uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 68
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aczel, Peter
    et al.
    Crosilla, Laura
    Ishihara, Hajime
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Schuster, Peter
    Binary refinement implies discrete exponentiation2006In: Studia Logica, Vol. 84, p. 361-368Article in journal (Refereed)
  • 2.
    Andersson, Anders
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    On second-order generalized quantifiers and finite structures2002In: Ann. Pure Appl. Logic, Vol. 115, no 1-3, p. 1-32Article in journal (Refereed)
  • 3.
    Awodey, Steve
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Eliasson, Jonas
    Ultrasheaves and double negation2002Report (Other scientific)
  • 4.
    Blanck, J
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, V
    Tucker, J.V.
    Domain representations of partial functions, with applications to spatial objects and contructive volume geometry2001Report (Other scientific)
  • 5.
    Blanck, J
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, V
    Tucker, JV
    Streams, stream transformers and domain representations1998In: PROSPECTS FOR HARDWARE FOUNDATIONS, Vol. 1546, p. 27-68Article in journal (Other scientific)
    Abstract [en]

    We present a general theory for the computation of stream transformers of the form F: (R --> B) --> (T --> A), where time T and R, and data A and B, are discrete or continuous. We show how methods for representing topological algebras by algebraic domains

  • 6.
    Blanck, Jens
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, Viggo
    Tucker, John V.
    Domain representations of partial functions, with applications to spatial objects and constructive volume geometry2002In: Theoret. Comput. Sci., Vol. 284, no 2, p. 207-240Article in journal (Refereed)
  • 7. Cherlin, G.
    et al.
    Djordjevic, Marko
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Hrushovski, E.
    A note on orthogonality and stable embeddedness2005In: Journal of Symbolic Logic (JSL), ISSN 0022-4812, E-ISSN 1943-5886, Vol. 70, no 4, p. 1359-1364Article in journal (Refereed)
    Abstract [en]

    Orthogonality between two stably embedded definable sets is preserved under the addition of constants.

  • 8. Coquand, Thiery
    et al.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Metric boolean algebras and constructive measure theory2002In: Arch. Math. Logic, Vol. 41, p. 687-704Article in journal (Refereed)
  • 9.
    Dahlgren, Fredrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Computability and cintinuity in metric partial algebras equipped with computability structures2004In: Mathematical logic quarterly, Vol. 50, no 4-5Article in journal (Refereed)
  • 10.
    Dahlgren, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Partial continuous functions and admissible domain representations: Extended abstract2006In: Logical approaches to computational barriers: Proceedings / [ed] Beckmann A; Berger U; Lowe B; Tucker JV, 2006, Vol. 3988, p. 94-104Conference paper (Refereed)
    Abstract [en]

    It is well known that to be able to represent continuous functions between domain representable spaces it is critical that the domain representations of the spaces we consider are dense. In this article we show how to develop a representation theory over a category of domains with morphisms partial continuous functions. The reason for introducing partial continuous functions is that by passing to partial maps, we are free to consider totalities which are not dense. We show that there is a natural subcategory of the category of representable spaces with morphisms representable maps which is Cartesian closed. Finally, we consider the question of effectivity.

  • 11.
    Djordjevic, Marko
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Entropy of formulas2006Report (Other (popular science, discussion, etc.))
  • 12.
    Djordjevic, Marko
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Finite satisfiability and N-0-categorical structures with trivial dependence2006In: Journal of Symbolic Logic (JSL), ISSN 0022-4812, E-ISSN 1943-5886, Vol. 71, no 3, p. 810-830Article in journal (Refereed)
  • 13.
    Djordjevic, Marko
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Finite variable logic, stability and finite models2001In: Journal of Symbolic Logic (JSL), ISSN 0022-4812, E-ISSN 1943-5886, Vol. 66, no 2, p. 837-858Article in journal (Refereed)
  • 14.
    Djordjevic, Marko
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    On first-order sentences without finite models2004In: Journal of Symbolic Logic (JSL), ISSN 0022-4812, E-ISSN 1943-5886, Vol. 69, no 2, p. 329-339Article in journal (Refereed)
  • 15.
    Djordjevic, Marko
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    The finite submodel property and ω-categorical expansions of pregeometries2006In: Annals of Pure and Applied Logic, ISSN 0168-0072, E-ISSN 1873-2461, Vol. 139, no 1-3, p. 201-229Article in journal (Refereed)
    Abstract [en]

    We prove, by a probabilistic argument, that a class of ω-categorical structures, on which algebraic closure defines a pregeometry, has the finite submodel property. This class includes any expansion of a pure set or of a vector space, projective space or affine space over a finite field such that the new relations are sufficiently independent of each other and over the original structure. In particular, the random graph belongs to this class, since it is a sufficiently independent expansion of an infinite set, with no structure. The class also contains structures for which the pregeometry given by algebraic closure is non-trivial.

