uu.seUppsala University Publications
Change search
Refine search result
14151617 801 - 818 of 818
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 801. Corsini, Roberto
    et al.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Rinolfi, Louis
    Royer, Philippe
    Tecker, Frank
    Experimental results on electron beam combination and bunch frequency multiplication2004In: Physical Review Special Topics. Accelerators and Beams, ISSN 1098-4402, E-ISSN 1098-4402, Vol. 7, no 4, p. 040101-Article in journal (Refereed)
    Abstract [en]

    The aim of the CLIC Test Facility CTF3 at CERN is to demonstrate the feasibility of the key points of the two-beam acceleration based compact linear collider study. In particular, it addresses the efficient generation of a drive beam with the appropriate time structure of the electron bunches in order to produce high power rf pulses at a frequency of 30GHz. This time structure requires a high bunch repetition frequency. It is obtained by successive injections of bunch trains into an isochronous ring using transversely deflecting rf structures. The major goal of the now completed first phase of the CTF3 was to achieve the bunch train combination at low charge. In this paper, we give a description of the project and summarize the experimental results, with a focus on the successful bunch frequency multiplication for various factors up to 5.

  • 802. Dabrowski, A. E.
    et al.
    Bettoni, S.
    Bravin, E.
    Corsini, R.
    Doebert, S.
    Lefevre, T.
    Rabiller, A.
    Soby, L.
    Skowronski, P. K.
    Tecker, F.
    Egger, D.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Welsch, C. P.
    Measuring the bunch frequency multiplication at the 3rd CLIC Test Facility2012In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 7, p. P01005-Article in journal (Refereed)
    Abstract [en]

    The CLIC Test Facility 3 (CTF3) is being built and commissioned by an international collaboration to test the feasibility of the proposed Compact Linear Collider (CLIC) drive beam generation scheme. Central to this scheme is the use of RF deflectors to inject bunches into a delay loop and a combiner ring, in order to transform the initial bunch frequency of 1.5 GHz from the linac to a final bunch frequency of 12 GHz. To do so, the machine's transverse optics must be tuned to ensure beam isochronicity and each ring's length can finally be adjusted with wiggler magnets to a sub millimeter path length accuracy. Diagnostics based on optical streak camera and RF power measurements, in particular frequency bands, have been designed to measure the longitudinal behaviour of the beam during the combination. This paper presents the diagnostics and recent commissioning measurements.

  • 803. Derendarz, Dominik
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the flow harmonic correlations in pp, p+Pb and low multiplicity Pb+Pb collisions with the ATLAS detector at the LHC2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 479-482Article in journal (Refereed)
    Abstract [en]

    Recent measurements of the correlations between flow harmonics obtained using four-particle symmetric cumulants and three-particle asymmetric cumulants with the ATLAS detector at the LHC are described. The data sets of pp, p+Pb and peripheral Pb+Pb collisions at various energies are analyzed, aiming to probe the long-range collective nature of multi-particle production in small systems. The sensitivity of the standard cumulant method to non-flow correlations is investigated by introducing the subevents method. A systematic reduction of non-flow effects is observed when using the two-subevent method. Further reduction is observed with the three-subevent method that is consistent with the results obtained with the four-subevent one. A negative correlation between v(2) and v(3) and a positive correlation between v(2) and v(4), for all studied collision systems and over full multiplicity range, is observed. The correlation strength computed as symmetric cumulants normalized by the < v(n)(2)> is similar for all collision systems and weakly depends on multiplicity. These measurements provide new evidence for long-range multi-particle collectivity in small collision systems and quantify the nature of its event-by-event fluctuations.

  • 804.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Conceptual design of a post-collision transport line for CLIC at 3 TeV2007Report (Other academic)
    Abstract [en]

    Strong beam-beam effects at the interaction point of a high-energy linear collider such as CLIC lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- coherent pairs. We present a conceptual design of the post-collision line for the nominal CLIC machine at 3 TeV, which separates the various components of the outgoing beam thanks to a vertical magnetic chicane, before transporting them to their respective dump.

  • 805.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Searches for neutral and charged Higgs bosons in the ATLAS experiment as a test of physics beyond the Standard Model2013In: International Workshop on Discovery Physics at the LHC (KRUGER2012), 2013, p. 012016-Conference paper (Refereed)
    Abstract [en]

    In several theories beyond the Standard Model, the Higgs sector consists of more than one complex scalar doublet. For instance, supersymmetric models such as the MSSM have five physical Higgs states: two charged and three neutral. In this paper, a review of the searches for new neutral and charged Higgs bosons at the Large Hadron Collider, with the ATLAS experiment, is presented.

  • 806.
    Ferrari, Arnaud
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    ..., ...
    Tecker, Frank
    CERN.
    CTF3 Combiner Ring commissioning2007In: Particle Accelerator Conference 2007, Albuquerque, USA, June 2007, 2007Conference paper (Other academic)
  • 807.
    Ferrari, Arnaud
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    ..., ...
    Thibaut, Lefevre
    CERN.
    Instrumentation for longitudinal beam gymnastics in FELs and at the CLIC Test Facility CTF32007In: 8th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators (DIPAC2007), Venice, Italy, May 2007, 2007Conference paper (Other academic)
  • 808.
    Ferrari, Arnaud
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Buszello, Claus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zimmer, Stephan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gross, Eilam
    Vittels, Ofer
    Klemetti, Miika
    Potter, Chris
    Robertson, Steven
    Lane, Jenna
    Martyniuk, Alex
    Miyagawa, Paul
    Yang, Un-ki
    Light charged Higgs boson searches for H+ to tau+ nu and H+ to c sbar in early LHC data at the ATLAS experiment2009Report (Other academic)
  • 809.
    Ferrari, Arnaud
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Gourie, Gabriel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Simulation study of the coupling between a Nearly Confocal Resonator pick-up and an electron beam2007Report (Other academic)
    Abstract [en]

    In the framework of the CLIC/CTF3 studies, a numerical study of the couplingbetween an electron beam bunched at 12 GHz and a nearly confocal resonator(NCR) with spherical mirrors is presented in this paper. The geometry of theNCR pick-up was chosen to have a large quality factor for the diffraction lossesat 12 GHz, and thus a weak coupling to parasitic external TE and TM modesthat may propagate in the wake of the electron bunches. The simulated shuntimpedance shows the presence of undesired resonances at low frequencies, whichcan however be significantly damped, e.g. by placing bricks of absorbing materialalong the side walls of the beam pipe. The power spectrum induced by a singleelectron bunch in an extraction waveguide connected to the upper mirror of theNCR pick-up was computed. Another simulation was performed, this time withoutthe NCR cavity on the beam pipe. A comparison of the power induced by a bunchtrain at 12 GHz in these two cases shows that the presence of the NCR cavityreduces the available signal by at least three orders of magnitude, as a result ofthe transit time factor for the NCR eigen-mode at 12 GHz. Since this reduction isabout the same as for the parasitic modes propagating in the wake of the bunches,we conclude that no significant improvement of the signal-to-noise ratio can beobtained with the NCR pick-up.

  • 810.
    Ferrari, Arnaud
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Rinolfi, Louis
    Tecker, Frank
    Particle tracking in the CLIC main beam Injector Linac2006Report (Other academic)
    Abstract [en]

    This note presents a particle tracking study in the CLIC Injector Linac, which accelerates both electrons and positrons from 200 MeV to 2.42 GeV, prior to their injection into the damping rings. For the positrons, a growth of the emittance and a large energy spread are observed at the end of the linac, but both effects can be minimized by using a bunch compressor at the exit of the e+ Pre-Injector Linac. For the electrons, no significant increase of the emittance is noticed and the energy spread remains small.

  • 811. Grabowska-Bold, Iwona
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Highlights from the ATLAS experiment2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 8-14Article in journal (Refereed)
    Abstract [en]

    This report provides an overview of the new results obtained by the ATLAS Collaboration at the LHC, which were presented at the Quark Matter 2018 conference. These measurements were covered in 12 parallel talks, one flash talk and 11 posters. In this document, a discussion of results is grouped into four areas: electromagnetic interactions, jet quenching, quarkonia and heavy-flavour production, and collectivity in small and larger systems. Measurements from the xenon-xenon collisions based on a short run collected in October 2017 are reported for the first time.

  • 812. Hu, Qipeng
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of heavy flavor production and azimuthal anisotropy in small and large systems with ATLAS2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 687-690Article in journal (Refereed)
    Abstract [en]

    Heavy-flavor hadron production and collective motion in A+A collisions provide insight into the energy loss mechanism and transport properties of heavy quarks in the QGP. The same measurements in p+A collisions serve as an important baseline for understanding the observations in A+A collisions. For example, detailed studies of heavy-flavor hadron azimuthal anisotropy in p+A collisions may help to address whether the observed long-range "ridge" correlation arises from hard or semi-hard processes, or if it is the result of mechanisms unrelated to the initial hardness scale. These proceedings summarize heavy-flavor hadron production, via their semi-leptonic decay to muons in 2.76 TeV Pb+Pb and pp collisions, non-prompt J/psi in 5.02 TeV Pb+Pb and pp collisions, and prompt D-0 mesons in 8.16 TeV p+Pb collisions using ATLAS detector at the LHC. Azimuthal anisotropy of heavy-flavor hadrons is studied via their decay muons in 2.76 TeV Pb+Pb and 8.16 TeV p+Pb collisions, and via non-prompt J/psi in 5.02 TeV Pb+Pb collisions. Strong suppression of heavy-flavor hadron production and azimuthal anisotropy are observed in Pb+Pb collisions, while significant azimuthal anisotropy of heavy-flavor muons is observed in p+Pb collisions, without evidence of the modification of their production rates.

  • 813.
    Jia, Jiangyong
    et al.
    SUNY Stony Brook, Chem Dept, Stony Brook, NY 11794 USA.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel Smith, Camila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Heavy Ion Results from ATLAS2017In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 967, p. 51-58Article in journal (Refereed)
    Abstract [en]

    These proceedings provide an overview of the new results obtained with the ATLAS detector at the LHC, which were presented in the Quark Matter 2017 conference. These results were covered by twelve parallel talks, one flash talk and eleven posters. These proceedings group these results into five areas: initial state, jet quenching, quarkonium production, longitudinal flow dynamics, and collectivity in small systems.

  • 814. Perepelitsa, Dennis, V
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Photon-tagged measurements of jet quenching with ATLAS2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 595-598Article in journal (Refereed)
    Abstract [en]

    Events containing a high transverse momentum (p(T)) prompt photon offer a useful way to study the dynamics of the hot, dense medium produced in heavy ion collisions. Because photons do not carry color charge, they are unaffected by the medium, and thus provide information about the momentum, direction, and flavor (quark or gluon) of the associated hard-scattered parton before it begins to shower and become quenched. In particular, the presence of a high-p(T) photon can be used to select pp and Pb+Pb events with the same configuration before quenching, limiting the effects of quenching-induced selection biases present in other jet measurements. The large statistics pp and Pb+Pb data delivered by the LHC in 2015 allow for a detailed study of photon-tagged jet quenching effects, such as the overall parton energy loss and modified structure of the component of the shower which remains correlated with the initial parton direction (e.g. in cone). In this proceeding, photon-tagged measurements of jet quenching by ATLAS are reported.

  • 815. Puri, Akshat
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and pp collisions at √sNN=5.02TeV with ATLAS at the LHC2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 177-179Article in journal (Refereed)
    Abstract [en]

    Studies of the fragmentation of jets into charged particles in heavy-ion collisions can help in understanding the mechanism of jet quenching by the hot and dense QCD matter created in such collisions, the quark-gluon plasma. These proceedings present a measurement of the angular distribution of charged particles around the jet axis in root s(NN) = 5.02 TeV Pb+Pb and pp collisions, done using the ATLAS detector at the LHC. The measurement is performed inside jets reconstructed with the anti-k(t) algorithm with radius parameter R = 0.4, and is extended to regions outside the jet cone. Results are presented as a function of Pb+Pb collision centrality, and both jet and charged-particle transverse momenta.

  • 816. Spousta, Martin
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Jet suppression and jet substructure in Pb plus Pb and Xe plus Xe collisions with the ATLAS detector2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 611-614Article in journal (Refereed)
    Abstract [en]

    This short summary presents latest measurements of the nuclear modification factor, R-AA, for R = 0.4 jets in Pb+Pb collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. The analysis is performed over a large range of transverse momentum, up to p(T) = 1 TeV, and differentially in jet p(T), rapidity, and collision centrality. The jet R-AA is measured also differentially in the jet mass, m, which provides new information on the dependence of the energy loss on the substructure of jets. Latest results by ATLAS on the dijet momentum balance in Xe+Xe collisions at root s(NN) = 5.44 TeV are presented and compared to the same quantity measured in Pb+Pb collisions at root s(NN) = 5.02 TeV. These recent measurements should help us understand mechanisms of parton energy loss and properties of hot and dense matter created in heavy-ion collisions.

  • 817. Steinberg, Peter
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Electromagnetic processes with quasireal photons in Pb+Pb collisions: QED, QCD, and the QGP2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 259-262Article in journal (Refereed)
    Abstract [en]

    Electromagnetic processes, both photon-photon and photon-nucleus, are shown to be useful in studying aspects of QED, QCD, and potentially the QGP. Using lead-lead collisions at root s(NN) = 5.02 TeV, the ATLAS detector has performed measurements of exclusive dimuon production, light-by-light scattering (via exclusive diphoton production), and photo-nuclear dijet production. These are all important examples of ultraperipheral collisions, where the nuclei do not interact hadronically. A recent study of the opening angles of dimuons produced in hadronic heavy-ion collisions, after subtracting heavy-flavor backgrounds, demonstrates that the dimuons carry information correlated with the overlap geometry, potentially about the density of charges in the QGP itself.

  • 818. Zhou, Mingliang
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Flow fluctuations in Pb plus Pb collisions at √sNN=5.02 TeV with the ATLAS detector2019In: Nuclear Physics A, ISSN 0375-9474, E-ISSN 1873-1554, Vol. 982, p. 323-326Article in journal (Refereed)
    Abstract [en]

    Measurements of four-particle cumulants c(n){4} for n = 1, 2, 3, 4 are presented using 470 mu b(-1) of Pb+Pb collisions at root s(NN) = 5.02 TeV with the ATLAS detector at the LHC. These cumulants provide information on the event-by-event fluctuations of single harmonics p(v(n)). For the first time, a negative c(1){4} is observed. The c(4){4} is found to be negative in central collisions but changes sign around 20-25% centrality. This behavior is consistent with a nonlinear contribution to v(4) that is proportional to v(2)(2). c(2){4} and c(3){4} are calculated using two reference event classes in order to investigate the influence of volume fluctuations. Over most of the centrality range, c(2){4} and c(3){4} are found to be negative, while in the ultra-central collisions, c(2){4} changes sign and becomes positive, suggesting a deviation from Gaussian behavior in the event-by-event fluctuation of v(2). The magnitudes of the sign change are also found to be dependent of the event class definition .

14151617 801 - 818 of 818
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf