uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 8864
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aabloo, A
    et al.
    Klintenberg, M
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of a polymer-inorganic interface.2000In: Electrochim.Acta, Vol. 45, p. 1425-Article in journal (Refereed)
  • 2. Aabloo, A.
    et al.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of lithium ion mobility in a PEO surface.2001In: Solid State Ionics, Vol. 143, p. 83-Article in journal (Refereed)
  • 3.
    Aabloo, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of Nd3+ ions in a crystalline PEO surface1998In: ELECTROCHIMICA ACTA, ISSN 0013-4686, Vol. 43, no 10-11, p. 1361-1364Article in journal (Other scientific)
    Abstract [en]

    Poly(ethylene oxide) based electrolytes are systems in which ionic salts are dissolved into an amorphous EO matrix. Potentials developed earlier to model crystalline and amorphous bulk PEO systems are here used for the MD simulation at 400 K of the behavi

  • 4.
    Aabloo, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulations of a poly(ethylene oxide) surface1997In: POLYMER, ISSN 0032-3861, Vol. 38, no 18, p. A47-A51Article in journal (Refereed)
    Abstract [en]

    Potentials developed earlier for crystalline and amorphous bulk PEO systems have been used for the MD simulation of a PEO surface model. The surface comprises the outer region of a 122 Angstrom-thick sheet of PEO in which the PEO, -(CH2-CH2-O)(n)- chains