  • 16.
    Djordjevic, Vera
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Gorbow, Paul
    Partial stability in simple theories2006Report (Other (popular scientific, debate etc.))
  • 17.
    Eliasson, Jonas
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Ultrapowers as sheaves on a category of ultrafilters2001Licentiate thesis, monograph (Other scientific)
  • 18.
    Garner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Cofibrantly generated natural weak factorisation systems2007Report (Other scientific)
    Abstract [en]

    There is an ``algebraisation'' of the notion of weak factorisation system (w.f.s.) known as a natural weak factorisation system. In it, the two classes of maps of a w.f.s. are replaced by two categories of maps-with-structure, where the extra structure on a map now encodes a choice of liftings with respect to the other class. This extra structure has pleasant consequences: for example, a natural w.f.s. on C induces a canonical natural w.f.s. structure on any functor category [A, C].

    In this paper, we define cofibrantly generated natural weak factorisation systems by analogy with cofibrantly generated w.f.s.'s. We then construct them by a method which is reminiscent of Quillen's small object argument but produces factorisations which are much smaller and easier to handle, and show that the resultant natural w.f.s. is, in a suitable sense, freely generated by its generating cofibrations. Finally, we show that the two categories of maps-with-structure for a natural w.f.s. are closed under all the constructions we would expect of them: (co)limits, pushouts / pullbacks, transfinite composition, and so on.

  • 19.
    Garner, Richard
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Double clubs2006In: Cahiers de topologie et géométrie différentielle catégoriques, ISSN 1245-530X, Vol. XLVII, p. 261-317Article in journal (Refereed)
    Abstract [en]

    We develop a theory of double clubs which extends Kelly's theory of clubs to the pseudo double categories of Pare and Grandis. We then show that the club for symmetric strict monoidal categories on Cat extends to a `double club' on the pseudo double category of `categories, functors, profunctors and transformations'.

  • 20.
    Hamrin, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Admissible Domain Representations of Convergence Spaces2005Report (Other scientific)
  • 21.
    Hamrin, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Admissible Domain Representations of Topological Spaces2005Report (Other scientific)
  • 22.
    Hamrin, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    An enquiry concerning categories of effective continuous cpos2002Licentiate thesis, monograph (Other scientific)
  • 23.
    Hamrin, Göran
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Two Categories of Effective Continuous Cpos2005Report (Other scientific)
  • 24.
    Hamrin, Göran
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, Viggo
    Cartesian closed categories ofeffective domains2002In: Proof and System-Reliability, p. 1-20Article in journal (Refereed)
  • 25.
    Hamrin, Göran
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, Viggo
    Effective Cartesian Closed Categories of Domains2001Report (Other scientific)
  • 26.
    Hamrin, Göran
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, Viggo
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Two categories of effective continuous cpos2006In: Theoretical Computer Science, Vol. 365, no 3, p. 216-236Article in journal (Refereed)
  • 27.
    Hertling, Peter
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Topological complexity of zero-finding with algebraic operations2002In: Journal of Complexity, Vol. 18, p. 912-942Article in journal (Refereed)
  • 28. Ishihara, Hajime
    et al.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Quotient topologies in constructive set theory and type theory2006In: Annals of Pure and Applied Logic, Vol. 141, p. 257-265Article in journal (Refereed)
  • 29.
    Koponen, Vera
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Gregory Cherlin and Ehud Hrushovski. Finite structures with few types. Annals of Mathematics Studies. Princeton University Press, 2003, vi + 196pp.2008In: The Bulletin of Symbolic Logic, Vol. 14, no 1, p. 114-116Article, book review (Other (popular scientific, debate etc.))
  • 30.
    Koponen, Vera
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Independence and the finite submodel property2009In: Annals of Pure and Applied Logic, ISSN 0168-0072, E-ISSN 1873-2461, Vol. 158, no 1-2, p. 58-79Article in journal (Refereed)
    Abstract [en]

    We study a class c of aleph(0)-categorical simple structures such that every M in c has uncomplicated forking behavior and such that definable relations in M which do not cause forking are independent in a sense that is made precise; we call structures in c independent. The SU-rank of such M may be n for any natural number n > 0. The most well-known unstable member of c is the random graph, which has SU-rank one. The main result is that for every strongly independent structure M in e, if a sentence phi is true in M then phi is true in a finite substructure of M. The same conclusion holds for every structure in c with SU-rank one: so in this case the word 'strongly' can be removed. A probability theoretic argument is involved and it requires sufficient independence between relations which do not cause forking. A stable structure M belongs to c if and only if it is aleph(0)-categorical, aleph(0)-stable and every definable strictly minimal Subset of M-eq is indiscernible.

     

  • 31.
    Lindroth, Olof
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    A random formula lower bound for ordered DLL extended with local symmetry recognition2004Licentiate thesis, monograph (Other scientific)
  • 32. Moerdijk, I.
    et al.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Type Theories, Toposes and Constructive Set Theory: Predicative Aspects of AST2002In: Ann. Pure Appl. Logic, Vol. 114, p. 155-201Article in journal (Refereed)
  • 33. Normann, Dag
    et al.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Stoltenberg-Hansen, Viggo
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Hyperfinite type structures1999In: JOURNAL OF SYMBOLIC LOGIC, Vol. 64, no 3, p. 1216-1242Article in journal (Refereed)
  • 34.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    A categorical version of the Brouwer-Heyting-Kolmogorov interpretation2004In: Mathematical Structures in Computer Science, Vol. 14, p. 57-72Article in journal (Refereed)
  • 35.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    A constructive and functorial embedding of locally compact metric spaces into locales2006Report (Other (popular scientific, debate etc.))
  • 36.
    Palmgren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    A constructive and functorial embedding of locally compact metric spaces into locales2007In: Topology and its Applications, ISSN 0166-8641, E-ISSN 1879-3207, Vol. 154, no 9, p. 1854-1880Article in journal (Refereed)
    Abstract [en]

    The paper establishes, within constructive mathematics, a full and faithful functor M from the category of locally compact metric spaces and continuous functions into the category of formal topologies (or equivalently locales). The functor preserves finite products, and moreover satisfies f ≤ g if, and only if, M (f) ≤ M (g) for continuous f, g : X → R. This makes it possible to transfer results between Bishop's constructive theory of metric spaces and constructive locale theory.

  • 37.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    A note on domain representability and formal topology2007Report (Other scientific)
  • 38.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    An effective conservation result for nonstandard arithmetic2000In: Mathematical Logic Quarterly, Vol. 46, p. 17-23Article in journal (Refereed)
  • 39.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    An intuitionistic axiomatisation of real closed fields2002In: Mathematical Logic Quarterly, Vol. 48, p. 297-299Article in journal (Refereed)
  • 40.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Constructive completions of ordered sets, groups and fields2005In: Annals of Pure and Applied Logic, no 135, p. 243-262Article in journal (Refereed)
  • 41.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Constructive completions of ordered sets, groups and fields2003Report (Other scientific)
  • 42.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Continuity on the real line and in formal spaces2005In: From Sets and Types to Topology and Analysis: Towards Practicable Foundations of Constructive Mathematics, 2005Conference paper (Refereed)
  • 43.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Continuity on the real line and in formal spaces2003Report (Other scientific)
  • 44.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Groupoids and local cartesian closure2003Report (Other scientific)
  • 45.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Internalising modified realisability in constructive2005In: Logical Methods in Computer Science, Vol. 1, no 2, p. 1-7Article in journal (Refereed)
  • 46.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Internalising modified realisability in constructive type theory2004Report (Other scientific)
  • 47.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Locally cartesian closed categories without chosen constructions2006Report (Other (popular scientific, debate etc.))
  • 48.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Maximal and partial points in formal spaces2006In: Annals of Pure and Applied Logic, Vol. 137, p. 291-298Article in journal (Refereed)
  • 49.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Predicativity problems in point-free topology2003Report (Other scientific)
  • 50.
    Palmgren, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics, Mathematical Logic.
    Predicativity problems in point-free topology2006In: Proc. Logic Colloquium 2003, Helsinki, 2006Conference paper (Refereed)
12 1 - 50 of 68
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf