 2.6 TeV, and on the mass of a supersymmetric sneutrino with R-parity-violating couplings at 2.3, 2.2 and 1.9 TeV, for , and final states, respectively. The results are also interpreted as limits on the threshold mass for quantum black hole production.

  • 82. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Searches for heavy diboson resonances in pp collisions at root S=13 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 9, article id 173Article in journal (Refereed)
    Abstract [en]

    Searches for new heavy resonances decaying to WW, WZ, and ZZ bosons are presented, using a data sample corresponding to 3.2 fb(-1) of pp collisions at root S = 13 TeV collected with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting vvqq, lvqq, llqq and qqqq final states are combined, searching for a narrow-width resonance with mass between 500 and 3000 GeV. The discriminating variable is either an invariant mass or a transverse mass. No significant deviations from the Standard Model predictions are observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 graviton. Cross-section limits are set at the 95% confidence level and are compared to theoretical cross-section predictions for a variety of models. The data exclude a scalar singlet with mass below 2650 GeV, a heavy vector-boson triplet with mass below 2600 GeV, and a graviton with mass below 1100 GeV. These results significantly extend the previous limits set using pp collisions at root S = 8 TeV.

  • 83. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gardin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search For The Standard Model Higgs Boson Produced Byvector-Boson Fusion And Decaying To Bottom Quarks In Roots=8Tev Pp Collisions With The Atlas Detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 112Article in journal (Refereed)
    Abstract [en]

    A search with the ATLAS detector is presented for the Standard Model Higgs boson produced by vector-boson fusion and decaying to a pair of bottom quarks, using 20.2 fb−1 of LHC proton-proton collision data at s√=8s=8 TeV. The signal is searched for as a resonance in the invariant mass distribution of a pair of jets containing b-hadrons in vector-boson-fusion candidate events. The yield is measured to be −0.8 ± 2.3 times the Standard Model cross-section for a Higgs boson mass of 125 GeV. The upper limit on the cross-section times the branching ratio is found to be 4.4 times the Standard Model cross-section at the 95% confidence level, consistent with the expected limit value of 5.4 (5.7) in the background-only (Standard Model production) hypothesis.

  • 84. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joachim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander K
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for pair production of Higgs bosons in the b¯bb¯b final state using proton-proton collisions at √s=13  TeV with the ATLAS detector2016In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 94, article id 052002Article in journal (Refereed)
    Abstract [en]

    A search for Higgs-boson pair production in the b¯bb¯b final state is carried out with 3.2  fb−1 of proton-proton collision data collected at √s=13  TeV with the ATLAS detector. The data are consistent with the estimated background and are used to set upper limits on the production cross section of Higgs-boson pairs times branching ratio to b¯bb¯b for both nonresonant and resonant production. In the case of resonant production of Kaluza-Klein gravitons within the Randall-Sundrum model, upper limits in the 24 to 91 fb range are obtained for masses between 600 and 3000 GeV, at the 95% confidence level. The production cross section times branching ratio for nonresonant Higgs-boson pairs is also constrained to be less than 1.22 pb, at the 95% confidence level.

  • 85. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in s√=8 TeV proton-proton collisions2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, article id 175Article in journal (Refereed)
    Abstract [en]

    A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at s√=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ~01) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ~01) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.

  • 86. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the relative width difference of the B-0-(B)over-bar(0) system with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 6, article id 081Article in journal (Refereed)
    Abstract [en]

    This paper presents the measurement of the relative width difference Delta Gamma(d)/Gamma(d) of the B-0-(B) over bar (0) system using the data collected by the Lambda TLAS experiment at the LHC in pp collisions at root s = 7 TeV and root s= 8 TeV and corresponding to an integrated luminosity of 25.2 fb(-1). The value of Delta Gamma(d)/Gamma(d) is obtained by comparing the decay-time distributions of B-0 -> J/Psi K-S and (B) over bar (0) -> J/Psi K*(0)(892) decays. The result is Delta Gamma(d)/Gamma(d) = (-0.1 +/- 1.1 (stat.) +/- 0.9 (syst.)) x 10(-2). Currently, this is the most precise single measurement of AFd/Fd. It agrees with the Standard Model prediction and the measurements by other experiments.

  • 87. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for metastable heavy charged particles with large ionization energy loss in pp collisions at root s=13 TeV using the ATLAS experiment2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 93, no 11, article id 112015Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for massive charged long-lived particles produced in pp collisions at root s = 13 TeV at the LHC using the ATLAS experiment. The data set used corresponds to an integrated luminosity of 3.2 fb(-1). Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the root s = 8 TeV data set, thanks to the increase in expected signal cross section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross sections and masses are set. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to q (q) over bar plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 and 1590 GeV. In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.

  • 88. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 6, article id 059Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton-proton collisions at a centre-of- mass energy of 13TeV and correspond to an integrated luminosity of 3.2 fb(-1). The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses below 710 GeV for dark matter candidate masses below 150 GeV. In an effective theory of dark matter production, values of the suppression scale M-* up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding M-D up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20 40% depending on the number of additional spatial dimensions when applying a truncation procedure.

  • 89. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for squarks and gluinos in final states with jets and missing transverse momentum at root s=13 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 7, article id 392Article in journal (Refereed)
    Abstract [en]

    A search for squarks and gluinos in final states containing hadronic jets, missing transverse momentum but no electrons or muons is presented. The data were recorded in 2015 by the ATLAS experiment in root s = 13 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 3.2 fb(-1) of analyzed data. Results are interpreted within simplified models that assume R-parity is conserved and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95 % confidence level on the mass of the gluino is set at 1.51 TeV for a simplified model incorporating only a gluino octet and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.03 TeV are excluded for a massless lightest neutralino. These limits substantially extend the region of supersymmetric parameter space excluded by previous measurements with the ATLAS detector.

  • 90. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at root s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 520-537Article in journal (Refereed)
    Abstract [en]

    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb (1) of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at root s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

  • 91. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 647-665Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived charged R-hadronsis reported using a data sample corresponding to 3.2fb(-1)of proton-proton collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadronsin the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

  • 92. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 11, article id 111802Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained.

  • 93. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at root s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 086Article in journal (Refereed)
    Abstract [en]

    A measurement of the t-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+jets channel is presented, using 3.2 fb−1 of proton-proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be b-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be σ(tq) = 156 ± 5 (stat.) ± 27 (syst.) ± 3 (lumi.) pb for single top-quark production and σ(t¯q)=91±4 (stat.) ± 18 (syst.) ± 2 (lumi.) pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be Rt=σ(tq)/σ(t¯q)=1.72±0.09 (stat.) ± 0.18 (syst.). All results are in agreement with Standard Model predictions.

  • 94. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the t(t)over-barZ and t(t)over-barW production cross sections in multilepton final states using 3.2 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 1, article id 40Article in journal (Refereed)
    Abstract [en]

    A measurement of the t (t) over barZ and t (t) over barW production cross sections in final states with either two same-charge muons, or three or four leptons (electrons or muons) is presented. The analysis uses a data sample of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015, corresponding to a total integrated luminosity of 3.2 fb(-1). The inclusive cross sections are extracted using likelihood fits to signal and control regions, resulting in sigma(t (t) over barZ) = 0.9 +/- 0.3 pb and sigma(t (t) over barW) = 1.5 +/- 0.8 pb, in agreement with the Standard Model predictions.

  • 95. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the W-+/- Z boson pair-production cross section in pp collisions at root s=13 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 762, p. 1-22Article in journal (Refereed)
    Abstract [en]

    The production of W-+/- Z events in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb(-1). The W-+/- Z candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is sigma(fid.)(W +/- Z -> L'vll) = 63.2 +/- 3.2 (stat.) +/- 2.6 (sys.) +/- 1.5 (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is 53.4(-2.8)(+3.6) fb. The extrapolation of the measurement from the fiducial to the total phase space yields sigma(tot.)(W +/- Z) = 50.6 +/- 2.6 (stat.) +/- 2.0 (sys.) +/- 0.9 (th.) +/- 1.2 (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of 48.2(-1.0)(+1.1) pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent W+ Z and W- Z cross sections and their ratio.

  • 96. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 5, article id 332Article in journal (Refereed)
    Abstract [en]

    This paper presents the method and performance of primary vertex reconstruction in proton-proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of root s = 8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30 mu m is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20 mu m and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing.

  • 97. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 762, p. 334-352Article in journal (Refereed)
    Abstract [en]

    A search for W' bosons in events with one lepton (electron or muon) and missing transverse momentum is presented. The search uses 3.2 fb(-1) of pp collision data collected at root s = 13 TeV by the ATLAS experiment at the LHC in 2015. The transverse mass distribution is examined and no significant excess of events above the level expected from Standard Model processes is observed. Upper limits on the W' boson cross-section times branching ratio to leptons are set as a function of the W' mass. Within the Sequential Standard Model W' masses below 4.07 TeV are excluded at the 95% confidence level. This extends the limit set using LHC data at root s = 8 TeV by around 800 GeV.

  • 98. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Study of the rare decays of B-s(0) and B-0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 9, article id 513Article in journal (Refereed)
    Abstract [en]

    A study of the decays B-s(0) -> mu(+)mu(-) and B-0 -> mu(+)mu(-) has been performed using data corresponding to an integrated luminosity of 25 fb(-1) of 7 and 8 TeV proton-proton collisions collected with the ATLAS detector during the LHC Run 1. For the B-0 dimuon decay, an upper limit on the branching fraction is set at B(B-0 -> mu(+)mu(-)) < 4.2 x 10(-10) at 95% confidence level. For B-s(0), the branching fraction B(B-s(0) -> mu(+)mu(-)) = (0.9(-0.8)(+1.1)) x 10(-9) is measured. The results are consistent with the Standard Model expectation with a p value of 4.8%, corresponding to 2.0 standard deviations.

  • 99. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 1, article id 26Article in journal (Refereed)
    Abstract [en]

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb(-1) of proton-proton collision data at root s = 7 TeV from 2010 and 0.1 nb(-1) of data at root s = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of GEANT4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.

  • 100. Aaboud, M.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P.O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of forward-backward multiplicity correlations in lead-lead, proton-lead, and proton-proton collisions with the ATLAS detector2017In: Physical review C, ISSN 2469-9985, Vol. 95, no 6, article id 064914Article in journal (Refereed)
    Abstract [en]

    Two-particle pseudorapidity correlations are measured in root s(NN) = 2.76 TeV Pb + Pb, root s(NN) = 5.02 TeV p+Pb, and root s = 13 TeV pp collisions at the Large Hadron Collider (LHC), with total integrated luminosities of approximately 7 mu b(-1), 28 nb(-1), and 65 nb(-1), respectively. The correlation function CN(eta(1),eta(2))is measured as a function of event multiplicity using charged particles in the pseudorapidity range |eta| < 2.4. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by 1 + < a(1)(2)>(1/2) eta(1) eta(2) in all collision systems over the full multiplicity range. The values of < a(1)(2)>(1/2) are consistent for the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of < a(1)(2)>(1/2) and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The short-range component in p + Pb collisions, after symmetrizing the proton and lead directions, is found to be smaller at a given eta than in pp collisions with comparable multiplicity.

1234567 51 - 100 of 785
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf