uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1234567 51 - 100 av 938
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Bilingual Scientific Literacy2011Ingår i: Exploring the Landscape of Scientific Literacy / [ed] Cedric Linder, Leif Östman, Douglas Roberts, Per-Olof Wickman, Gaalen Erickson, Allan MacKinnon, New York: Routledge , 2011, s. 106-124Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 52.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Kalmar University College.
    Linder, Cedric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Fysikundervisningens didaktik.
    Bilingual Scientific Literacy?: The Use of English in Swedish University Science Courses2008Ingår i: Nordic Journal of English Studies, ISSN 1654-6970, E-ISSN 1654-6970, Vol. 7, nr 3, s. 145-161Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A direct consequence of the Bologna declaration on harmonisation of Europeaneducation has been an increase in the number of courses taught in English at Swedishuniversities. A worrying aspect of this development is the lack of research into the effectson disciplinary learning that may be related to changing the teaching language to Englishin this way. In fact, little is known at all about the complex inter-relationship betweenlanguage and learning. In this article we attempt to map out the types of parameters thatour research indicates would determine an appropriate language mix in one section ofSwedish higher education—natural science degree courses. We do this from theperspective of the overall goal of science education, which we suggest is the productionof scientifically literate graduates. Here we introduce a new term, bilingual scientificliteracy to describe the particular set of language-specific science skills that we hope tofoster within a given degree course. As an illustration of our constructs, we carry out asimple language audit of thirty Swedish undergraduate physics syllabuses, listing thetypes of input provided for students and the types of production expected from students inboth languages. We use this information to map out an ‘implied student’ for the courseswith respect to bilingual scientific literacy. The article finishes by identifying issues forfurther research in this area.

  • 53.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysikundervisningen didaktik. Department of Human Sciences, University of Kalmar.
    Linder, Cedric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysikundervisningen didaktik. Department of Physics, University of the Western Cape, Cape Town, South Africa..
    Disciplinary learning in a second language: A case study from university physics2007Ingår i: Researching Content and Language Integration in Higher Education / [ed] Wilkinson, Robert and Zegers, Vera, Maastricht: Maastricht University Language Centre , 2007, s. 161-171Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    There is a popular movement within Swedish universities and university colleges towards delivery of courses and degree programmes through the medium of English. This is particularly true in natural science, engineering and medicine where such teaching has been commonplace for some time. However, the rationale for using English as the language of instruction appears to be more a pragmatic response to outside pressures rather than a conscious educational decision. This situation has recently been challenged with the publication of the report of the Parliamentary Committee for the Swedish Language, Mål i Mun, which discusses the effects of so called domain losses to English.

     

    This paper gives an overview of the continuing debate surrounding teaching through the medium of English, and examines some of the research carried out in this area. In contrast to the wealth of studies carried out in the pre-university school world, very few studies have been identified at university level. One conclusion is that little appears to be known about what goes on when Swedish university students are taught in English by Swedish lecturers. The paper concludes by suggesting a number of research questions that need to be addressed in order to better understand this area. This paper will be of interest to anyone who teaches, or plans to teach, university subjects through the medium of English.

  • 54.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysikundervisningen didaktik.
    Linder, Cedric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen, Fysikundervisningen didaktik.
    Language and the Experience of Learning University Physics in Sweden2006Ingår i: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 27, nr 3, s. 553-560Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This qualitative study explores the relationship between the lecturing language (English or Swedish) and the related learning experiences of 22 undergraduate physics students at two Swedish universities. Students attended lectures in both English and Swedish as part of their regular undergraduate programme. These lectures were videotaped and students were then interviewed about their learning experiences using selected excerpts of the video in a process of stimulated recall. The study finds that although the students initially report no difference in their experience of learning physics when taught in Swedish or English, there are in fact some important differences which become apparent during stimulated recall. The pedagogical implications of these differences are discussed.

  • 55.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Social semiotics in university physics education: Leveraging critical constellations of disciplinary representations2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Social semiotics is a broad construct where all communication is viewed as being realized through signs and their signification. In physics education we usually refer to these signs as disciplinary representations. These disciplinary representations are the semiotic resources used in physics communication, such as written and oral languages, diagrams, graphs, mathematics, apparatus and simulations. This alternative depiction of representations is used to build theory with respect to the construction and sharing of disciplinary knowledge in the teaching and learning of university physics. Based on empirical studies of physics students cooperating to explain the refraction of light, a number of theoretical constructs were developed. In this presentation we describe these constructs and examine their usefulness for problematizing teaching and learning in university physics. The theoretical constructs are: fluency in semiotic resources, disciplinary affordance and critical constellations.

    The conclusion formulates a proposal that has these constructs provide university physics teachers with a new set of meaningfully and practical tools, which will enable them to re-conceptualize their practice in ways that have the distinct potential to optimally enhance student learning.

     

     

    Purpose

    This aim of this theoretical paper is to present representations as semiotic resources in order to make a case for three related constructs that we see as being central to learning with multiple representations in university physics; fluency in semiotic resources, disciplinary affordance and critical constellations. We suggest that an understanding of these constructs is a necessary part of a physics lecturer’s educational toolbox.

     

    Why semiotics?

    The construct of representations as it is presently used in science education can, in our opinion, be unintentionally limiting since it explicitly excludes important aspects such as physical objects, (e.g. physics apparatus) and actions (e.g. measuring a value). Clearly, such aspects play a central role in sharing physics meaning and they are explicitly included as semiotic resources in a social semiotic approach. Van Leeuwen (2005:1) explains the preference for the term semiotic resource instead of other terms such as representation claiming that “[…] it avoids the impression that what a [representation] stands for is somehow pre-given, and not affected by its use”. Thus, the term semiotic resource encompasses other channels of meaning making, as well as everything that is generally termed external representations (Ainsworth, 2006).

     

    Why social semiotics?

    The reason for adopting social semiotics is that different groups develop their own systems of meaning making. This is often achieved either by the creation of new specialized semiotic resources or by assigning specific specialized meaning to more general semiotic resources. Nowhere is this more salient than in physics where the discipline draws on a wide variety of specialized resources in order to share physics knowledge. In our work in undergraduate physics education we have introduced three separate constructs that we believe are important for learning in physics: fluency in semiotic resources, disciplinary affordance and critical constellations.

     

    Fluency in semiotic resources

    The relationship between learning and representations has received much attention in the literature. The focus has often been how students can achieve “representational competence” (For a recent example see Linder et al 2014). In this respect, different semiotic resources have been investigated, including mathematics, graphs, gestures, diagrams and language. Considering just one of these resources, spoken language, it is clear that in order to share meaning using this resource one first needs to attain some sort of fluency in the language in question. We have argued by extension that the same holds for all the semiotic resources that we use in physics (Airey & Linder, 2009). It is impossible to make meaning with a disciplinary semiotic resource without first becoming fluent in its use. By fluency we mean a process through which handling a particular semiotic resource with respect to a given piece of physics content becomes unproblematic, almost second-nature. Thus, in our social semiotic characterization, if a person is said to be fluent in a particular semiotic resource, then they have come to understand the ways in which the discipline generally uses that resource to share physics knowledge. Clearly, such fluency is educationally critical for understanding the ways that students learn to combine semiotic resources, which is the interest of this symposium. However, there is more to learning physics than achieving fluency. For example:

     

    MIT undergraduates, when asked to comment about their high school physics, almost universally declared they could “solve all the problems” (and essentially all had received A's) but still felt they “really didn't understand at all what was going on”. diSessa (1993, p. 152)

     

    Clearly, these students had acquired excellent fluency in disciplinary semiotic resources, yet still lacked a qualitative conceptual understanding.

     

    The disciplinary affordance of semiotic resources

    Thus, we argue that becoming fluent in the use of a particular semiotic resource, though necessary, is not sufficient for an appropriate physics understanding. For an appropriate understanding we argue that students need to come to appreciate the disciplinary affordance of the semiotic resource (Fredlund, Airey, & Linder, 2012; Fredlund, Linder, Airey, & Linder, 2015). We define disciplinary affordance as the potential of a given semiotic resource to provide access to disciplinary knowledge. Thus we argue that combining fluency with an appreciation of the disciplinary affordance of a given semiotic resource leads to appropriate disciplinary meaning making. However, in practice the majority of physics phenomena cannot be adequately represented by one a single semiotic resource. This leads us to the theme of this symposium—the combination of multiple representations.

     

    Critical constellations – the significance of this work for the symposium theme

    The significance of the social semiotic approach we have outlined for work on multiple representations lies in the concept of critical constellations.

    Building on the work of Airey & Linder (2009), Airey (2009) suggests there is a critical constellation of disciplinary semiotic resources that are necessary for appropriate holistic experience of any given disciplinary concept. Using our earlier constructs we can see that students will first need to become fluent in each of the semiotic resources that make up this critical constellation. Next, they need to come to appreciate the disciplinary affordance of each separate semiotic resource. Then, finally, they can attempt to grasp the concept in an appropriate, disciplinary manner. In this respect, Linder (2013) suggests that disciplinary learning entails coming to appreciate the collective disciplinary affordance of a critical constellation of semiotic resources.

     

    Recommendations

    There are a number of consequences of this work for the teaching and learning of physics. First, we claim that teachers need to provide opportunities for their students to achieve fluency in a range of semiotic resources. Next teachers need to know more about the disciplinary affordances of the individual semiotic resources they use in their teaching (see Fredlund et al 2012 for a good example of this type of work).

    Finally, teachers need to contemplate which critical constellations of semiotic resources are necessary for making which physics knowledge available to their students. In this respect physics teachers need to appreciate that knowing their students as learners includes having a deep appreciation of the kinds of critical constellations that their particular students need in order to effectively learn physics

     

    References

    Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.

    Airey, J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A173193&dswid=-4725

    Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27-49.

    diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2 & 3), 105-225.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2015). Unpacking physics representations: towards an appreciation of disciplinary affordance. Phys. Rev. ST Phys. Educ. Res., 10( 020128 (2014)).

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Educational Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 18(3). doi: 10.1080/10288457.2014.953294

    Linder, C. (2013). Disciplinary discourse, representation, and appresentation in the teaching and learning of science. European Journal of Science and Mathematics Education, 1(2), 43-49.

    van leeuwen, T. (2005). Introducing social semiotics. London: Routledge.

     

  • 56.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik. School of Languages and Literature, Linnæus University, Sweden.
    Linder, Cedric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Teaching and Learning in University Physics: A Social Semiotic Approach2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Social semiotics is a broad construct where all communication is viewed as being realized through semiotic resources. In undergraduate physics we use a wide range of these semiotic resources, such as written and oral languages, diagrams, graphs, mathematics, apparatus and simulations. Based on empirical studies of undergraduate physics students a number of theoretical constructs have been developed in our research group (see for example Airey & Linder 2009; Fredlund et al 2012, 2014; Eriksson 2015). In this presentation we describe these constructs and examine their usefulness for problematizing teaching and learning in university physics. The theoretical constructs are: discursive fluency, discourse imitation, unpacking and critical constellations of semiotic resources.

    We suggest that these constructs provide university physics teachers with a new set of practical tools with which to view their own practice in order to enhance student 

    References

    Airey, J. (2006). Physics Students' Experiences of the Disciplinary Discourse Encountered in Lectures in English and Swedish.   Licentiate Thesis. Uppsala, Sweden: Department of Physics, Uppsala University.,

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis   Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2014) Representations in Undergraduate Physics. Docent lecture, Ångström Laboratory, 9th June 2014 From   http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226598

    Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations   ESERA 2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

    Airey, J., & Linder, C. (2009). "A disciplinary discourse perspective on university science learning: Achieving fluency in a critical   constellation of modes." Journal of Research in Science Teaching, 46(1), 27-49.

    Airey, J. & Linder, C. (in press) Social Semiotics in Physics Education : Multiple Representations in Physics Education   Springer

    Airey, J., & Eriksson, U. (2014). A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in   astronomy. Paper presented at the The 5th International 360 conference: Encompassing the multimodality of knowledge,   Aarhus, Denmark.

    Airey, J., Eriksson, U., Fredlund, T., and Linder, C. (2014). "The concept of disciplinary affordance"The 5th International 360   conference: Encompassing the multimodality of knowledge. City: Aarhus University: Aarhus, Denmark, pp. 20.

    Eriksson, U. (2015) Reading the Sky: From Starspots to Spotting Stars Uppsala: Acta Universitatis Upsaliensis.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3),   412-442.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the anatomy of disciplinary discernment: an example from   astronomy. European Journal of Science and Mathematics Education, 2(3), 167‐182.

    Fredlund 2015 Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics. Acta Universitatis Upsaliensis.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students   sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T, Airey, J, & Linder, C. (2015a). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in   physics representations. European Journal of Physics.

    Fredlund, T. & Linder, C., & Airey, J. (2015b). Towards addressing transient learning challenges in undergraduate physics: an   example from electrostatics. European Journal of Physics. 36 055002.

    Fredlund, T. & Linder, C., & Airey, J. (2015c). A social semiotic approach to identifying critical aspects. International Journal for   Lesson and Learning Studies 2015 4:3 , 302-316

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary   affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128).

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception (pp. 127-143). Boston: Houghton   Miffin.

    Halliday, M. A. K. (1978). Language as a social semiotic. London: Arnold.

    Linder, C. (2013). Disciplinary discourse, representation, and appresentation in the teaching and learning of science. European   Journal of Science and Mathematics Education, 1(2), 43-49.

    Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Mavers, D. Glossary of multimodal terms  Retrieved 6 May, 2014, from http://multimodalityglossary.wordpress.com/affordance/

    van Leeuwen, T. (2005). Introducing social semiotics. London: Routledge.

    Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

  • 57.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik. Department of Mathematics and Science Education, Stockholm University.
    Simpson, Zachary
    University of Johannesburg.
    Multimodal Science and Engineering Teaching: Perspectives from 8ICOM2018Ingår i: 9ICOM - Complete Book Of Abstracts, Odense, Denmark.: Syddansk Universitet, 2018Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Multimodal Science and Engineering Teaching: Perspectives from 8ICOM

    The previous international conference on multimodality – 8ICOM – featured two sessions devoted to multimodal, social semiotic approaches to science teaching and learning (c.f. Halliday1978; van Leeuwen 2005, Airey & Linder 2017). What the papers in these sessions shared was the argument that such perspectives on science, and science teaching, can, at least in part, respond to calls to ‘democratize’ science education by recognising diverse sets of semiotic resources and, in so doing, seeking to address impediments to equal participation (Burke et al., 2017). 

    The 8ICOM science sessions were particularly noteworthy given the backdrop against which 8ICOM had been organised. In the months leading up to the conference, South Africa (and Cape Town, in particular) had experienced campus unrest aimed at ‘decolonizing’ higher education in that country. As part of this movement, the phrase #ScienceMustFall briefly trended on social media. This emanated from the claim that ‘science’ is a western, colonial construct that needs to be dismantled and replaced with the teaching of indigenous, African knowledge. Although the #ScienceMustFall slogan has since departed from the wider public consciousness, the questions it raises nonetheless remain: why, and how, should science be taught?  Is science more than just a western colonial construction and, if so, why? And, what can the concept of multimodality offer by way of answering these questions? 

    In this paper, we offer an overview of the multimodal science papers presented in the two sessions at 8ICOM in the light of these questions. This is done with a view to assessing where the multimodality community finds itself regarding science education, and how it might address questions of the legitimacy of western science in the future. It is thus an attempt, as the conference theme suggests, to ‘move the theory forward’.      

    References

    Airey, J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. ActaUniversitatis  Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala, Sweden.:   http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A173193&dswid=-4725.

    Airey, J. (2012). “I don’t teach language.” The linguistic attitudes of physics lecturers in Sweden.AILAReview, 25(2012), 64–79.

    Bernstein, B. (1999). Vertical and horizontal discourse: An essay. British Journal of Sociology Education, 20(2), 157-173.

    Lindstrøm, C. (2011) Analysing Knowledge and Teaching Practices in Physics. Presentation 21 November 2011. Department of   Physicsand Astronomy Uppsala University, Sweden.

    Martin, J. R. (2011). Bridgingtroubled waters: Interdisciplinarityand what makes it stick, in F. Christie and K. Maton, (eds.),   Disciplinarity. London: Continuum International Publishing, pp. 35-61.

    Volkwyn, T., Airey, J., Gregorčič, B., & Heijkenskjöld, F. (in press). Learning Science through Transduction: Multimodal disciplinary   meaning-making in the physics laboratory. Designs for Learning.

  • 58.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Urban, Eriksson
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    A Semiotic Analysis of the Disciplinary Affordances of the Hertzsprung-Russell Diagram in Astronomy.2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    One of the central characteristics of disciplines is that they create their own particular ways of knowing the world through their discourse (Airey & Linder 2009). This process is facilitated by the specialization and refinement of disciplinary-specific semiotic resources over time. Nowhere is this truer than in the sciences, where it is the norm that disciplinary-specific representations have been introduced and then refined by a number of different actors (Airey 2009). As a consequence, many of the semiotic resources used in the sciences today still retain some traces of their historical roots. This makes the aquisition of disciplinary literacy (Airey, 2013) particularly problematic (see Eriksson et al. 2014 for an example from astronomy).

     In this paper we analyse one such disciplinary-specific semiotic resource from the field of Astronomy—the Hertzsprung-Russell diagram. We audit the potential of this semiotic resource to provide access to disciplinary knowledge—what Fredlund et al (2012) have termed its disciplinary affordances. Our analysis includes consideration of the use of scales, labels, symbols, sizes and colour. We show how, for historical reasons, the use of these aspects in the resource may differ from what might be expected by a newcomer to the discipline.

    We suggest that some of the issues we highlight in our analysis may, in fact, be contributors to alternative conceptions and therefore propose that lecturers pay particular attention to the disambiguation of these features for their students.

     

    References

    Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman & R. Säljö (Eds.), Scientific literacy – teori och praktik (pp. 41-58): Gleerups.

    Airey, J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27-49.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3), 412-442.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

     

  • 59.
    Airey, John
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Urban, Eriksson
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik. Högskolan i Kristianstad.
    What do you see here?: Using an analysis of the Hertzsprung-Russell diagram in astronomy to create a survey of disciplinary discernment.2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Becoming part of a discipline involves learning to interpret and use a range of disciplinary-specific semiotic resources (Airey, 2009). These resources have been developed and assigned particular specialist meanings over time. Nowhere is this truer than in the sciences, where it is the norm that disciplinary-specific representations have been introduced and then refined by a number of different actors in order to reconcile them with subsequent empirical and theoretical advances. As a consequence, many of the semiotic resources used in the sciences today still retain some (potentially confusing) traces of their historical roots. However, it has been repeatedly shown that university lecturers underestimate the challenges such disciplinary specific semiotic resources may present to undergraduates (Northedge, 2002; Tobias, 1986).

    In this paper we analyse one such disciplinary-specific semiotic resource from the field of Astronomy—the Hertzsprung-Russell diagram. First, we audit the potential of this semiotic resource to provide access to disciplinary knowledge—what Fredlund et al (2012) have termed its disciplinary affordances. Our analysis includes consideration of the use of scales, labels, symbols, sizes and colour. We show how, for historical reasons, the use of these aspects in the resource may differ from what might be expected by a newcomer to the discipline. Using the results of our analysis we then created an online questionnaire to probe what is discerned (Eriksson, Linder, Airey, & Redfors, in press) with respect to each of these aspects by astronomers and physicists ranging from first year undergraduates to university professors.

    Our findings suggest that some of the issues we highlight in our analysis may, in fact, be contributors to the alternative conceptions of undergraduate students and we therefore propose that lecturers pay particular attention to the disambiguation of these features for their students.

  • 60.
    Alanen Mäkinen, Sofie
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lindvall, Wenke
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Musikämnets undervisningsförutsättningar: - en komparativ studie om ramfaktorers och artefakters påverkan på musikundervisningen2014Självständigt arbete på grundnivå (yrkesexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    Bakgrunden till denna studie grundar sig främst i ett stort intresse för musikämnet men även att vi, under vår grundskoletid fick uppleva olika bra samt värdefull musikundervisning. Denna studie syftade till att få inblick i hur lärare upplever ramfaktorer och artefakters påverkan på undervisningen i musik. Genom åtta stycken semistrukturerade kvalitativa intervjuer har vi kunnat besvara våra frågeställningar: Vilka ramfaktorer anser lärarna påverkar undervisningen i musik? Hur uppfattar lärare ramfaktorer som möjligheter och begränsningar i undervisningen? Vilka artefakter anser lärarna påverkar undervisningen och på vilket sätt? Finns det likheter och/eller skillnader mellan de två delstudierna? Vi har genom studiens gång fått inblick i hur lärare resonerar kring de påverkande faktorerna samt vilka möjligheter och begränsningar de kan ge undervisningen i musik. Vi fann att ramfaktorerna lokal samt gruppstorlek är sådana faktorer vilka påverkar undervisningen mest och negativt om lokalen inte är ändamålsenligt samt ifall elevantalet är för många i förhållande till lokalen. En stor elevgrupp tenderar att missgynna undervisningen i musik och därför är den mindre elevgruppen att föredra då den bland annat bidrar till mer individualisering. Tillgångarna till artefakter såsom instrument är en av de viktigaste komponenterna för musikundervisningen då en stor del av undervisningen handlar om att musicera likt Lgr 11 förespråkar starkt för. 

  • 61.
    Alm Fjellborg, Andreas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier. Uppsala University.
    Molin, Lena
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Vilka typer av uppgifter gynnar elever som följer kursplanen i svenska som andraspråk?: En undersökning med data från de nationella proven i geografi.2018Ingår i: Acta Didactica Norge - tidsskrift for fagdidaktisk forsknings- og utviklingsarbeid i Norge, ISSN 1504-9922, E-ISSN 1504-9922, Vol. 12, nr 4, artikel-id 5Artikel i tidskrift (Refereegranskat)
    Abstract [sv]

    Elever med utländsk bakgrund tenderar att prestera sämre än svenskfödda elever i skolan primärt på grund av sämre kunskaper i det svenska språket. Utifrån statistisk analys (Differential item functioning) identifieras uppgifter från de nationella proven i geografi (2014 – 2017) där elever som följer kursplanen i svenska som andraspråk klarar sig avsevärt mycket bättre - eller sämre - än förväntat. Tidigare forskning har visat att geografiska begrepp är särskilt svåra för elever som inte har svenska som modersmål, vilket också  påvisas i denna studie. Den visar att det särskilt är uppgifter med lite text som handlar om geografiska begrepp som uppvisar större skillnader i prestationer mellan elever som följer kursplanen i svenska respektive svenska som andraspråk. Resultaten kan stödja såväl lärare som provkonstruktörer att bättre anpassa undervisning och prov genom att undvika att skapa uppgifter som mäter irrelevanta bakgrundsfaktorer som påverkar elevernas möjligheter att besvara uppgifter på ett adekvat vis utifrån deras kunskapsnivåer.

  • 62.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Akademiska professionsutbildningar2011Ingår i: Det goda lärandet: en bok om Liberal Arts Education / [ed] Anders Burman & Patrik Mehrens, Lund: Studentlitteratur , 2011, s. 117-132Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 63.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Att synliggöra det förgivettagna2014Ingår i: Lärande i handling: En pragmatisk didaktik / [ed] Britt Jakobsson, Iann Lundegård & Per-Olof Wickman, Lund: Studentlitteratur AB, 2014, s. 119-128-Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 64.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Didaktik och ämnesdidaktik: Exemplet Uppsala universitet2016Rapport (Övrig (populärvetenskap, debatt, mm))
  • 65.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Educational content, teaching strategies and learning: Part of the symposium Sharing ideas for passionate, radical and innovative approaches to didactics (part II): Theory, subject and content2014Konferensbidrag (Refereegranskat)
  • 66.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Evaluation of didactics, education and teacher education programs: Reflections on the new system for quality assurance2015Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The contemporary Swedish system for quality assurance of higher education has been strongly criticized. The main critique has been that it only focuses on a measurement of the results and that it has been difficult to use in the development of higher education. The government´s answer to this critique has been that the question on development of education – and hence the development of its prerequisites and processes – is owned by the universities themselves. However, from 2016 and on the system will be changed. A suggestion for how this will be designed and organized will be presented in December 2014. In this presentation, I will discuss and compare the contemporary system with the suggestion for a new one. The presentation will start in a difference between two visions often formulated in the discussion about quality assurance systems. On the one hand, some stress that the research should be assessed and discussed between colleagues. On the other hand, there are those who demand that quality must be measured by "objective" measures. The presentation will focus especially on the evaluation of Didactics, Education and Teacher Education.

  • 67.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Om konsten att välja bort: Jämförande studier av undervisning och lärande2016Konferensbidrag (Övrig (populärvetenskap, debatt, mm))
    Abstract [sv]

    Undervisning är en komplex verksamhet präglad av deltagarnas förväntningar, avsikter, kunskaper och vanor. Lärare på alla nivåer i utbildningssystemet från förskola till högskola och universitet behöver förhålla sig till denna komplexitet. Jag har i min forskning intresserat mig för undervisning och lärande i olika skolämnen. Vilken betydelse har lärares val av undervisningsinnehåll för vad och hur elever lär sig i skolan? Forskningen utgår från en komparativ ansats där jag analyserar likheter och skillnader mellan undervisning och lärande inom och mellan olika ämnen nationellt och i jämförelse med andra länder. Jag har studerat undervisning och lärande främst i biologi, fysik och kemi, idrott och hälsa och i förskolan. Genom studier i didaktik skapas kunskaper som ger ökad förståelse för den betydelse valet av innehåll och arbetssätt har för elevers lärande i olika ämnen. Detta är central kunskap för lärare att använda och vidareutveckla i planering, genomförande och uppföljning av undervisning.

  • 68.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Pedagogikutbildningarna och lärarutbildningarna: Pedagogikens och didaktikens förändrade förhållanden2014Konferensbidrag (Övrig (populärvetenskap, debatt, mm))
  • 69.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Quality and relevance?: On the use of bibliometric studies in the evaluation and planning of didactical research2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    The aim of this presentation is to analyse and discuss the use of bibliometric analyses in evaluation and planning of didactical research.

    The presentation is based on a case study of “the norweigian model” and the results are discussed in relation to one of the ambitions within the didactical research community; to make knowledge contributions within the scientific field as well as to the professionals (C.f. Hudson & Meyer 2011).

    The study of the use of bibliometric studies in the evaluation and planning of didactical research identify three main challenges:

    (1)     In the case study, the ratio between the number of scientific publications (level 1 and level 2) and the total amount of publication is 31% (Nordgren 2011). The discussion of the use of bibliometric analyses for decisions about the allocation of research funds is focused on scientific publications, which may lead to a decrease of publications written for other audiences.

    (2)     A benchmark on 25% publications on level 2 (as decided at Uppsala University) may actually lead to a decrease of the total number of scientific publications.

    (3)     The bibliometic analyses says something about the result of the reseachers’ work, but nothing about the research process or its preconditions.

    The presentation highlights the need of further discussions about different models for research evaluation, planning and publication.

    References

    Nordgren, Joseph (Ed.)(2012). Quality and renewal 2011. An overall evaluation of research at Uppsala University 2010/2011. Uppsala: Uppsala University.

    Hudson, Brian & Meyer, Meinert A. (Eds.)(2011). Beyond fragmentation: didactics, learning and teaching in Europe. Opladen : Budrich, Barbara, 2011

  • 70.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Teaching and Learning in Science Education: Part of the symposium Bildung – instruction/éducation as part of subject teaching and learning (part 2)2014Konferensbidrag (Refereegranskat)
  • 71.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Teaching traditions and learning: A comparative didactic approach2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this presentation, I propose that research about the limits and possibilities for action offered by different teaching traditions may influence students’ learning and be useful for teachers in thinking about and planning their teaching practices. Activities such as education, teaching and learning are constituted by choices of content and manners of teaching. These choices communicate what counts as valid knowledge and the proper ways of creating knowledge within the practice. I argue that comparative didactic studies, identifying teaching traditions in different educational practices, subjects and/or countries, contribute to an understanding of the prerequisites for learning formed in each of the traditions. In so doing, the research can create knowledge about the relation between customs of teaching and the learning outcome. In the presentation, I will present the framework of and some results from the project Teaching Traditions and Learning. The project builds on a comparative didactics approach combination with a pragmatic perspective on teaching and learning. The ambition is to search for as many different teaching traditions as possible in order to optimize the possibility to find effective and fruitful teaching approaches. Therefore, the project includes participants from various contexts in three countries; France, Sweden and Switzerland.

  • 72.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Teaching traditions and learning in physical education and science education: A double symposium at ECER 20152015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Within institutionalised educational activities one of, if not the, most important factor for students’ learning is the teacher’s manner of teaching. In this symposium we will present the framework and some of the results from a project where we are identifying teaching traditions – manners of teaching that many teachers use – within science education and physical education and analysing the pros and cons of each of the traditions regarding learning. In other words, the project focuses on the institutional dimension of learning, by identifying limits and possibilities for learning offered by different teaching traditions. The results of this research will then, from the perspective of cooperative engineering (Sensevy et al 2013), be tested in use together with practicing teachers in order to evaluate their potential for helping teachers cope with important didactic choices in planning, realizing and evaluating their teaching.

    The project builds on a comparative didactics approach (Caillot 2007; Mercier, Schubauer-Leoni & Sensevy 2002) in combination with a pragmatic perspective on teaching and learning. The ambition is to search for as many different teaching traditions as possible in order to optimize the possibility to find effective and fruitful teaching approaches. Therefore, the project includes participants from various contexts in three countries; France, Sweden and Switzerland.

    Teaching is only possible through the process of inclusion and exclusion of content (Englund 1986). The term privileging, coined by Wertsch (1998), explicate the fact that also the learning process includes choices (cf. Almqvist & Östman 2006). The term draws attention to the fact that participants in the learning process valuate and judge certain artefacts, meetings, questions, and so forth, as reasonable and fruitful, while others, though fully conceivable, are ignored or disregarded.

    The privileging that takes place during meaning-making directs learning in a certain direction and toward certain content (i.e. Wickman & Östman 2002) and is limited by the institutional "boundaries" in which knowledge, teaching and learning unfold. Focusing on the didactical aspects of education, we search for the connections between selective traditions (cf. Östman 1996, Quennerstedt 2006), teachers’ manners of teaching (cf. Lundqvist et al 2012) and students’ privileging (cf. Almqvist & Östman 2006). These three concepts deal with the fact that activities as education, teaching and learning are constituted by selection of content and teaching strategies.

    In our analyses we are interested to find out what role encounters with the teacher has for students’ privileging and learning. Especially we are interested to find out which role the manner of teaching has for students’ learning of habits of privileging and what effect certain habits have for the learning outcome. The learning of specific habits of privileging is occurring in the interplay between students’ earlier knowledge and experiences, the interaction with peers and the manners of teaching (Lundqvist et al 2012).

    Studies in comparative didactics may be productive in that they contribute with knowledge about different ways of the teaching and learning of specific subject content (Caillot 2007). The differences and similarities identified in the studies will help to describe teaching learning in each school subject more precisely and thereby generate new knowledge about different school subjects. In order to maximize the finding of different teaching traditions we make i) investigations in four subjects – physics, chemistry, biology and physical education and health – in Sweden, France and Switzerland and ii) comparative investigations within these four subjects between the three countries and iii) comparative investigation between these four subjects and between countries.

    ReferencesAlmqvist, J., Östman, L. (2006). Privileging and Artifacts: On the use of information technology in science education. Interchange, 37(3): 225-250Caillot, M. (2007). The Building of a New Academic Field: the case of French didactiques. European Educational Research Journal, 6(2), 125-130.Englund, T. (1986). Curriculum as a political problem. Changing educational conceptions, with special reference to citizenship education. Lund: Studentlitteratur/Chartwell-Bratt.Lundqvist, E., Almqvist, J., & Östman, L. (2012). Institutional traditions in teachers’ manners of teaching. Cultural Studies of Science Education, 7(1), 111-127.Mercier, A., Schubauer-Leoni, M. L., & Sensevy, Gérard. (2002). Vers une didactique comparée. Revue Française de Pédagogie, 141(Numéro thématique), 5-16.Quennerstedt, M.  (2006). Att lära sig hälsa. Örebro Studies in Education 15.Sensevy, G., Forest, D., Quilio, S. & Morales, G. (2013). Cooperative engineering as a specific design-based research. ZDM, The International Journal on Mathematics Education, 45(7), 1031-1043Wertsch, J. V. (1998). Mind as action. New York, Oxford University Press. Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86; 601-623.Östman, L. (1996). Discourse, discursive meanings and socialization in chemistry education. Journal of Curriculum Studies, 28 (1); 37-55.

  • 73.
    Almqvist, Jonas
    Uppsala universitet, Utbildningsvetenskapliga fakulteten, Institutionen för lärarutbildning.
    Utbildningsforskning för lärare: forskning med relevans för lärarutbildningen bedriven vid Uppsala universitet 1990-19951997Samlingsverk (redaktörskap) (Övrigt vetenskapligt)
  • 74.
    Almqvist, Jonas
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Utvärderingar av forskning inom det pedagogiska fältet – kriterier, kvalitet och användbarhet2014Konferensbidrag (Övrigt vetenskapligt)
  • 75.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Brickhouse, Nancy
    University of Delaware.
    Lederman, Judith S
    Illinois Institute of Technology.
    Lederman, Norman
    Illinois Institute of Technology.
    Ligozat, Florence
    University of Geneva.
    Östman, Leif
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Sadler, Troy
    University of Florida.
    Wickman, Per-Olof
    Stockholms universitet.
    Zeidler, Dana
    University of South Florida.
    Exploring themes of scientific literacy2009Konferensbidrag (Refereegranskat)
  • 76.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Hamza, Karim
    Stockholms universitet.
    Olin, Anette
    Göteborgs universitet.
    Didactical Investigations for Professional Development2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    The research presented in the paper is part of a large research project built on a comparative didactics approach (cf. Almqvist & Quennerstedt 2015; Ligozat et al 2015) with the overall ambition to search for and analyze different teaching traditions in order to optimize the possibility to find effective and fruitful teaching approaches. One of the aims in the project is to use and develop didactic knowledge and concepts in cooperation with teachers (cf. Sensevy et al 2013, Wickman 2015). In this paper we will present and discuss a way for researchers to participate in teachers’ development of teaching.

    Teaching is a complex, transactional process affected by numerous contingencies both within and outside the classroom. Thus, it is necessarily underdetermined by any theories about teaching and learning. Just like medicine or engineering, didactic knowledge therefore needs to be developed in interaction between more general, ”theoretical” models of teaching, and the actual practices which these theories are intended to support (Wickman, 2015). This realization is consistent with current views of teacher professional development as needing to involve teachers in collaborative and inquiry-based projects grounded in problems identified by the teachers themselves (McNicholl, 2013; Sensevy et al 2013; van Driel, Meirink, van Veen, & Zwart, 2012).

    The idea of didactic modelling or inquiry goes beyond these notions by emphasizing not only teacher learning and the development of local practice but also the successive modification and refinement of the theories themselves (Lijnse & Klaassen, 2004; Wickman, 2012). From that point of view, researchers in didactics and practicing teachers are seen as different but equally crucial actors in the joint construction and successive development of disciplinary knowledge about teaching.

    Neither teacher professional learning nor didactic research primarily proceeds by substituting old ideas with new ones. Instead knowledge, personal as well as institutional, is transformed bit-by-bit through noticing of and reflection upon consequences for both practice and theory (Clarke & Hollingsworth, 2002; Wickman, 2012). Through this kind of joint and reciprocal work, generating personal as well as institutionalized knowledge which is thoroughly and continuously mangled through actual practice (Pickering, 1995), teachers as a collective may develop a common basis for their choices of content and methods for teaching (Wickman, 2015).

    However, the ambition to find ways for researchers too contribute to educational development is not new. A research field with long experience of and knowledge about development work where researchers and teachers collaborate is the action research field. Action research is a broad field both in a geographical as well as theoretical sense (Somekh & Zeichner, 2009), including different purposes, conditions, philosophical starting-points and forms for inquiry. Nevertheless, there are also characterizing features in all variations of action research. According to Reason and Bradbury (2001), action research always has an emergent developmental form; it deals with practical issues, supports human development, is founded on knowledge-in-action and aims at participation and democracy (p. 2). The role of teachers in educational research has been an essential topic for decades especially in critical theoretical approaches such as Participatory Action Research (PAR).

    Methodology, Methods, Research Instruments or Sources Used In the seminal book Becoming critical (Carr & Kemmis, 1986) the aim was to clarify that teachers have to be a part of the research together with researchers if there is going to be more than purely theoretical knowledge about educational change, and if actual change is to be effected. From a Swedish perspective working in action research partnerships between teachers and researchers, school and university, has been emphasized and developed since policies for education in the 1990s opened up for this kind of collaborations as a strategy of developing schools on the basis of research (Salo, Furu & Rönnerman, 2008, p.16). Being interested in how research and practice development may occur through productive relationships between researchers and teachers means that not only knowledge itself needs to be explored, but also dimensions like dialogue and recognition (Groves, Olin, & Karlberg-Granlund, forthcoming). In action research, there is a quest towards sound communication in community with other individuals as a foundation for professional growth and development in practices, which can contribute to knowledge formation. In transformative partnerships reciprocal relationships between research and practice based on ongoing negotiation and renegotiation of substantive claims and judgments by all involved in the research, rests on the possibility of recognition of the other within intersubjective spaces that openly nurtures an individual’s sense of being a valuable contributor in the professional learning projects. The methodology developed and discussed in the paper is a way for researchers and teachers to produce knowledge about teaching in common writing about educational cases. The case, which is written by an educational researcher (the lead author) together with an active teacher will (1) describe some kind of didactic dilemma or problem that the teacher has identified and (2) a description of how the dilemma is handled in the teacher's practice. In a second step of the analyses, a couple of researchers from different fields write comments on the case from their different perspectives. In the third step, the lead author and the teacher pull together, summarize and discuss the case and the different comments. Conclusions, Expected Outcomes or Findings In the paper we describe and discuss three cases of teaching written by teachers and researchers together. The results show how questions identified by active teachers can be developed by using results from didactical research, but also how didactical knowledge and concepts may be developed when applied in the cases. Preliminary themes handled in the cases are (a) different ways of teaching the same educational content, (b) student’s participation in the classroom discussion and (c) application of scientific knowledge in everyday situations. During the writing process we also analyze if and how the writers’ ways of thinking about the specific cases develops. Consequently, we produce and present two different kinds of knowledge in the paper. Firstly, the results show how the teaching practices was developed in the joint work of teacher and researcher, and secondly how didactical knowledge and concepts can be applied, and perhaps developed, in the writing process. We will also discuss the cases in relation to professional development – specifically the development of teaching in terms of educational content, teaching and learning – and how the relation between researcher and teacher in cooperation depends on their recognition of each other’s perspectives and knowledge.

    References

    Almqvist, J. & Quennerstedt, M. (2015). Is there (any)body in science education? Interchange, 46(4), 439-453.

    Carr, W., & Kemmis, S. (1986). Becoming Critical: Education, Knowledge and Action Research. London: Falmer Press.

    Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947-967.

    Groves, C.E., Olin, A., & Karlberg-Granlund, G. (forthcoming). Partnership and Recognition in Action Research: understanding the practices and practice architectures for participation and change. Educational Action Research.

    Ligozat, F., Amade-Escot, C. & Östman, L. (2015). Beyond subject specific approaches of teaching and learning: Comparative didactics? Interchange, 46(4), 313-321.

    Lijnse, P., & Klaassen, K. (2004). Didactical Structures as an Outcome of Research on Teaching-Learning Sequences? Special Issue. International Journal of Science Education, 26, 537-554.

    McNicholl, J. (2013). Relational agency and teacher development: a CHAT analysis of a collaborative professional inquiry project with biology teachers. European Journal of Teacher Education, 36, 218-232.

    Pickering, A. (1995). The mangle of practice: Time, agency, and science. Chicago: The University of Chicago Press.

    Reason, P., & Bradbury, H. (2001). Introduction: Inquiry and Participation in Search of a World Worthy of Human Aspiration. I P. Reason & H. Bradbury (Red.), Handbook of Action Research. Participative Inquiry and Practice (s 1-14). London: SAGE.

    Salo, P., Furu, E.M., & Rönnerman, K. (2008). Educational policies and reforms. In K. Rönnerman, E. Moksnes Furu, & P. Salo (Red.). Nurturing Praxis. Action Research in Partnerships Between School and University in a Nordic Light (s 11-20). (Pedagogy, Education and Praxis, 3). Rotterdam/Taipei: Sense.

    Sensevy, G., Forest, D., Quilio, S. & Morales, G. (2013). Cooperative engineering as a specific design-based research. ZDM, The International Journal on Mathematics Education, 45(7), 1031-1043

    Somekh, B. & Zeichner, K. (2009). Action research for educational reform: remodeling action research theories and practices in local contexts. Educational Action Research, 17(1), 5–21.

    van Driel, J. H., Meirink, J. A., van Veen, K., & Zwart, R. C. (2012). Current trends and missing links in studies on teacher professional development in science education: a review of design features and quality of research. Studies in Science Education, 48, 129-160.

    Wickman, P.-O. (2015). Teaching learning progressions: An international perspective. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education (2nd ed., pp. 145-163). New York: Routledge.

    Wickman, P.-O. (2012). How can conceptual schemes change teaching? Cultural Studies of Science Education, 7, 129-136.

  • 77.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Hamza, KarimStockholms universitet.Olin, AnetteGöteborgs universitet.
    Undersöka och utveckla undervisning: Professionell utveckling för lärare2017Samlingsverk (redaktörskap) (Övrigt vetenskapligt)
  • 78.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lidar, Malena
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lundqvist, Eva
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Teaching content and national tests in Science Education2014Konferensbidrag (Refereegranskat)
  • 79.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lidar, Malena
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lundqvist, Eva
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    What content is assessed in the Swedish national tests in biology, chemistry and physics?2013Konferensbidrag (Refereegranskat)
    Abstract [en]

    All students in year nine in the Swedish compulsory school take a national test in biology, physics or chemistry. The ambition of these tests, which were given for the first time as late as in the spring semester 2009 is to measure the Swedish students’ knowledge in science, but also to provide an aid in teachers’ development of their teaching in order to support equal and fair assessment and grading. The purpose of this paper is to analyze and discuss the content of the national tests in biology, physics and chemistry. The paper highlights and discusses similarities and differences between the three subject tests carried out 2009-2012. The study presented in the paper has clarified five categories of content.The analysis shows that a student, to pass the tests, need to show evidence that he or she can answer correctly on questions about (a) scientific concepts, models theories, (b) the scientific ways of thinking about the world and (c) the scientific method. For higher grades, however, the students need to be able to give correct answers on questions about (d) the use of science in relation to everyday problems and also (e) the use of science in relation to political and moral issues. In the paper we discuss what the privileging of content measured can lead to in teachers’ planning of teaching and for the assessment of students’ knowledge, but also in relation to prerequisites for students’ participation in decision making where scientific knowledge is a central part of the problem at hand.

  • 80.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Ligozat, Florence
    University of Geneva.
    Comparing, Combining and Fostering Conceptual Frameworks in Didactics: Double symposium at ECER in Dublin, August 22-262016Konferensbidrag (Refereegranskat)
    Abstract [en]

    In September 2016, the Network 27, Didactics, Learning and Teaching, will celebrate 10 years of development within the EERA. Since the beginning, this network is an important place for discussing and overcoming the fragmentation of the research paradigms in didactics. We focus on the relations between teaching, learning and knowledge content in the classroom from the learners and the teachers enacted practices and /or the curriculum perspectives. The network has been established as a unique place in the European educational research landscape for discussing:

    • Different paradigms for didactic research
    • Frameworks for comparison of teaching and learning actions across subjects and educational contexts
    • Methodologies for classroom observation including video studies of teaching and learning
    • Literacies, language use across school subjects and tacit dimensions of teaching
    • Teaching resources, teacher work and the “enacted” curriculum
    • Relationships between didactics and teacher professional development.

    This symposium will go beyond mapping “state of the art” as documented by the diversity of research on didactics and/or learning and teaching (see Hudson & Schneuwly, 2007). The evolution of the conceptual frameworks used in “European didactics” in a broad sense will be traced, as it results from the encounter of the European researchers in the field (e.g., Hudson & Meyer, 2011; Meyer, 2012; Ligozat, Amade-Escot & Östman, 2015; Vollmer, 2014; Wickman, 2012). We will feature and discuss specific theoretical and empirical research results as they have been presented over recent years within the network.

    The purpose of this symposium is to outline i) some conceptual relationships established between the strands of subject specific and general didactics and/or research on teaching and learning; ii) the significant role of comparison of classroom practices in various subjects for the exploration of the relations between different theoretical approaches to teaching and learning; iii) the emergence of new research processes involving teachers and researchers for jointly producing new didactical knowledge.

    The first part of this double symposium focuses on general issues of frameworks and methodologies, as for example and ethical and political dimensions embedded in the curriculum-making process.

    The second part will focus on the various role of comparison, either empirical and/or conceptual, for fostering our understanding of teaching and learning, and the subjects taught, as well as the conditions for producing and fostering didactic knowledge and professional development.

    References

    Hudson, B., & Schneuwly, B. (Éd.). (2007). Didactics – learning and teaching in Europe. Editorial. European Educational Research Journal, 6(2), 106‑108.

    Hudson, B., & Meyer, M. A. (Éd.). (2011). Beyond Fragmentation: Didactics, learning and teaching in Europe. Opladen & Farmington Hills MI: Barbara Budrich Publishers.

    Ligozat, F., Amade-Escot, C., & Östman, L. (Éd.). (2015). Beyond Subject Specific Approaches of Teaching and Learning: Comparative Didactics. Interchange, 46(4), 313‑321.

    Meyer, M. A. (2012). Keyword: Didactics in Europe. Zeitschrift für Erziehungswissenschaft, 15(3), 449‑482. Vollmer, H. J. (2014). Fachdidaktik and the Development of Generalised Subject Didactics in Germany. Education & didactique, 8(1), 23‑34.

    Wickman, P.-O. (2012). A Comparison between Practical Epistemology Analysis and Some Schools in French Didactics. Éducation et didactique, 6(2), 145‑159.

  • 81.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lundqvist, Eva
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Scientific Literacy and the New National Tests2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    All students in year nine in the Swedish compulsory school take a national test in biology, physics or chemistry. The ambition of these tests, which were given for the first time as late as spring 2009, is to measure the Swedish students’ knowledge in science, but also to provide an aid in teachers’ development of their teaching and to promote student learning. The purpose of this paper is to analyze and discuss what knowledge the national tests in biology, physics and chemistry measure – and what knowledge is not measured - what kind of scientific literacy is assessed by tests. The paper highlights similarities and differences between the three subject tests. The analysis shows that a student, to pass the tests, need to show evidence that she has two kinds of knowledge: (1) scientific knowledge (scientific concepts, models, methods) and (2) applied knowledge (in relation to mundane and technical problems). This also shows that knowledge about the use of science in relation to political and moral issues are not required to pass the tests. The paper discusses what the privileging of the scientific literacy measured can lead to in teachers’ planning of teaching and for students’ prerequisites for learning and socialization.

  • 82.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Meckbach, Jane
    Gymnastik. och idrottshögskolan.
    Öhman, Marie
    Örebro universtiet.
    Quennerstedt, Mikael
    Örebro universitet.
    How wii teach physical education and health2016Ingår i: SAGE Open, ISSN 2158-2440, E-ISSN 2158-2440, Vol. 6, nr 4, s. 1-8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The use of educational computer games in physical education (PE) has become more popular in recent years and has attracted research interest. The aim of the article is to investigate how physical activities and images of the human body are offered by the game. The results show how the “teacher” constituted in the games is one who instructs and encourages the players to exercise and think about their bodies, but not a “teacher” who can help students to investigate, argue, or discuss images of health and the human body. We argue that the use of a wide range and variety of ways of teaching would make the teaching richer and offer a deeper understanding about the body and health.

  • 83.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Meckbach, Jane
    Gymnastik- och idrottshögskolan.
    Öhman, Marie
    Örebro universitet.
    Quennerstedt, Mikael
    Örebro universitet.
    How wii teach Physical Education and Health: Contribution to the symposium Learning and active video gaming in school2014Konferensbidrag (Refereegranskat)
  • 84.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Orpwood, Graham
    University of London.
    Swedish National Tests in Year 6 Science: Analysis and Review2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    A new curriculum and assessment system for Year 6 science has been implemented in Swedish schools during the 2011-2012 school year.  Along with a revised curriculum in biology, physics and chemistry, national tests have been developed and were administered for the first time in spring 2013.  The five-year research project, from which this paper is drawn, is designed to analyse the curriculum objectives, grading criteria and the national tests and to investigate how the overall changes to assessment and grading affects the teaching of science at the Year 6 level.

    The new tests and grades are based on statements of aims and content for Years 4-6 Biology, Physics and Chemistry  (Curriculum for the Compulsory School, Preschool class and the Recreation Centre, 2011, pp. 105-149).  The analysis of the curriculum and the national tests reported in this paper is focussed mainly on the curriculum aims, which are set out, for each science subject, in three groups corresponding to three general purposes of science education:

    • To develop the ability to participate meaningfully in discussions of ways in which science, technology and society inter-relate (Group A)
    • To develop the ability to conduct scientific investigations (Group B)
    • To develop a good understanding of scientific concepts models, and theories (Group C)

    The tests follow the structure of these three groups of aims and our analysis will trace the relationships among the statements of aim in the curriculum, the questions and tasks the students are expected to undertake, and the grading schemes to be used by the teachers in evaluating the students’ work.  While, in general, the tests appear to be both innovative and very faithful to the curriculum, the challenges of evaluating students’ responses to complex questions and tasks raise both practical grading problems for schools and interesting questions for further consideration by researchers.   The paper, therefore, concludes with some commentary on these questions and seeks to situate them in the broader context of curriculum and assessment in science education.

  • 85.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Orpwood, Graham
    University College, London.
    Lundqvist, Eva
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lidar, Malena
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Analysing validity: The case of Swedish national tests in year 6 science2019Rapport (Övrigt vetenskapligt)
    Abstract [en]

    The purpose of this article is to analyse and discuss standardized tests in biology, physics and chemistry with a special focus on their content validity. In the article we describe and discuss three different tensions between the Swedish curricula and standardized tests in science: (1) Curricular intentions and assessment choices, (2) The ‘knowledge requirements’ specified in the curriculum and the marking scheme used in the assessment and (3) The intention of the evaluation system and its actual result. These tensions have consequences for the validity of the tests. Hence, it is necessary to regard these tests as only one of many resources teachers can use in their teaching and assessment practices

  • 86.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Orpwood, Graham
    Lundqvist, Eva
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Lidar, Malena
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Analysing validity: The case of Swedish national tests in year 6 science2019Rapport (Övrigt vetenskapligt)
    Abstract [en]

    The purpose of this article is to analyse and discuss standardized tests in biology, physics and chemistry with a special focus on their content validity. In the article we describe and discuss three different tensions between the Swedish curricula and standardized tests in science: (1) Curricular intentions and assessment choices, (2) The ‘knowledge requirements’ specified in the curriculum and the marking scheme used in the assessment and (3) The intention of the evaluation system and its actual result. These tensions have consequences for the validity of the tests. Hence, it is necessary to regard these tests as only one of many resources teachers can use in their teaching and assessment practices.

  • 87.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Quennerstedt, Mikael
    Örebro universitet.
    Is there (any)body in science education?2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    In debates about learning, the discussion often centres on how to explore the relation between body and mind. In a pragmatic perspective on learning, however, it is not possible to envision an ontological distinction between body and mind. (Hodkinson et al 2007; Quennerstedt et al 2011). From this perspective, it is also central to study how people use artefacts in different practices (Almqvist & Östman 2006; Quennerstedt et al 2012). Studies of embodied learning are central in research on physical education (PE), a school subject seen as an important location through which bodies are constructed (e.g. Evans et al 2004). In contrast, the embodied aspects of learning are regarded as a somewhat novel perspective on learning in other areas of research on didactics. With notable exceptions (e.g. Arvola Orlander & Wickman, 2010) little attention has for example been paid to embodied learning in studies of science education (SE). Given these differences between the subject didactics of PE and SE respectively, and given this specific research gap in SE, the purpose of this article is to explore and discuss embodied aspects of learning in SE by using the specific insights from PE and thus employing a comparative didactic approach. By comparing video recordings of physical education lessons, we have studied the role of the body in meaning making processes in science education. The results show that the body is used and constituted in different ways in the analysed situations and how the participants use artefacts in order to do things in a way that would not otherwise be possible. Furthermore, we argue that the comparative approach developed in the paper, together with the results of the study, can be used by teachers in their discussions about teaching in relation to different educational objectives and content.

    References

    Almqvist, J. & Östman, L (2006). Privileging and artifacts: On the use of information technology in science education. Interchange, 37(3).Arvola Orlander, A. & Wickman, P. O. (2010). Bodily experiences in secondary school biology. Cultural Studies of Science Education (6), 569-594Evans, J., Davies, B. Wright, J. (2004) Body knowledge and control. Studies in the sociology of physical education and health. Routledge. Hodkinson, P., Biesta, G. James, D. (2007) Understanding learning cultures. Educational Review, 59(4), 415-427.Quennerstedt, M., Öhman, J., & Öhman, M. (2011). Investigating learning in physical education—a transactional approach. Sport, education and society, 16(2), 159-177.Quennerstedt, M., Almqvist, J., Öhman, M. (2012). Keep your eye on the ball: Investigating artifacts-in-use in physical education. Interchange, 42(3), 287-305.

  • 88.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Quennerstedt, Mikael
    Örebro universitet.
    Is there (any)body in science education?2015Ingår i: Interchange, ISSN 0826-4805, E-ISSN 1573-1790, Vol. 46, nr 4, s. 439-453Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article we develop and use a comparative approach for studies of the role of the body in meaning making processes in science education (SE). In debates about learning, the discussion often centres on how to explore the relation between body and mind. For example, many studies either focus on changes of bodily behaviour or on changes of people’s conceptions and ideas. In a pragmatic perspective on learning it is not possible to envision an ontological distinction between body and mind. By comparing video recordings of physical education lessons, we have studied the role of the body in meaning making processes in SE. The results show that the body is used and constituted in different ways in the analysed situations and how the participants use artefacts in order to do things in a way that would not otherwise be possible. Furthermore, we argue that the comparative approach developed in the article, together with the results of the study, can be used by teachers in their discussions about teaching in relation to different educational objectives and content.

  • 89.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Quennerstedt, Mikael
    Örebro universitet.
    Is there (any)body in science education?2015Ingår i: Interchange, ISSN 0826-4805, E-ISSN 1573-1790, Vol. 46, nr 4, s. 439-453Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article we develop and use a comparative approach for studies of the role of the body in meaning making processes in science education (SE). In debates about learning, the discussion often centres on how to explore the relation between body and mind. For example, many studies either focus on changes of bodily behaviour or on changes of people’s conceptions and ideas. In a pragmatic perspective on learning it is not possible to envision an ontological distinction between body and mind. By comparing video recordings of physical education lessons, we have studied the role of the body in meaning making processes in SE. The results show that the body is used and constituted in different ways in the analysed situations and how the participants use artefacts in order to do things in a way that would not otherwise be possible. Furthermore, we argue that the comparative approach developed in the article, together with the results of the study, can be used by teachers in their discussions about teaching in relation to different educational objectives and content.

  • 90.
    Almqvist, Jonas
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Öhman, Marie
    Örebro universitet, Hälsoakademin.
    Meckbach, Jane
    Gymnastik- och idrottshögskolan.
    Quennerstedt, Mikael
    Örebro universitet, Hälsoakademin.
    What do Wii teach in PE?2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    In society, video- and computer games are often pointed out as risk factors in relation to physical inactivity, sedentary behaviour as well as increasing levels of obesity. At the same time, computers are an important source of knowledge where IT-competence and IT-experience provide pronounced advantages in society. 

    In the middle of this paradox a new type of videogames is introduced, where body movement and physical activity constitute the central element. These games, so called exergames or active video games, are games where physical movement is involved in the game through the use of for example balance-boards, step-up boards and dance-pads. Exergames are now more and more put forward in several countries as interesting tools to use in physical education in order to stimulate young people to be physically active.

    In a recent review and synthesis of research on video games and health, Papastergiou (2009) strongly argues that videogames can offer ”potential benefits as educational tools for Health Education and Physical Education, and that those games may improve young people’s knowledge, skills, attitudes and behaviours in relation to health and physical exercise” (Papastergiou, 2009, p 603). However, Vander Schee and Boyles (2010) argue that exergames rather should be seen as a body pedagogy producing certain narrow meanings about health, and that the uncritical implementation of exergames in school is a problematic way to place commercial products in school. Consequently, there are differences in views regarding exergames in educational settings that are worth paying attention to in research about people’s learning about the body, physical activity and health.

    The aim of this paper is to investigate how images of the human body are expected to be learned when using exergames.

    The use of artifacts – physical objects made by humans – is a central part of human life. In fact, there are many activities that would not be possible to perform without the use of them. In schools, students learn to use paper and pencils, computers, vaulting-horses, footballs and so on. How and why artifacts are supposed to be used in educational settings is however not given beforehand (Cuban 1986). The use of artifacts mediates certain meanings about the view of learning and the goals and choices of content in education (Almqvist 2005, Quennerstedt et al in press).  

    In this paper, we will use discourse analytical strategies in order to analyse how meanings about the body are expected to be learned when playing exergames. The discourse analytical strategies involve an interest in how processes of discourse constitute how we experience or relate to ourselves as well as our environment (Laclau & Mouffe 1985). Discourses constitute what is possible to say or do as partial and temporal fixations (Foucault 1980). These fixations are imbued with power, values and ideologies. As Evans and colleagues argue: “/…/ health beliefs, perceptions and definitions of illness are constructed, represented and reproduced through language that is culturally specific, ideologically laden and never value free” (Evans et al 2008 p 46).

    Method

    To investigate what these games offer we have explored the manuals, the content, the animations of the games as well as the instructions and comments offered during game play. The empirical material consists of exergames most commonly used in schools: Wii fit and Wii sports (sports active). In the discourse analysis we have explored what is taken for granted in the empirical material in relation to other possible ways to argue. In this way we can explore what is included and excluded in the games and what is possible to think and act in relation to statements concerning the body.

    Expected Outcomes

    The analysis shows how the logic of the game, its animations, instructions and feedback to the player, constitutes the ideal body as a physically active, well-balanced, slim and strong body. The use of the game, the balance board and the hand control, makes it possible to measure and register how the player follows this logic. The analysis also shows how the way the player is supposed to learn about the body is strongly influenced by behaviorism. In the paper we argue that this way of learning about the body is narrow and limited and that it is important to critically discuss the effects of the use of these games in schools.

    References

    Almqvist, Jonas (2005). Learning and artefacts. On the use of information technology in educational settings. Uppsala: Acta Universitatis Upsaliensis. Cuban, Larry (1986). Teachers and machines. The classroom use of technology since 1920. New York: Teachers College Press. Evans, John, Rich Emma & Davies Bryan (2008). Education, disordered eating and obesity discourse: Fat fabrications. London: Routledge Foucault, Michel (1980). Power/knowledge. Selected interviews & other writings 1972-1977. New York: Pantheon Books. Laclau, Ernesto & Mouffe, Chantal (1985). Hegemony and socialist strategy. Towards a radical democratic politics. London: Verso. Papastergiou, Marina (2009). Exploring the potential of computer and video games for health and physical education: A literature review. Computers & Education, 53(3), 603-622. Quennerstedt, Mikael, Almqvist, Jonas & Öhman, Marie (in press). Keep your eye on the ball. Investigating artifacts in physical education. Interchange. Vander Schee, Carolyn J. & Boyles, Deron (2010): ‘Exergaming,’ corporate interests and the crisis discourse of childhood obesity. Sport, Education and Society, 15(2), 169-185.

  • 91.
    Amin, Tamer G.
    et al.
    American University of Beirut, Lebanon.
    Jeppsson, Fredrik
    Linköping University.
    Haglund, Jesper
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Conceptual metaphor and embodied cognition in science education2017Bok (Refereegranskat)
  • 92.
    Amin, Tamer G.
    et al.
    American University of Beirut, Lebanon.
    Jeppsson, Fredrik
    Linköpings universitet.
    Haglund, Jesper
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Conceptual metaphor and embodied cognition in science learning: Introduction to special issue2015Ingår i: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, ISSN 0950-0693, Vol. 37, nr 5-6, s. 745-758Artikel i tidskrift (Refereegranskat)
  • 93.
    Andersson, Alexandra
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Jönsson, Emelie
    Labbar för alla!: Ett flexibelt läromedel i NO för grundskolans fk-3.2014Självständigt arbete på grundnivå (yrkesexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    I kursen självständigt arbete 15hp under grundlärarprogrammet fk-3 vid Uppsala Universitet har vi valt att göra ett läromedel i NO för dessa årskurser. Vi har i största möjliga mån försökt utforma läromedlet så flexibelt som möjligt, för såväl elever som lärare. Materialet är tänkt som en handledning för lärare i fysik och kemi, med elevsidor med experiment som är kopieringsbara. Boken har utformats utifrån ett genusperspektiv, men också med hänsyn till uppsatta kriterier för läromedel anpassade för elever med neuropsykiatriska funktionsnedsättningar (med särskilt fokus på ADHD). Boken är skriven av oss, för oss. Inledningsvis hade vi förhoppningen att den skulle bli tryckt och utgiven av ett förlag, men i nuvarande läge kommer den endast användas för personligt bruk. Det övergripande ansvaret för valt genusperspektiv, samt hur ett läromedel med genusperspektiv bör utformas har huvudsakligen legat hos Alexandra. Emelie har tagit ansvar för delen som behandlar neuropsykiatriska funktionsnedsättningar, samt hur ett läromedel med hänsyn till dessa elever bör utformas. Avsnittet om skolans naturvetenskap har skrivits tillsammans. I slutprodukten,

    Labbar för alla!, har Alexandra tagit huvudansvaret för layout, illustrationer samt foton. Alla beslut har fattats gemensamt. Emelie har tagit ansvar för de flesta experiment, medan Alexandra har tagit ansvar för ca 10 stycken. Detta ansvar inkluderar att leta upp, skriva in, redigera, utveckla samt skriva förklaringar till experimenten. Dessa har sedan testats tillsammans av både Alexandra och Emelie. Resterande uppgifter har utförts i samarbete.

  • 94.
    Andersson, Anna
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Makt och delaktighet: Elevers och föräldrars upplevelse av ett extra år i skolan.2014Självständigt arbete på avancerad nivå (magisterexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    Föreliggande uppsats är en fenomenologisk studie som syftar till att undersöka hur ett urval elever och föräldrar upplevt att beslutet kring ett extra år i skolan gått till, om de upplevt sig delaktiga, samt hur de anser att de extra året påverkat eleven ämnesmässigt, kamratmässigt och känslomässigt. Studien är genomförd via kvalitativa ostrukturerade intervjuer där totalt fyra elevers och två föräldrars livsberättelser fått ta form. Dessa livsberättelser har sedan analyserats narrativt med avsikt att finna svar på studiens frågeställningar samt även utifrån avsikt att finna underliggande framträdande teman. Studiens resultat visar att ett extra år i skolan kan vara lyckosamt om elever och föräldrar upplever sig delaktiga i beslutet, om eleven endast har svårt med ett eller ett fåtal ämnen i skolan samt om hela elevens sociala situation beaktas, inklusive kamratrelationer. Om eleven inte upplever sig varit delaktig i beslutet och om eleven dessutom har flera svårigheter i skolan tyder studien på att ett extra år i skolan kan vara negativt, och att det extra året då kan leda till en negativ påverkan på självkänslan och kamratrelationer, något som i sin tur kan leda till att eleven projicerar sin ilska och besvikelse på skola och lärare.

  • 95.
    Andersson, Ann-Christin
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier.
    Organiserin, planering och systematiskt arbete för elever i behov av särskilt stöd: En studie i hur man med ett inkluderande arbetssätt organiserar arbetet kring elever i behov av särskilt stöd2012Självständigt arbete på avancerad nivå (magisterexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    Sammanfattning

     

    Inkluderingsbegreppet har de senaste åren inom skolans värld blivit ett klichéartat uttryck. Alla elever ska inkluderas vilket är klart utskrivet i skolans styrdokument. Men vad menas med inkludering, är alla elever inkluderade i skolan i dag och hur tolkas och diskuteras begreppet i skolans verksamhet? Syftet med denna rapport är att undersöka hur skolorganisationen kan vara utformad när alla elever är inkluderade samt att undersöka om det finns skillnader i organisationen kring elever i behov av särskilt stöd på skolor i kommuner som når goda respektive dåliga resultat i skolverkets undersökning. En studie har genomförts på en skola som lyckats väl med att inkludera alla elever och nått goda resultat. Två djupintervjuer har gjorts, en med rektor och en med specialpedagog. En enkätstudie har genomförts på fyrtio skolor i tjugo kommuner i Sverige. Tio kommuner som lyckats bäst och tio kommuner som lyckats sämst. I studien redovisas hur personalen beskrev att den undersökta skolan var organiserad och hur de arbetade för att inkludera alla elever. Det konstateras även att skolor i kommuner som lyckades bäst i Sverige organiserades på ett liknande sätt som den i intervjustudie undersökta skolan.

     

  • 96.
    Andersson Chronholm, Jannika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Andersson, Staffan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Erfarenheter av ett studentaktiverande kursupplägg.2010Ingår i: Att undervisa med vetenskaplig förankring – i praktiken!: Universitetspedagogisk utvecklingskonferens 8 oktober 2009 / [ed] Britt-Inger Johansson, Uppsala: Universitetstryckeriet , 2010, s. 92-102Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 97.
    Andersson Chronholm, Jannika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Andersson, Staffan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik.
    Introduktion till universitetsstudier: Studentintegration i praktiken.2010Ingår i: Att undervisa med vetenskaplig förankring – i praktiken!: Universitetspedagogisk utvecklingskonferens 8 oktober 2009. / [ed] Britt-Inger Johansson, Uppsala: Universitetstryckeriet , 2010, s. 60-67Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 98.
    Andersson Chronholm, Jannika
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Fysikundervisningens didaktik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Andersson, Staffan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Elmgren, Maja
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Studenters attityder och Förväntningar2015Konferensbidrag (Refereegranskat)
  • 99.
    Andersson, Fia
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier. Stockholms universitet.
    Att leda specialpedagogiska insatser2012Ingår i: Lärare som ledare: - i och utanför klassrummet / [ed] Gunnar Berg, Frank Sundh, Chrster Wede, Lund: Studentlitteratur AB, 2012, 1:1, s. 191-208Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 100.
    Andersson, Fia
    et al.
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Fakulteten för utbildningsvetenskaper, Institutionen för pedagogik, didaktik och utbildningsstudier. Stockholms universitet.
    Sundh, Stellan
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Språkvetenskapliga fakulteten, Engelska institutionen.
    Young Learners: Communication and Digital Tools2015Ingår i: Contemporary Approaches to Activity Theory: Interdisciplinary Perspectives on Human Behavior / [ed] Thomas Hansson, Hershey PA, USA: IGI Global, 2015, s. 19-37Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    This chapter describes a project aiming at investigating Swedish and Russian 12-year-old learners’ use ofICT. They communicate in English on three shared blogs. Their exchanges and contributions are analyzed with a focus on mediating tools, modes of communication and motives for collaboration. Ongoing activities are studied through classroom observations, interviews and a research circle. Results show that ICT plays a vital role as a mediating tool and a motive for collaboration. Results indicate that Russian and Swedish learners manage to interact in authentic communication in English with the help of digital tools. Opportunities to explore a variety of digital tools resulted in new forms of representation. International collaboration through ICT indicates that conflicting issues and developmental opportunities may challenge the current education system.

1234567 51 - 100 av 938
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf