Next- generation sequencing has revealed novel recurrent mutations in chronic lymphocytic leukemia, particularly in patients with aggressive disease. Here, we explored targeted re- sequencing as a novel strategy to assess the mutation status of genes with prognostic potential. To this end, we utilized HaloPlex targeted enrichment technology and designed a panel including nine genes: ATM, BIRC3, MYD88, NOTCH1, SF3B1 and TP53, which have been linked to the prognosis of chronic lymphocytic leukemia, and KLHL6, POT1 and XPO1, which are less characterized but were found to be recurrently mutated in various sequencing studies. A total of 188 chronic lymphocytic leukemia patients with poor prognostic features ( unmutated IGHV, n= 137; IGHV3- 21 subset # 2, n= 51) were sequenced on the HiSeq 2000 and data were analyzed using well- established bioinformatics tools. Using a conservative cutoff of 10% for the mutant allele, we found that 114/ 180 ( 63%) patients carried at least one mutation, with mutations in ATM, BIRC3, NOTCH1, SF3B1 and TP53 accounting for 149/ 177 ( 84%) of all mutations. We selected 155 mutations for Sanger validation ( variant allele frequency, 10- 99%) and 93% ( 144/ 155) of mutations were confirmed; notably, all 11 discordant variants had a variant allele frequency between 11- 27%, hence at the detection limit of conventional Sanger sequencing. Technical precision was assessed by repeating the entire HaloPlex procedure for 63 patients; concordance was found for 77/ 82 ( 94%) mutations. In summary, this study demonstrates that targeted next- generation sequencing is an accurate and reproducible technique potentially suitable for routine screening, eventually as a stand- alone test without the need for confirmation by Sanger sequencing.
PURPOSE:
IgG-switched chronic lymphocytic leukemia (G-CLL) is a rare variant of CLL, whose origin and ontogenetic relationship to the common IgM/IgD (MD-CLL) variant remains undefined. Here we sought for clues regarding the ontogeny of G-CLL versus MD-CLL by profiling the relevant IG gene repertoires.
EXPERIMENTAL DESIGN:
Using purpose-built bioinformatics methods, we performed detailed immunogenetic profiling of a multinational CLL cohort comprising 1256 cases, of which 1087 and 169 expressed IG mu/delta and gamma heavy chains, respectively.
RESULTS:
G-CLL has a highly skewed IG gene repertoire that is distinct from MD-CLL, especially in terms of: (i) overuse of the IGHV4-34 and IGHV4-39 genes; and, (ii) differential somatic hypermutation (SHM) load. Repertoire differences held also when comparing subgroups with similar SHM status and were mainly attributed to the exclusive representation in G-CLL of two major subsets with quasi-identical (stereotyped) B-cell receptors. These subsets, namely #4 (IGHV4-34/IGKV2-30) and #8 (IGHV4-39/IGKV1(D)-39), were found to display sharply contrasting SHM and clinical behavior.
CONCLUSIONS:
G-CLL exhibits an overall distinct immunogenetic signature from MD-CLL, prompting speculations about distinct ontogenetic derivation and/or immune triggering. The reasons underlying the differential regulation of SHM among G-CLL cases remain to be elucidated.
The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (R-g = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChlP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies.
The genetic mechanisms underlying disease progression, relapse and therapy resistance in mantle cell lymphoma (MCL) remain largely unknown. Whole-exome sequencing was performed in 27 MCL samples from 13 patients, representing the largest analyzed series of consecutive biopsies obtained at diagnosis and/or relapse for this type of lymphoma. Eighteen genes were found to be recurrently mutated in these samples, including known (ATM, MEF2B and MLL2) and novel mutation targets (S1PR1 and CARD11). CARD11, a scaffold protein required for B-cell receptor (BCR)-induced NF-kappa B activation, was subsequently screened in an additional 173 MCL samples and mutations were observed in 5.5% of cases. Based on in vitro cell line-based experiments, overexpression of CARD11 mutants were demonstrated to confer resistance to the BCR-inhibitor ibrutinib and NF-kappa B-inhibitor lenalidomide. Genetic alterations acquired in the relapse samples were found to be largely non-recurrent, in line with the branched evolutionary pattern of clonal evolution observed in most cases. In summary, this study highlights the genetic heterogeneity in MCL, in particular at relapse, and provides for the first time genetic evidence of BCR/NF-kappa B activation in a subset of MCL.
Purpose: We sought to investigate whether B cell receptor immunoglobulin (BcR IG) stereotypy is associated with particular clinicobiological features among chronic lymphocytic leukemia (CLL) patients expressing mutated BcR IG (M-CLL) encoded by the IGHV4-34 gene, and also ascertain whether these associations could refine prognostication. Experimental Design: In a series of 19,907 CLL cases with available immunogenetic information, we identified 339 IGHV4-34expressing cases assigned to one of the four largest stereotyped M-CLL subsets, namely subsets #4, #16, #29 and #201, and investigated in detail their clinicobiological characteristics and disease outcomes. Results: We identified shared and subset-specific patterns of somatic hypermutation (SHM) among patients assigned to these subsets. The greatest similarity was observed between subsets #4 and #16, both including IgG-switched cases (IgG-CLL). In contrast, the least similarity was detected between subsets #16 and #201, the latter concerning IgM/D-expressing CLL. Significant differences between subsets also involved disease stage at diagnosis and the presence of specific genomic aberrations. IgG subsets #4 and #16 emerged as particularly indolent with a significantly (P < 0.05) longer time-to-first-treatment (TTFT; median TTFT: not yet reached) compared with the IgM/D subsets #29 and #201 (median TTFT: 11 and 12 years, respectively). Conclusions: Our findings support the notion that BcR IG stereotypy further refines prognostication in CLL, superseding the immunogenetic distinction based solely on SHM load. In addition, the observed distinct genetic aberration landscapes and clinical heterogeneity suggest that not all M-CLL cases are equal, prompting further research into the underlying biological background with the ultimate aim of tailored patient management.
Recurrent mutations within EGR2 were recently reported in advanced-stage chronic lymphocytic leukemia (CLL) patients and associated with a worse outcome. To study their prognostic impact, 2403 CLL patients were examined for mutations in the EGR2 hotspot region including a screening (n = 1283) and two validation cohorts (UK CLL4 trial patients, n = 366; CLL Research Consortium (CRC) patients, n = 490). Targeted deep-sequencing of 27 known/postulated CLL driver genes was also performed in 38 EGR2-mutated patients to assess concurrent mutations. EGR2 mutations were detected in 91/2403 (3.8%) investigated cases, and associated with younger age at diagnosis, advanced clinical stage, high CD38 expression and unmutated IGHV genes. EGR2- mutated patients frequently carried ATM lesions (42%), TP53 aberrations (18%) and NOTCH1/FBXW7 mutations (16%). EGR2 mutations independently predicted shorter time-to-first-treatment (TTFT) and overall survival (OS) in the screening cohort; they were confirmed associated with reduced TTFT and OS in the CRC cohort and independently predicted short OS from randomization in the UK CLL4 cohort. A particularly dismal outcome was observed among EGR2-mutated patients who also carried TP53 aberrations. In summary, EGR2 mutations were independently associated with an unfavorable prognosis, comparable to CLL patients carrying TP53 aberrations, suggesting that EGR2-mutated patients represent a new patient subgroup with very poor outcome.