  • 5.
    Aarik, J.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. oorganisk kemi.
    Aidla, A.
    Mändar, H.
    Uustare, T.
    Schuisky, M.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. oorganisk kemi.
    Hårsta, A.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. oorganisk kemi.
    Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on a-Al2O3 substrates2002In: J. Cryst. Growth, no 242, p. 189-198Article in journal (Refereed)
  • 6.
    Aarik, J.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. oorganisk kemi.
    Sundqvist, J.
    Aidla, A.
    Lu, J.
    Sajavaara, T.
    Kukli, K.
    Hårsta, Anders
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. oorganisk kemi.
    Hafnium tetraiodide and oxygen as precursors for atomic layer deposition of hafnium oxide thin films2002In: Thin Solid Films, Vol. 418, p. 69-72Article in journal (Refereed)
  • 7.
    Aartsen, M. G.
    et al.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Abraham, K.
    Tech Univ Munich, D-85748 Garching, Germany..
    Ackermann, M.
    DESY, D-15735 Zeuthen, Germany..
    Adams, J.
    Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand..
    Aguilar, J. A.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Ahlers, M.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Ahrens, M.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Altmann, D.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Anderson, T.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Archinger, M.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Arguelles, C.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Arlen, T. C.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Auffenberg, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Bai, X.
    South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA..
    Barwick, S. W.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Baum, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Bay, R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Beatty, J. J.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle, Columbus, OH 43210 USA.;Ohio State Univ, Dept Astron, Columbus, OH 43210 USA..
    Tjus, J. Becker
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Becker, K. -H
    Beiser, E.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    BenZvi, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Berghaus, P.
    DESY, D-15735 Zeuthen, Germany..
    Berley, D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Bernardini, E.
    DESY, D-15735 Zeuthen, Germany..
    Bernhard, A.
    Tech Univ Munich, D-85748 Garching, Germany..
    Bessonu, D. Z.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA..
    Binder, G.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Bindig, D.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Bissok, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Blaueuss, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Blumenthal, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Boersma, David. J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Bohm, C.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Boerner, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Bos, F.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Bose, D.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Boeser, S.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Botner, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Braun, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Brayeur, L.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Bretz, H. -P
    Brown, A. M.
    Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand..
    Buzinsky, N.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Casey, J.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Casier, M.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Cheung, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Chirkin, D.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Christov, A.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Christy, B.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Clark, K.
    Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada..
    Classen, L.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Coenders, S.
    Tech Univ Munich, D-85748 Garching, Germany..
    Cowen, D. F.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA.;Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA..
    Silva, A. H. Cruz
    DESY, D-15735 Zeuthen, Germany..
    Daughhetee, J.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Davis, J. C.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle, Columbus, OH 43210 USA..
    Day, M.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    de Andre, J. P. A. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    De Clercq, C.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Dembinski, H.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    De Ridder, S.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Desiati, P.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    de Vries, K. D.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    de Wasseige, G.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    de With, M.
    Humboldt Univ, Inst Phys, D-12489 Berlin, Germany..
    DeYoung, T.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Diaz-Velez, J. C.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Dumm, J. P.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Dunkman, M.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Eagan, R.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Eberhardt, B.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Ehrhardt, T.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Eichmann, B.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Euler, Sebastian
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Evenson, P. A.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Fadiran, O.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Fahey, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Fazely, A. R.
    Southern Univ, DeVment Phys, Baton Rouge, LA 70813 USA..
    Fedynitch, A.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Feintzeig, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Felde, J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Filimonov, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Finley, C.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Fischer-Wasels, T.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Flis, S.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Fuchs, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Glagla, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Gaisser, T. K.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Gator, R.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Gallagher, J.
    Univ Wisconsin, Dept Astron, Madison, WI 53706 USA..
    Gerhardt, L.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Ghorbani, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Gier, D.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Gladstone, L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Gluesenkamp, T.
    DESY, D-15735 Zeuthen, Germany..
    Goldschmidt, A.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Golup, G.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Gonzalez, J. G.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Gora, D.
    DESY, D-15735 Zeuthen, Germany..
    Grant, D.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Gretskov, P.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Groh, J. C.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Gross, A.
    Tech Univ Munich, D-85748 Garching, Germany..
    Ha, C.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Haack, C.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Ismail, A. Haj
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Hallgren, Allan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Halzen, F.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hansmann, B.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Hanson, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hebecker, D.
    Humboldt Univ, Inst Phys, D-12489 Berlin, Germany..
    Heereman, D.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Helbing, K.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Hellauer, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hellwig, D.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Hickford, S.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Hignight, J.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Hill, G. C.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Hoffman, K. D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hoffmann, R.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Holzapfe, K.
    Tech Univ Munich, D-85748 Garching, Germany..
    Homeier, A.
    Univ Bonn, Inst Phys, D-53115 Bonn, Germany..
    Hoshina, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.;Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan..
    Huang, F.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Huber, M.
    Tech Univ Munich, D-85748 Garching, Germany..
    Huelsnitz, W.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hulth, P. O.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Hultqvist, K.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    In, S.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Ishihara, A.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Jacobi, E.
    DESY, D-15735 Zeuthen, Germany..
    Japaridze, G. S.
    Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA..
    Jero, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Jurkovic, M.
    Tech Univ Munich, D-85748 Garching, Germany..
    Kaminsky, B.
    DESY, D-15735 Zeuthen, Germany..
    Kappes, A.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Karg, T.
    DESY, D-15735 Zeuthen, Germany..
    Karle, A.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kauer, M.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.;Yale Univ, Dept Phys, New Haven, CT 06520 USA..
    Keivani, A.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Kelley, J. L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kemp, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Kheirandish, A.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kiryluk, J.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Klaes, J.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Klein, S. R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Kohnen, G.
    Univ Mons, B-7000 Mons, Belgium..
    Koirala, R.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Kolanoski, H.
    Humboldt Univ, Inst Phys, D-12489 Berlin, Germany..
    Konietz, R.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Koob, A.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Koepke, L.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Kopper, C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Kopper, S.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Koskinen, D. J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Kowalski, M.
    DESY, D-15735 Zeuthen, Germany.;Humboldt Univ, Inst Phys, D-12489 Berlin, Germany..
    Krings, K.
    Tech Univ Munich, D-85748 Garching, Germany..
    Kroll, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Kroll, M.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Kunnen, J.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Kurahashi, N.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Kuwabara, T.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Labare, M.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Lanfranchi, J. L.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Larson, M. J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Lesiak-Bzdak, M.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Leuermann, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Leuner, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Luenemann, J.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Madsen, J.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Maggi, G.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Mahn, K. B. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Maruyama, R.
    Yale Univ, Dept Phys, New Haven, CT 06520 USA..
    Mase, K.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Matis, H. S.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Maunu, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    McNally, F.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Meagher, K.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Medici, M.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Meli, A.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Menne, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Merino, G.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Meures, T.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Miarecki, S.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Middell, E.
    DESY, D-15735 Zeuthen, Germany..
    Middlemas, E.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Miller, J.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Mohrmann, L.
    DESY, D-15735 Zeuthen, Germany..
    Montaruli, T.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Morse, R.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Nahnhauer, R.
    DESY, D-15735 Zeuthen, Germany..
    Naumann, U.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Niederhausen, H.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Nowicki, S. C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Nygre, D. R.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Obertacke, A.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Olivas, A.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Omairat, A.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    O'Murchadha, A.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Palczewski, T.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Pandya, H.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Paul, L.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Pepper, J. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    de los Heros, Carlos Perez
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pfendner, C.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle, Columbus, OH 43210 USA..
    Pieloth, D.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Pinat, E.
    Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium..
    Posselt, J.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Price, P. B.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Przybylski, G. T.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Puetz, J.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Quinnan, M.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Raedel, L.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Rameez, M.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Rawlins, K.
    Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA..
    Redl, P.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Reimann, R.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Relich, M.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Resconi, E.
    Tech Univ Munich, D-85748 Garching, Germany..
    Rhode, W.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Richman, M.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Richter, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Riedel, B.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Robertson, S.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Rongen, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Rott, C.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Ruhe, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Ryckbosch, D.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Saba, S. M.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Sabbatini, L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Sander, H. -G
    Sandrock, A.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Sandroos, J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Sarkar, S.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.;Univ Oxford, Dept Phys, Oxford OX1 3NP, England..
    Schatto, K.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Scheriau, F.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Schimp, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Schmidt, T.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Schmitz, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Schoenen, S.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Schoeneberg, S.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Schoenwald, A.
    DESY, D-15735 Zeuthen, Germany..
    Schukraft, A.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Schulte, L.
    Univ Bonn, Inst Phys, D-53115 Bonn, Germany..
    Seckel, D.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Seunarine, S.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Shanidze, R.
    DESY, D-15735 Zeuthen, Germany..
    Smith, M. W. E.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Soldin, D.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Spiczak, G. M.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Ering, C.
    DESY, D-15735 Zeuthen, Germany..
    Stahlberg, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Stamatikos, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle, Columbus, OH 43210 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Stanev, T.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Stanisha, N. A.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Stasik, A.
    DESY, D-15735 Zeuthen, Germany..
    Stezelberger, T.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Stokstad, R. G.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Stoessl, A.
    DESY, D-15735 Zeuthen, Germany..
    Strahlers, E. A.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Ström, Rickard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Strotjohann, N. L.
    DESY, D-15735 Zeuthen, Germany..
    Suwvan, G. W.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Sutherland, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle, Columbus, OH 43210 USA..
    Taavola, Henric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Taboada, I.
    Ter-Antonyan, S.
    Southern Univ, DeVment Phys, Baton Rouge, LA 70813 USA..
    Terliuk, A.
    DESY, D-15735 Zeuthen, Germany..
    Tesic, G.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Tilav, S.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Toale, P. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Tobin, M. N.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Tosi, D.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Tselengidou, M.
    Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Turcati, A.
    Tech Univ Munich, D-85748 Garching, Germany..
    Unger, Eva
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Usner, M.
    DESY, D-15735 Zeuthen, Germany..
    Vallecorsa, S.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    van Eundhoven, N.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Vandenbroucke, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    van Santen, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Vanheule, S.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Veenkamp, J.
    Tech Univ Munich, D-85748 Garching, Germany..
    Vehring, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Voge, M.
    Univ Bonn, Inst Phys, D-53115 Bonn, Germany..
    Vraeghe, M.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Walck, C.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Wallraff, M.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Wandkowsky, N.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Weaver, Ch.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wendt, C.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Westerhoff, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Whelan, B. J.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Whitehorn, N.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wichary, C.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Wiebe, K.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Wiebusch, C. H.
    Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany..
    Wille, L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Williams, D. R.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Wissing, H.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Wolf, M.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Wood, T. R.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Woschnagg, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Xu, D. L.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Xu, X. W.
    Southern Univ, DeVment Phys, Baton Rouge, LA 70813 USA..
    Xu, Y.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Yanez, J. P.
    DESY, D-15735 Zeuthen, Germany..
    Yodh, G.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Yoshida, S.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Zarzhitsky, P.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Zoll, M.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Ofek, Eran O.
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel..
    Kasliwal, Mansi M.
    Carnegie Inst Sci, Pasadena, CA 91101 USA..
    Nugent, Peter E.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Dept Astronomy, Berkeley, CA 94720 USA..
    Arcavi, Iair
    Las Cumbres Observ Global Telescope, Santa Barbara, CA 93111 USA.;Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA..
    Bloom, Joshua S.
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Dept Astronomy, Berkeley, CA 94720 USA..
    Kulkarni, Shrinivas R.
    CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA..
    Perley, Daniel A.
    CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA..
    Barlow, Tom
    CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA..
    Horesh, Assaf
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel..
    Gal-Yam, Avishay
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel..
    Howell, D. A.
    Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel.;Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA..
    Dilday, Ben
    North Idaho Coll, Coeur Dalene, ID 83814 USA..
    Evans, Phil A.
    Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England..
    Kennea, Jamie A.
    Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA..
    Burgett, W. S.
    Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA..
    Chambers, K. C.
    Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA..
    Kaiser, N.
    Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA..
    Waters, C.
    Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA..
    Flewelling, H.
    Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA..
    Tonry, J. L.
    Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA..
    Rest, A.
    Space Telescope Sci Inst, Baltimore, MD 21218 USA..
    Smartt, S. J.
    Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland..
    The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events2015In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 811, no 1, article id 52Article in journal (Refereed)
    Abstract [en]

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.

  • 8. Aartsen, M. G.
    et al.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Altmann, D.
    Anderson, T.
    Arguelles, C.
    Arlen, T. C.
    Auffenberg, J.
    Bai, X.
    Barwick, S. W.
    Baum, V.
    Beatty, J. J.
    Tjus, J. Becker
    Becker, K. -H
    BenZvi, S.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bernhard, A.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bohm, C.
    Bos, F.
    Bose, D.
    Boeser, S.
    Botner, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brayeur, L.
    Bretz, H. P.
    Brown, A. M.
    Casey, J.
    Casier, M.
    Cheung, E.
    Chirkin, D.
    Christov, A.
    Christy, B.
    Clark, K.
    Classen, L.
    Clevermann, F.
    Coenders, S.
    Cowen, D. F.
    Silva, A. H. Cruz
    Danninger, M.
    Daughhetee, J.
    Davis, J. C.
    Day, M.
    De Andre, J. P. A. M.
    DeClercq, C.
    De Ridder, S.
    Desiati, P.
    De Vries, K. D.
    Dewith, M.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dunkman, M.
    Eagan, R.
    Eberhardt, B.
    Eichmann, B.
    Eisch, J.
    Euler, Sebastian
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Felde, J.
    Feusels, T.
    Filimonov, K.
    Finley, C.
    Fischer-Wasels, T.
    Flis, S.
    Franckowiak, A.
    Frantzen, K.
    Fuchs, T.
    Gaisser, T. K.
    Gaior, R.
    Gallagher, J.
    Gerhardt, L.
    Gier, D.
    Gladstone, L.
    Glusenkamp, T.
    Goldschmidt, A.
    Golup, G.
    Gonzalez, J. G.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Gretskov, P.
    Groh, J. C.
    Gro, A.
    Ha, C.
    Haack, C.
    Ismail, A. Haj
    Hallen, P.
    Hallgren, Allan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Halzen, F.
    Hanson, K.
    Hebecker, D.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hellwig, D.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, R.
    Homeier, A.
    Hoshina, K.
    Huang, F.
    Huelsnitz, W.
    Hulth, P. O.
    Hultqvist, K.
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Jagielski, K.
    Japaridze, G. S.
    Jero, K.
    Jlelati, O.
    Jurkovic, M.
    Kaminsky, B.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kauer, M.
    Keivani, A.
    Kelley, J. L.
    Kheirandish, A.
    Kiryluk, J.
    Klaes, J.
    Klein, S. R.
    Koehne, J. H.
    Kohnen, G.
    Kolanoski, H.
    Koob, A.
    Koepke, L.
    Kopper, C.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kriesten, A.
    Krings, K.
    Kroll, G.
    Kroll, M.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Larsen, D. T.
    Larson, M. J.
    Lesiak-Bzdak, M.
    Leuermann, M.
    Leute, J.
    Luenemann, J.
    Madsen, J.
    Maggi, G.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Maunu, R.
    McNally, F.
    Meagher, K.
    Medici, M.
    Meli, A.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Middlemas, E.
    Milke, N.
    Miller, J.
    Mohrmann, L.
    Montaruli, T.
    Morse, R.
    Nahnhauer, R.
    Naumann, U.
    Niederhausen, H.
    Nowicki, S. C.
    Nygren, D. R.
    Obertacke, A.
    Odrowski, S.
    Olivas, A.
    Omairat, A.
    O'Murchadha, A.
    Palczewski, T.
    Paul, L.
    Penek, Oe.
    Pepper, J. A.
    Perez De Los Heros, Carlos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pfendner, C.
    Pieloth, D.
    Pinat, E.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Puetz, J.
    Quinnan, M.
    Raedel, L.
    Rameez, M.
    Rawlins, K.
    Redl, P.
    Rees, I.
    Reimann, R.
    Relich, M.
    Resconi, E.
    Rhode, W.
    Richman, M.
    Riedel, B.
    Robertson, S.
    Rodrigues, J. P.
    Rongen, M.
    Rott, C.
    Ruhe, T.
    Ruzybayev, B.
    Ryckbosch, D.
    Saba, S. M.
    Sander, H. -G
    Sandroos, J.
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Scheriau, F.
    Schmidt, T.
    Schmitz, M.
    Schoenen, S.
    Schoeneberg, S.
    Schoenwald, A.
    Schukraft, A.
    Schulte, L.
    Schulz, O.
    Seckel, D.
    Sestayo, Y.
    Seunarine, S.
    Shanidze, R.
    Smith, M. W. E.
    Soldin, D.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stanisha, N. A.
    Stasik, A.
    Stezelberger, T.
    Stokstad, R. G.
    Stoessl, A.
    Strahler, E. A.
    Ström, Rickard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Strotjohann, N. L.
    Sullivan, G. W.
    Taavola, Henric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Taboada, I.
    Tamburro, A.
    Tepe, A.
    Ter-Antonyan, S.
    Terliuk, A.
    Tesic, G.
    Tilav, S.
    Toale, P. A.
    Tobin, M. N.
    Tosi, D.
    Tselengidou, M.
    Unger, Eva
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Usner, M.
    Vallecorsa, S.
    Van Eijndhoven, N.
    Vandenbroucke, J.
    Van Santen, J.
    Vehring, M.
    Voge, M.
    Vraeghe, M.
    Walck, C.
    Wallraff, M.
    Weaver, Ch.
    Wellons, M.
    Wendt, C.
    Westerhoff, S.
    Whelan, B. J.
    Whitehorn, N.
    Wichary, C.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wissing, H.
    Wolf, M.
    Wood, T. R.
    Woschnagg, K.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Ziemann, J.
    Zierke, S.
    Zoll, M.
    Morik, K.
    Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube2015In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 75, no 3, article id 116Article in journal (Refereed)
    Abstract [en]

    We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.

  • 9.
    Abbas, Alaa
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Palladium-Catalysed Carbonylative Synthesis of Acylamidines2014Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
  • 10. Abbrent, S
    et al.
    Plestil, J
    Hlavata, D
    Lindgren, Jan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Tegenfeldt, Jörgen
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Wendsjö, Å
    Crystallinity and morphology of PVdF-HFP based gel electrolytes.2001In: Polymer, Vol. 42, p. 1407-Article in journal (Refereed)
  • 11.
    Abbrent, Sabina
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry.
    Lithium ion interactions in polymer gel electrolytes: Effect on structure, dynamics and morphology2000Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Polymer electrolytes are an essential part of the modern all-solid lithium battery. Several properties, such as mechanical and thermal stability, good ionic conductivity and compatibility with other materials used in the battery are necessary for a successful material.

    This thesis is focused on the ionic interactions in two electrolyte systems, based on a cross-linked polyethylene oxide (nona(ethylene oxide)dimethacrylate) or a fluorinated copolymer (polyvinylidene fluoride-hexafluoropropylene). Changes of thermal properties and morphology of and coordination in the electrolyte on addition of a lithium salt (LiTFSI) and different types and concentrations of solvents are studied. These properties are shown to control the ionic conductivity of the resulting material, influencing the conductivity mechanism.

    The presumably inert polyvinylidene fluoride is shown to undergo large structural changes, where polar conformations of the polymer backbone appear on salt addition, inducing a different crystalline phase. The lithium cation in the polyethylene oxide based electrolyte can coordinate either to the polymer chain or to the solvent. In for example systems containing propylene carbonate, the lithium ion binds more strongly to the polymer than to the solvent. This is in contrast to the systems with dimethyl sulphoxide where the ion prefers the solvent. This variation in coordination also strongly affects the mobility of the cation, reflected both in diffusion constants and in conductivity data.

    A combination of techniques was necessary to use for a deeper understanding of these complex materials. Coordination has been studied by FTIR and high resolution NMR, dynamics by NMR diffusion measurements and impedance spectroscopy, and morphology by diffraction techniques and DSC.

  • 12.
    Abbrent, Sabina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Lindgren, J
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Tegenfeldt, J
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Wendsjö, Å
    Gel electrolytes prepared from oligo(ethylene glycol)dimethacrylate: glass transition, conductivity and Li+-coordination1998In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 43, no 10-11, p. 1185-1191p. 1185-1191Article in journal (Refereed)
    Abstract [en]

    The influence of two plasticizers, propylene carbonate and dimethyl sulphoxide, as well as different salt concentrations of Li(TFSI), on properties of a polymer gel electrolyte material has been studied using differential scanning calorimetry (DSC) and ac impedance and FTIR spectroscopy. Variations of glass transition temperature and the conductivity behaviours of the systems were examined, and found to be highly dependent on the amount and type of the plasticizer used. Characteristic band-shifts in FTIR spectra, indicating coordination of lithium ions, have been found for the polymer and both the plasticizers in the corresponding binary solutions. These shifts were used to study the coordination preferences in the complete ternary electrolyte system. The combined results from the three experimental techniques have been discussed.

  • 13.
    Abdalla, Abdel-Monem
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Biochemistry.
    Bruns, Christopher M
    Tainer, John A
    Mannervik, Bengt
    Stenberg, Gun
    Design of a monomeric human glutathione transferase GSTP1, a structurally stable but catalytically inactive protein2002In: Protein Engineering, Vol. 15, p. 827-834Article in journal (Refereed)
  • 14.
    Abdelhamid, Hani Nasser
    et al.
    Stockholm Univ, Inorgan & Struct Chem, SE-10691 Stockholm, Sweden;Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    Huang, Zhehao
    Stockholm Univ, Inorgan & Struct Chem, SE-10691 Stockholm, Sweden;Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    El-Zohry, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Zheng, Haoquan
    Stockholm Univ, Inorgan & Struct Chem, SE-10691 Stockholm, Sweden;Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    Zou, Xiaodong
    Stockholm Univ, Inorgan & Struct Chem, SE-10691 Stockholm, Sweden;Stockholm Univ, Berzelii Ctr EXSELENT Porous Mat, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden.
    A Fast and Scalable Approach for Synthesis of Hierarchical Porous Zeolitic Imidazolate Frameworks and One-Pot Encapsulation of Target Molecules2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 15, p. 9139-9146Article in journal (Refereed)
    Abstract [en]

    A trimethylamine (TEA)-assisted synthesis approach that combines the preparation of hierarchical porous zeolitic, imidazolate framework ZIF-8, nanoparticles and one-pot encapsulation of target molecules is presented. Two dye molecules, rhodamine B (RhB) and methylene blue (MB), and one protein (bovine serum albumin, BSA) were, tested as the target molecules. The addition of TEA into the solution of zinc nitrate promoted the formation of ZnO nanocrystals, which rapidly transformed to ZIF-8 nanoparticles after the addition of the linker 2-methylimidazole (Hmim): Hierarchical porous dye@ZIF-8 nanoparticles with high crystallinity, large BET surface areas (1300-2500 m(2)/g), and large pore Volatiles (0.5-1.0 cm(3)/g) could be synthesized. The synthesis procedure was fast (down to 2 min) and scalable. The Hmim/Zn ratio could be greatly reduced (down to 2:1) compared to previously reported ones. The surface areas, and the mesopore size, structure, and density could be modified by changing the TEA or dye concentrations, or by postsynthetic treatment using reflux in methanol. This synthesis and one-pot encapsulation approach is simple and can be readily scaled Up. The photophysical properties such as lifetime and photostability of the dyes could be tuned via encapsulation. The lifetimes of the encapsulated dyes were increased by 3-27-fold for RhB@ZIF-8 and by 20-fold for MB@ZIF-8, compared to those of the corresponding free dyes. The synthesis approach is general, which was successfully applied for encapsulation of protein BSA. It could also be extended for the synthesis of hierarchical porous cobalt-based ZIP (dye@ZIF-67).

  • 15.
    Abdellah, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt..
    El-Zohry, Ahmed M.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Antila, Liisa J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Windle, Christopher D.
    Univ Cambridge, Dept Chem, Christian Doppler Lab Sustainable SynGas Chem, Lensfield Rd, Cambridge CB2 1EW, England..
    Reisner, Erwin
    Univ Cambridge, Dept Chem, Christian Doppler Lab Sustainable SynGas Chem, Lensfield Rd, Cambridge CB2 1EW, England..
    Hammarström, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Time-Resolved IR Spectroscopy Reveals a. Mechanism with TiO2 as a Reversible Electron Acceptor in a TiO2-Re Catalyst System for CO2 Photoreduction2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 3, p. 1226-1232Article in journal (Refereed)
    Abstract [en]

    Attaching the phosphonated molecular catalyst [(ReBr)-Br-I(bpy)-(CO)(3)](0) to the wide-bandgap semiconductor TiO2 strongly enhances the rate of visible-light-driven reduction of CO2 to CO in dimethylformamide with triethanolamine (TEOA) as sacrificial electron donor. Herein, we show by transient mid-IR spectroscopy that the mechanism of catalyst photoreduction is initiated by ultrafast electron injection into TiO2, followed by rapid (ps-ns) and sequential two-electron oxidation of TEOA that is coordinated to the Re center. The injected electrons can be stored in the conduction band of TiO2 on an ms-s time scale, and we propose that they lead to further reduction of the Re catalyst and completion of the catalytic cycle. Thus, the excited Re catalyst gives away one electron and would eventually get three electrons back. The function of an electron reservoir would represent a role for TiO2 in photocatalytic CO2 reduction that has previously not been considered. We propose that the increase in photocatalytic activity upon heterogenization of the catalyst to TiO2 is due to the slow charge recombination and the high oxidative power of the Re-II species after electron injection as compared to the excited MLCT state of the unbound Re catalyst or when immobilized on ZrO2, which results in a more efficient reaction with TEOA.

  • 16.
    Abdellah, Mohamed
    et al.
    Lund Univ, Div Chem Phys, Box 124, S-22100 Lund, Sweden.;Lund Univ, NanoLund, Box 124, S-22100 Lund, Sweden.;South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt..
    Poulsen, Felipe
    Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark..
    Zhu, Qiushi
    Lund Univ, Div Chem Phys, Box 124, S-22100 Lund, Sweden.;Lund Univ, NanoLund, Box 124, S-22100 Lund, Sweden..
    Zhu, Nan
    Tech Univ Denmark, Dept Chem, Kemitorvet Bldg 207, DK-2800 Lyngby, Denmark.;Dalian Univ Technol, Zhang Dayu Sch Chem, Dalian 116024, Peoples R China..
    Zidek, Karel
    Acad Sci Czech Republ, Inst Plasma Phys, Reg Ctr Special Opt & Optoelect Syst TOPTEC, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Chabera, Pavel
    Lund Univ, Div Chem Phys, Box 124, S-22100 Lund, Sweden.;Lund Univ, NanoLund, Box 124, S-22100 Lund, Sweden..
    Corti, Annamaria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hansen, Thorsten
    Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark..
    Chi, Qijin
    Tech Univ Denmark, Dept Chem, Kemitorvet Bldg 207, DK-2800 Lyngby, Denmark..
    Canton, Sophie E.
    DESY, Attosecond Sci Grp, Notkestr 85, D-22607 Hamburg, Germany.;ELI HU Nonprofit Ltd, ELI ALPS, Dugonics Ter 13, H-6720 Szeged, Hungary..
    Zheng, Kaibo
    Lund Univ, Div Chem Phys, Box 124, S-22100 Lund, Sweden.;Lund Univ, NanoLund, Box 124, S-22100 Lund, Sweden.;Qatar Univ, Coll Engn, Gas Proc Ctr, POB 2713, Doha, Qatar..
    Pullerits, Tonu
    Lund Univ, Div Chem Phys, Box 124, S-22100 Lund, Sweden.;Lund Univ, NanoLund, Box 124, S-22100 Lund, Sweden..
    Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1−xS1−y quantum dots2017In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 34, p. 12503-12508Article in journal (Refereed)
    Abstract [en]

    Ultrafast fluorescence spectroscopy was used to investigate the hole injection in CdxSeyZn1-xS1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrodinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.

  • 17.
    Abdellah, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry. South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt.
    Zhang, Shihuai
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Wang, Mei
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Hammarström, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Competitive Hole Transfer from CdSe Quantum Dots to Thiol Ligands in CdSe-Cobaloxime Sensitized NiO Films Used as Photocathodes for H-2 Evolution2017In: ACS Energy Letters, ISSN 2380-8195, Vol. 2, no 11, p. 2576-2580Article in journal (Refereed)
    Abstract [en]

    Quantum dot (QD) sensitized NiO photocathodes rely on efficient photoinduced hole injection into the NiO valence band. A system of a mesoporous NiO film co-sensitized with CdSe QDs and a molecular proton reduction catalyst was studied. While successful electron transfer from the excited QDs to the catalyst is observed, most of the photogenerated holes are instead quenched very rapidly (ps) by hole trapping at the surface thiols of the capping agent used as linker molecules. We confirmed our conclusion by first using a thiol free capping agent and second varying the thiol concentration on the QD's surface. The later resulted in faster hole trapping as the thiol concentration increased. We suggest that this hole trapping by the linker limits the H-2 yield for this photocathode in a device.

  • 18.
    Abdi-Jalebi, Mojtaba
    et al.
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Pazoki, Meysam
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Philippe, Bertrand
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Dar, M. Ibrahim
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, Lausanne, Switzerland.
    Alsari, Mejd
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Sadhanala, Aditya
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Diyitini, Giorgio
    Univ Cambridge, Dept Mat Sci & Met, Charles Babbage Rd, Cambridge, England.
    Imani, Roghayeh
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lilliu, Samuele
    Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England; UAE Ctr Crystallog, Dubai, U Arab Emirates.
    Kullgren, Jolla
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Gratzel, Michael
    Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, Lausanne, Switzerland.
    Friend, Richard H.
    Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge, England.
    Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations2018In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, no 7, p. 7301-7311Article in journal (Refereed)
    Abstract [en]

    We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.

  • 19. Abdurahman, S
    et al.
    Höglund, Stefan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Biochemistry.
    Goobar-Larsson, L
    Vahlne, A
    Selected amino acid substitutions in the C-terminal region of human immunodeficiency virus type 1 capsid protein affect virus assembly and release2004In: J. gen. Virol, Vol. 85, p. 2903-2913Article in journal (Refereed)
  • 20. Abdurahman, Samir
    et al.
    Höglund, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Biochemistry.
    Höglund, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Biochemistry.
    Vahlne, Anders
    Mutation in the loop C-terminal to the cyclophilin A binding site of HIV-1 capsid protein disrupts proper virus assembly and infectivity2007In: Retrovirology, ISSN 1742-4690, E-ISSN 1742-4690, Vol. 4, p. 19-Article in journal (Refereed)
    Abstract [en]

    We have studied the effects associated with two single amino acid substitution mutations in HIV-1 capsid (CA), the E98A and E187G. Both amino acids are well conserved among all major HIV-1 subtypes. HIV-1 infectivity is critically dependent on proper CA cone formation and mutations in CA are lethal when they inhibit CA assembly by destabilizing the intra and/or inter molecular CA contacts, which ultimately abrogate viral replication. Glu98, which is located on a surface of a flexible cyclophilin A binding loop is not involved in any intra-molecular contacts with other CA residues. In contrast, Glu187 has extensive intra-molecular contacts with eight other CA residues. Additionally, Glu187 has been shown to form a salt-bridge with Arg18 of another N-terminal CA monomer in a N-C dimer. However, despite proper virus release, glycoprotein incorporation and Gag processing, electron microscopy analysis revealed that, in contrast to the E187G mutant, only the E98A particles had aberrant core morphology that resulted in loss of infectivity.

  • 21. Abdurahman, Samir
    et al.
    Vegvari, Akos
    Levi, Michael
    Höglund, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Högberg, Marita
    Tong, Weimin
    Romero, Ivan
    Balzarini, Jan
    Vahlne, Anders
    Isolation and characterization of a small antiretroviral molecule affecting HIV-1 capsid morphology2009In: Retrovirology, ISSN 1742-4690, E-ISSN 1742-4690, Vol. 6, p. 34-Article in journal (Refereed)
    Abstract [en]

    Background: Formation of an HIV-1 particle with a conical core structure is a prerequisite for the subsequent infectivity of the virus particle. We have previously described that glycineamide (G-NH2) when added to the culture medium of infected cells induces non-infectious HIV-1 particles with aberrant core structures. Results: Here we demonstrate that it is not G-NH2 itself but a metabolite thereof that displays antiviral activity. We show that conversion of G-NH2 to its antiviral metabolite is catalyzed by an enzyme present in bovine and porcine but surprisingly not in human serum. Structure determination by NMR suggested that the active G-NH2 metabolite was alpha-hydroxy-glycineamide (alpha-HGA). Chemically synthesized alpha-HGA inhibited HIV-1 replication to the same degree as G-NH2, unlike a number of other synthesized analogues of G-NH2 which had no effect on HIV-1 replication. Comparisons by capillary electrophoresis and HPLC of the metabolite with the chemically synthesized alpha-HGA further confirmed that the antiviral G-NH2-metabolite indeed was alpha-HGA. Conclusion: alpha-HGA has an unusually simple structure and a novel mechanism of antiviral action. Thus, alpha-HGA could be a lead for new antiviral substances belonging to a new class of anti-HIV drugs, i.e. capsid assembly inhibitors.

  • 22. Abdurahman, Samir
    et al.
    Vegvari, Akos
    Youssefi, Masoud
    Levi, Michael
    Höglund, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Andersson, Elin
    Horal, Peter
    Svennerholm, Bo
    Balzarini, Jan
    Vahlne, Anders
    Activity of the small modified amino acid alpha-hydroxy glycineamide on in vitro and in vivo human immunodeficiency virus type 1 capsid assembly and infectivity2008In: Antimicrobial Agents and Chemotherapy, ISSN 0066-4804, E-ISSN 1098-6596, Vol. 52, no 10, p. 3737-3744Article in journal (Refereed)
    Abstract [en]

    Upon maturation of the human immunodeficiency virus type 1 (HIV-1) virion, proteolytic cleavage of the Gag precursor protein by the viral protease is followed by morphological changes of the capsid protein p24, which will ultimately transform the virus core from an immature spherical to a mature conical structure. Virion infectivity is critically dependent on the optimal semistability of the capsid cone structure. We have reported earlier that glycineamide (G-NH2), when added to the culture medium of infected cells, inhibits HIV-1 replication and that HIV-1 particles with aberrant core structures were formed. Here we show that it is not G-NH2 itself but a metabolite thereof, alpha-hydroxy-glycineamide (alpha-HGA), that is responsible for the antiviral activity. We show that alpha-HGA inhibits the replication of clinical HIV-1 isolates with acquired resistance to reverse transcriptase and protease inhibitors but has no effect on the replication of any of 10 different RNA and DNA viruses. alpha-HGA affected the ability of the HIV-1 capsid protein to assemble into tubular or core structures in vitro and in vivo, probably by binding to the hinge region between the N- and C-terminal domains of the HIV-1 capsid protein as indicated by matrix-assisted laser desorption ionization-mass spectrometry results. As an antiviral compound, alpha-HGA has an unusually simple structure, a pronounced antiviral specificity, and a novel mechanism of antiviral action. As such, it might prove to be a lead compound for a new class of anti-HIV substances.

  • 23. Abdurahman, Samir
    et al.
    Youssefi, Masoud
    Höglund, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Vahlne, Anders
    Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity2007In: Retrovirology, ISSN 1742-4690, E-ISSN 1742-4690, Vol. 4, p. 69-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24) molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A) has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation. RESULTS: We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q) into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N) had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture. CONCLUSION: These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells.

  • 24.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Discovery and evaluation of direct acting antivirals against hepatitis C virus2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Until recently, the standard therapy for hepatitis C treatment has been interferon and ribavirin. Such treatment has only 50% efficacy and is not well tolerated. The emergence of new drugs has increased the treatment efficacy to 90%. Despite such an achievement, the success is limited since the virus mutates rapidly, causing the emergence of drug resistant forms. In addition, most new drugs were developed to treat genotype 1 infections. Thus, development of new potent antivirals is needed and drug discovery against hepatitis C is continued.

    In this thesis, a FRET-based protease assay was used to evaluate new pyrazinone based NS3 protease inhibitors that are structurally different to the newly approved and currently developing drugs. Several compounds in this series showed good potencies in the nanomolar range against NS3 proteases from genotype 1, 3, and the drug resistance variant R155K. We assume that these compounds can be further developed into drug candidates that possess activity against above mentioned enzyme variants.

    By using SPR technology, we analyzed interaction mechanisms and characteristics of allosteric inhibitors targeting NS5B polymerases from genotypes 1 and 3. The compounds exhibited different binding mechanisms and displayed a low affinity against NS5B from genotype 3.

    In order to evaluate the activity and inhibitors of the NS5B polymerase, we established an SPR based assay, which enables the monitoring of polymerization and its inhibition in real time. This assay can readily be implemented for the discovery of inhibitors targeting HCV.

    An SPR based fragment screening approach has also been established. A screen of a fragment library has been performed in order to identify novel scaffolds that can be used as a starting point for development of new allosteric inhibitors against NS5B polymerase. Selected fragments will be further elaborated to generate a new potent allosteric drug candidate.

    Alternative approaches have successfully been developed and implemented to the discovery of potential lead compounds targeting two important HCV drug targets.

    List of papers
    1. Discovery of pyrazinone based compounds that potently inhibit the drug resistant enzyme variant R155K of the hepatitis C virus NS3 protease
    Open this publication in new window or tab >>Discovery of pyrazinone based compounds that potently inhibit the drug resistant enzyme variant R155K of the hepatitis C virus NS3 protease
    Show others...
    2016 (English)In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 24, no 12, p. 2603-2620Article in journal (Refereed) Published
    Abstract [en]

    Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wildtype and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.

    Keywords
    Hepatitis C virus; Drug resistance; Pyrazinone; NS3 protease inhibitors; R155K
    National Category
    Organic Chemistry
    Research subject
    Medicinal Chemistry
    Identifiers
    urn:nbn:se:uu:diva-243315 (URN)10.1016/j.bmc.2016.03.066 (DOI)000376727800002 ()27160057 (PubMedID)
    Funder
    Swedish Research Council, D0571301
    Available from: 2015-02-08 Created: 2015-02-08 Last updated: 2017-12-04Bibliographically approved
    2. Pyrazinone based hepatitis C virus NS3 protease inhibitors targeting genotype 1a, 3a and the drug-resistant enzyme variant R155K
    Open this publication in new window or tab >>Pyrazinone based hepatitis C virus NS3 protease inhibitors targeting genotype 1a, 3a and the drug-resistant enzyme variant R155K
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265295 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
    3. Resolution of the Interaction Mechanisms and Characteristics of Non-nucleoside Inhibitors of Hepatitis C Virus Polymerase - Laying the Foundation for Discovery of Allosteric HCV Drugs
    Open this publication in new window or tab >>Resolution of the Interaction Mechanisms and Characteristics of Non-nucleoside Inhibitors of Hepatitis C Virus Polymerase - Laying the Foundation for Discovery of Allosteric HCV Drugs
    Show others...
    2013 (English)In: Antiviral Research, ISSN 0166-3542, E-ISSN 1872-9096, Vol. 97, no 3, p. 356-368Article in journal (Other academic) Published
    Abstract [en]

    Development of allosteric inhibitors into efficient drugs is hampered by their indirect mode-of-action and complex structure-kinetic relationships. To enablethe design of efficient allosteric drugs targeting the polymerase of hepatitis C virus(NS5B), the interaction characteristics of three non-nucleoside compounds (filibuvir, VX-222, and tegobuvir) inhibiting HCV replication via NS5B have been analyzed. Since there was no logical correlation between the anti-HCV replicative and enzyme inhibitory effects of the compounds, surface plasmon resonance biosensor technology was used to resolve the mechanistic, kinetic, thermodynamic and chemodynamic features of their interactions with their target and their effect on itsinteraction with RNA. Tegobuvir could not be seen to interact with NS5B at all while filibuvir interacted in a single reversible step (except at low temperatures) and VX-222 in two serial steps, interpreted as an induced fit mechanism. Both filibuvir and VX-222 interfered with the interaction between NS5B and RNA. They competed for binding to the enzyme, suggesting that they had a common inhibition mechanism and identical or overlapping binding sites. The greater anti-HCV replicative activityof VX-222 over filibuvir is hypothesized to be due to a greater allosteric conformational effect, resulting in the formation of a less catalytically competent complex. In addition, the induced fit mechanism of VX-222 gives it a kinetic advantage over filibuvir, exhibited as a longer residence time. These insights have important consequences for the selection and optimization of new allosteric NS5Binhibitors.

    Keywords
    HCV, NS5B, filibuvir, VX-222, tegobuvir, allosteric inhibitor, induced fit, kinetics, chemodynamics, thermodynamics
    National Category
    Biochemistry and Molecular Biology
    Research subject
    Biochemistry; Biochemistry
    Identifiers
    urn:nbn:se:uu:diva-171996 (URN)10.1016/j.antiviral.2012.12.027 (DOI)000317709400018 ()
    Available from: 2012-04-03 Created: 2012-03-31 Last updated: 2017-12-07Bibliographically approved
    4. Characterization of allosteric inhibitors of hepatitis C virus polymerase – a genotype comparative study
    Open this publication in new window or tab >>Characterization of allosteric inhibitors of hepatitis C virus polymerase – a genotype comparative study
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265287 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
    5. A time-resolved surface plasmon resonance based hepatitis C virus NS5B polymerase assay and its application for drug discovery
    Open this publication in new window or tab >>A time-resolved surface plasmon resonance based hepatitis C virus NS5B polymerase assay and its application for drug discovery
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265290 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
    6. Fragment library screening addressing Hepatitis C protein NS5B from genotypes 1 and 3 using an SPR-based approach
    Open this publication in new window or tab >>Fragment library screening addressing Hepatitis C protein NS5B from genotypes 1 and 3 using an SPR-based approach
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265292 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
  • 25.
    Abdurakhmanov, Eldar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Solbak, Sara
    Danielson, Helena
    Characterization of allosteric inhibitors of hepatitis C virus polymerase – a genotype comparative studyManuscript (preprint) (Other academic)
  • 26.
    Abdurakhmanov, Eldar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Solbak, Sara Oie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Danielson, U. Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase2017In: Viruses, ISSN 1999-4915, E-ISSN 1999-4915, Vol. 9, no 6, article id 151Article in journal (Refereed)
    Abstract [en]

    Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.

  • 27.
    Ablikim, M.
    et al.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Achasov, M. N.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia..
    Ahmed, S.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Ai, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Albayrak, O.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Albrecht, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Ambrose, D. J.
    Univ Rochester, Rochester, NY 14627 USA..
    Amoroso, A.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Helmholtz Inst Mainz, D-55099 Mainz, Germany.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.;Chinese Acad Sci, Beijing 100049, Peoples R China.;Univ Hawaii, Honolulu, HI 96822 USA.;Univ Punjab, Lahore 54590, Pakistan.;Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    An, F. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    An, Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Bai, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ferroli, R. Baldini
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Ban, Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Bennett, D. W.
    Indiana Univ, Bloomington, IN 47405 USA..
    Bennett, J. V.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Berger, N. B.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Bertani, M.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Bettoni, D.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Bian, J. M.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Bianchi, F.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Boger, E.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Boyko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Briere, R. A.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Cai, H.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Cai, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cakir, O.
    Ankara Univ, TR-06100 Ankara, Turkey..
    Calcaterra, A.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.;Chinese Acad Sci, Beijing 100049, Peoples R China.;Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Cao, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cetin, S. A.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey..
    Chang, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chelkov, G.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Chen, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Chen, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, M. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, S.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Chen, S. J.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Chen, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, X. R.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Chen, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cheng, H. P.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Chu, X. K.
    Peking Univ, Beijing 100871, Peoples R China..
    Cibinetto, G.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Dai, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dai, J. P.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Dbeyssi, A.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Dedovich, D.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Deng, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Denig, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Denysenko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Destefanis, M.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    De Mori, F.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Ding, Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Dong, C.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Dong, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dong, L. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dong, M. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dou, Z. L.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Du, S. X.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Duan, P. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fan, J. Z.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Fang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fang, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fang, X.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Fang, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Farinelli, R.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy.;Univ Ferrara, I-44122 Ferrara, Italy..
    Fava, L.
    Univ Piemonte Orientale, I-15121 Alessandria, Italy.;INFN, I-10125 Turin, Italy..
    Fedorov, O.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Feldbauer, F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Felici, G.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Feng, C. Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Fioravanti, E.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Fritsch, M.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Fu, C. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, X. L.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Gao, X. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Gao, Y.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Gao, Z.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Garzia, I.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Goetzen, K.
    GSI Helmholtzcentre Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Gong, L.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Gong, W. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gradl, W.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Greco, M.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Gu, M. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gu, Y. T.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Guan, Y. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, A. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, L. B.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Guo, R. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y. P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Haddadi, Z.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Hafner, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Han, S.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Hao, X. Q.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Harris, F. A.
    Univ Hawaii, Honolulu, HI 96822 USA..
    He, K. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Heinsius, F. H.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Held, T.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Heng, Y. K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Holtmann, T.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Hou, Z. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, C.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Hu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, J. F.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Hu, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Huang, G. S.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Huang, J. S.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Huang, X. T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Huang, X. Z.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Huang, Y.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Huang, Z. L.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Hussain, T.
    Univ Punjab, Lahore 54590, Pakistan..
    Ji, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, Q