uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergens, Simon
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Informatics and Media. Gotland University, Department of Software Engineering.
    Frykengård, Pontus
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Informatics and Media. Gotland University, Department of Software Engineering.
    Skräppost eller skinka?: En jämförande studie av övervakade maskininlärningsalgoritmer för spam och ham e-mailklassifikation2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Spam messages in the form of e-mail is a growing problem in today's businesses. It is a problem that costs time and resources to counteract. Research into this has been done to produce techniques and tools aimed at addressing the growing number on incoming spam e-mails. The research on different algorithms and their ability to classify e-mail messages needs an update since both tools and spam e-mails have become more advanced. In this study, three different machine learning algorithms have been evaluated based on their ability to correctly classify e-mails as legitimate or spam. These algorithms are naive Bayes, support vector machine and decision tree. The algorithms are tested in an experiment with the Enron spam dataset and are then compared against each other in their performance. The result of the experiment was that support vector machine is the algorithm that correctly classified most of the data points. Even though support vector machine has the largest percentage of correctly classified data points, other algorithms can be useful from a business perspective depending on the task and context.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf